시장보고서
상품코드
1406369

수력 터빈 시장 : 세계 산업 규모, 점유율, 동향, 기회, 예측 - 유형별, 용량별, 용도별, 지역별, 경쟁별(2018-2028년)

Hydropower Turbine Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Capacity, By Application, By Region, By Competition, 2018-2028

발행일: | 리서치사: TechSci Research | 페이지 정보: 영문 180 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 수력 터빈 시장은 2022년에 25억 7,000만 달러로 평가되며, 2028년까지의 CAGR은 4.40%로, 예측 기간 중 강력한 성장이 예측됩니다.

수력 터빈 시장은 세계 에너지 산업에서 물의 운동 에너지로 전기를 생산하기 위해 특별히 설계된 터빈의 설계, 제조, 설치 및 정비에 중점을 둔 분야를 말합니다. 이 터빈은 강, 댐, 폭포 등 흐르는 물의 에너지를 이용하여 전력을 생산하는 수력발전소에 필수적인 부품입니다.

수력 발전용 터빈은 물의 역학적 에너지를 전기 에너지로 변환하는 과정에 필수적입니다. 수력 터빈에는 프랜시스 터빈, 펠톤 터빈, 카플란 터빈 등 다양한 유형이 있으며, 각 유형은 특정 수류 조건과 수두 레벨에 맞게 조정됩니다. 시장에는 터빈 제조업체, 엔지니어링 회사, 전력 회사, 수력 발전 프로젝트의 계획, 규제 및 추진에 관여하는 정부 기관 등 다양한 이해 관계자가 포함됩니다.

시장 개요
예측 기간 2024-2028
시장 규모 25억 7,000만 달러
2028년 시장 규모 34억 9,000만 달러
CAGR 2023-2028 4.40%
급성장 부문 전력저장
최대 시장 아시아태평양

수력 터빈 시장은 전 세계가 재생에너지로 전환하는 데 있으며, 매우 중요한 역할을 하고 있으며, 온실가스 배출을 줄이고 깨끗하고 지속가능한 전력을 공급하는데 기여하고 있습니다. 수력 발전은 환경 영향 완화, 노후화된 인프라의 현대화, 효율성과 환경적 지속가능성을 높이기 위한 기술 혁신의 필요성과 같은 과제에 직면해 있습니다. 그럼에도 불구하고 수력 발전은 여전히 전 세계 청정에너지 발전의 중요한 원동력임에는 변함이 없습니다.

완화를 위한 노력 :

이러한 환경 문제를 해결하기 위해서는 신중한 계획과 완화 조치가 필요합니다. 물고기 친화적 인 터빈과 어도 등 물고기 친화적 인 터빈 설계가 개발 및 구현되어 물고기의 통행을 용이하게 하고 수생 생물에 대한 영향을 줄입니다. 또한 환경 영향 평가와 철저한 모니터링은 책임감 있는 수력 발전 프로젝트 개발의 중요한 요소입니다.

지속가능성과 라이선싱의 과제:

수력 발전 프로젝트의 승인과 인허가는 환경적 지속가능성을 증명해야 하기 때문에 시간이 오래 걸리고 어려운 과제입니다. 일부 프로젝트는 생태계에 대한 잠재적인 피해를 우려하는 환경 보호 단체와 지역 사회의 반대에 직면 할 수도 있습니다. 청정 에너지에 대한 요구와 환경 보호의 균형을 맞추는 것은 수력 발전 산업의 지속적인 과제입니다.

인프라의 노후화와 재활의 필요성

세계 수력 터빈 시장의 또 다른 중요한 과제는 기존 수력 발전 시설 인프라의 노후화와 이에 따른 보수 및 현대화의 필요성입니다.

수력발전 인프라의 노후화:

전 세계의 많은 수력 발전 시설은 수십년전에 건설되어 현재 노후화의 징후를 보이고 있습니다. 이러한 시설이 노후화됨에 따라 효율성이 떨어지고 유지보수 비용이 증가합니다. 노후화된 터빈 기술은 에너지 생산량 감소, 유지보수 비용 증가, 신뢰성 저하를 초래할 수 있습니다.

현대화 요구 사항

이러한 문제를 해결하기 위해 정부와 수력 발전 사업자는 기존 시설의 현대화 및 복구에 투자해야 합니다. 여기에는 종종 효율성과 신뢰성을 향상시키기 위해 터빈, 제어 시스템 및 기타 컴포넌트를 업그레이드하는 것이 포함됩니다. 현대화 노력은 물고기 친화적 인 터빈 설계를 도입하고 물 관리 방법을 개선하는 등 환경 성능 향상에 초점을 맞출 수도 있습니다.

재정적 및 기술적 과제:

현대화 프로젝트는 복잡하고 비용이 많이 들 수 있으며, 재정적, 기술적 문제가 발생할 수 있습니다. 특히 지속적인 유지보수 및 업그레이드를 지원할 수 있는 매출이 발생하지 않을 수 있는 오래된 시설의 경우, 이러한 프로젝트에 대한 자금 조달은 장벽이 될 수 있습니다. 또한 오래된 시설을 첨단 터빈 기술로 개조하기 위해서는 상당한 엔지니어링 및 기술 전문 지식이 필요할 수 있습니다.

보존과 업그레이드의 균형:

또 다른 과제는 오래된 수력 발전 시설의 역사적, 문화적 가치 보존과 기술적 업그레이드의 필요성 사이의 균형을 맞추는 것입니다. 일부 오래된 댐은 역사적 건축물로 간주되어 보존이 중요하지만, 지속적인 기능성과 현대의 환경 기준에 부합하는 것을 보장하면서 보존해야 합니다.

결론적으로 세계 수력 터빈 시장은 기존 수력 발전 시설의 노후화뿐만 아니라 환경 및 생태계에 대한 우려와 관련된 문제에 직면해 있습니다. 이러한 과제를 해결하기 위해서는 책임감 있는 프로젝트 개발, 완화 조치, 현대화 노력, 청정 에너지의 필요성과 환경 보호의 균형을 맞추는 방법의 발견 등 다각적인 접근이 필요합니다. 이러한 과제를 극복하는 것은 신뢰할 수 있는 청정 전력 공급원으로서 수력 발전 산업의 지속적인 성장과 지속가능성을 위해 필수적입니다.

부문별 인사이트

반응형 인사이트

반응형(Reactive, Francis라고도 함) 부문은 2022년 가장 큰 시장 점유율을 차지할 것으로 예상됩니다. 프랜시스 수차는 다재다능하고 다양한 유량과 수위에서 효과적으로 작동할 수 있습니다. 이러한 적응성은 저수두에서 고수두까지 다양한 수력 발전 프로젝트에 적합합니다. 유량 조건의 변화에 유연하게 대응할 수 있다는 것은 가용 수량이 변동하는 지역에서 큰 이점이 될 수 있습니다. 프랜시스 수차는 그 효율성으로 유명합니다. 흐르는 물의 운동 에너지의 대부분을 전력으로 변환할 수 있습니다. 이러한 높은 효율은 주어진 수자원에서 에너지 출력을 극대화하고 투자 매출률을 최적화하기 때문에 수력 발전 개발자에게 매력적입니다. 프랜시스 수차는 다양한 부하 조건에서 안정적이고 예측 가능한 성능을 발휘합니다. 수류와 부하 수요의 변화에 적응할 수 있으므로 연속 발전의 신뢰성이 높습니다. 이러한 안정성은 전력망의 신뢰성을 유지하고 에너지 수요를 충족시키는 데 필수적입니다. 프랜시스 수차는 수십년간 사용되어 왔으며 지속적으로 개선되었습니다. 설계 및 제조 공정이 확립되어 고품질의 내구성이 뛰어난 터빈을 생산할 수 있게 되었습니다. 이러한 기술의 성숙은 시장에서 우위를 점할 수 있는 원동력이 되었습니다. 프란시스 터빈은 적응성이 뛰어나 다양한 지역과 기후 조건에 대응할 수 있습니다. 높은 수위에서 수력 발전이 가능한 산간 지역부터 낮은 수위의 강을 기반으로 한 프로젝트까지 다양한 환경에서 사용되고 있습니다. 프랜시스 수차는 보급, 성숙한 기술, 효율성으로 인해 비용 효율성이 높은 것으로 간주되는 경우가 많습니다. 검증된 실적이 있으므로 위험을 최소화하고 프로젝트의 경제성을 최적화하고자 하는 프로젝트 개발자에게는 매력적인 선택이 될 수 있습니다. 규제기관과 정부는 종종 수력 발전 프로젝트에 대한 가이드라인과 기준을 마련하고 있습니다. 프란시스 수차는 잘 이해되고 널리 받아들여지는 기술이기 때문에 규제 당국의 승인을 받기 쉽고, 프로젝트 인허가 절차가 간소화되는 경향이 있습니다.

발전사업 인사이트

2022년에는 발전 분야가 가장 큰 시장 점유율을 차지할 것입니다. 수력 발전은 1세기 이상 신뢰할 수 있는 검증된 발전원입니다. 수력 발전은 재생 에너지 중 가장 오래되고 확립된 형태 중 하나입니다. 그 결과 댐, 저수지, 수력발전소 등 수력 발전 인프라가 광범위하게 개발되어 수력 터빈의 주요 용도가 되었습니다. 수력 발전 프로젝트는 큰 수두를 가진 고산 지대에서 저지대 하천 시스템까지 다양한 지역적 위치에서 개발할 수 있습니다. 이러한 다양성은 수력 발전 자원이 전 세계 곳곳에 풍부하다는 것을 의미하며, 이는 발전 분야에서 수력 발전의 우위에 기여합니다. 수력 터빈은 안정적이고 안정적인 발전을 제공합니다. 날씨에 따라 간헐적이고 간헐적인 풍력이나 태양광과 같은 다른 재생 에너지와 달리, 수력 발전은 필요에 따라 제어 및 배전이 가능합니다. 이러한 안정성은 안정적인 전력 공급을 보장하는 기저부하 및 피크 전력 생산에 이상적인 전원 공급원입니다. 수력 터빈은 흐르는 물의 운동 에너지를 전기로 변환하는 효율이 높은 것으로 알려져 있으며, 90% 이상의 효율을 달성할 수 있으므로 비용 효율적이고 에너지 효율적인 발전 옵션입니다. 일단 수력발전소가 건설되면 화석연료를 사용하는 발전소에 비해 운영 및 유지보수 비용이 상대적으로 낮습니다. 이러한 비용 효율성으로 인해 수력 발전은 발전 비용을 절감하고자 하는 전력회사와 정부에게 매력적인 선택지가 되고 있습니다. 수력 발전은 깨끗하고 친환경적인 에너지원입니다. 수력 발전은 운전 중 온실가스를 직접 배출하지 않으며, 다른 많은 발전 형태에 비해 환경 발자국이 가장 적습니다. 이러한 환경적 이점은 기후 변화에 대응하고 대기오염을 줄이기 위한 세계 각국의 노력과 일치합니다. 수력발전소 및 관련 터빈의 수명 주기는 길고, 적절한 유지보수가 이루어질 경우 50년 이상 지속되는 경우가 많습니다. 이러한 장기적인 신뢰성과 내구성은 안정적이고 지속적인 전력 공급원을 찾는 투자자와 전력회사에게 매력적입니다. 수력 발전은 전력 수요 변동에 신속하게 대응할 수 있으며, 전력망에 안정성을 제공합니다. 부하 추종에 활용될 수 있으며, 송전망의 신뢰성을 유지하고 수요 및 공급의 균형을 맞추는 데 도움이 됩니다. 많은 국가에는 미개발 수력 발전 잠재력이 있으며, 새로운 수력 발전 프로젝트를 개발할 수 있는 기회가 있습니다. 세계 에너지 수요가 계속 증가함에 따라 각국 정부와 전력회사들은 수력 발전 용량을 확대하기 위해 노력하고 있습니다. 많은 정부가 재생 에너지 및 환경 정책의 일환으로 수력 발전을 장려하고 장려하고 있습니다. 지원적인 규제 프레임워크, 보조금 및 인센티브는 발전용 수력 발전 프로젝트 개발을 촉진하고 있습니다.

.

지역별 인사이트

아시아태평양 :

아시아태평양

아시아태평양에서는 선진국과 개발도상국 모두에서 수력발전용 터빈에 대한 수요가 증가하고 있습니다. 이 지역에는 많은 대규모 수력 발전 프로젝트가 있으며 더 많은 프로젝트가 개발 중입니다. 아시아태평양 수력 터빈 시장의 주요 동향은 다음과 같습니다.

재생에너지 개발에 대한 관심 증가

수력발전 개발을 촉진하기 위한 정부의 구상

터빈 설계 및 제조 공정의 기술 진보

북미:

북미: 북미 수력 터빈 시장은 재생에너지 개발에 대한 관심이 높아지면서 향후 수년간 큰 성장을 보일 것으로 예상됩니다. 미국 정부는 수력발전 개발에 많은 투자를 하고 있으며, 미국에는 많은 신규 수력발전 프로젝트가 개발되고 있습니다.

유럽

유럽의 수력 터빈 시장은 향후 수년간 완만한 성장세를 보일 것으로 예상됩니다. 유럽 수력 터빈 시장의 주요 동향은 다음과 같습니다.

재생에너지 개발에 대한 관심 증가

기존 수력발전소 개보수

새로운 수력 발전 기술 개발

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 고객의 소리

제5장 세계의 수력 터빈 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율과 예측
    • 유형별(리액티브, 임펄스, 그라비티, 기타)
    • 용량별(1MW 미만, 1-10MW, 10MW 이상),
    • 용도별(발전, 전력 저장, 해양, 항공)
    • 지역별
    • 기업별(2022년)
  • 시장 맵

제6장 북미의 수력 터빈 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율·예측
    • 유형별
    • 용량별
    • 용도별
    • 국가별
  • 북미 국가별 분석
    • 미국
    • 캐나다
    • 멕시코

제7장 유럽의 수력 터빈 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율과 예측
    • 유형별
    • 용량별
    • 용도별
    • 국가별
  • 유럽 국가별 분석
    • 독일
    • 영국
    • 이탈리아
    • 프랑스
    • 스페인

제8장 아시아태평양의 수력 터빈 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율과 예측
    • 유형별
    • 용량별
    • 용도별
    • 국가별
  • 아시아태평양 국가별 분석
    • 중국
    • 인도
    • 일본
    • 한국
    • 호주

제9장 남미의 수력 터빈 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율과 예측
    • 유형별
    • 용량별
    • 용도별
    • 국가별
  • 남미 : 국가별 분석
    • 브라질
    • 아르헨티나
    • 콜롬비아

제10장 중동 및 아프리카의 수력 터빈 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율과 예측
    • 유형별
    • 용량별
    • 용도별
    • 국가별
  • 중동 및 아프리카 : 국가별 분석
    • 남아프리카공화국
    • 사우디아라비아
    • 아랍에미리트
    • 쿠웨이트
    • 터키

제11장 시장 역학

  • 촉진요인
  • 과제

제12장 시장 동향과 발전

제13장 기업 개요

  • General Electric Company
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Voith Group
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Andritz AG
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Siemens Energy AG
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Harbin Electric Corporation
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Dongfang Electric Machinery Co. Ltd
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Hitachi Ltd
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Mitsubishi Heavy Industries Ltd
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Toshiba Corp.
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • GE Renewable Energy
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered

제14장 전략적 제안

제15장 조사회사 소개·면책사항

KSA 24.01.29

Global Hydropower Turbine Market was valued at USD 2.57 billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 4.40% through 2028.

The hydropower turbine market refers to the sector within the global energy industry that focuses on the design, manufacturing, installation, and maintenance of turbines specifically engineered for the generation of electricity from the kinetic energy of flowing water. These turbines are integral components of hydropower plants, which harness the energy of moving water, such as rivers, dams, and waterfalls, to produce electrical power.

Hydropower turbines are essential in the process of converting the mechanical energy of water into electrical energy. They come in various types, including Francis, Pelton, and Kaplan turbines, each tailored for specific water flow conditions and head levels. The market encompasses a wide range of stakeholders, including turbine manufacturers, engineering firms, utilities, and government agencies involved in the planning, regulation, and promotion of hydropower projects.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 2.57 Billion
Market Size 2028USD 3.49 Billion
CAGR 2023-20284.40%
Fastest Growing SegmentPower Storage
Largest MarketAsia-Pacific

The hydropower turbine market plays a pivotal role in the global transition to renewable energy sources, contributing to the reduction of greenhouse gas emissions and the provision of clean, sustainable electricity. It faces challenges related to environmental impact mitigation, modernization of aging infrastructure, and the need for innovation to enhance efficiency and environmental sustainability. Nevertheless, it remains a key driver of clean energy generation worldwide.

Key Market Drivers

Renewable Energy Transition and Environmental Concerns

The global push for renewable energy sources in the face of climate change and environmental degradation has become a significant driver of the hydropower turbine market. With increasing awareness of the detrimental effects of fossil fuels, governments, businesses, and individuals are seeking cleaner energy alternatives. Hydropower stands out as one of the most established and reliable renewable energy sources, providing a steady and consistent supply of electricity without carbon emissions or pollution. This growing emphasis on sustainability and reducing greenhouse gas emissions is propelling investments in hydropower projects worldwide.

Hydropower's environmentally friendly attributes align with global efforts to combat climate change, and its reliability ensures a stable energy supply, making it an attractive option for governments and utilities looking to reduce their carbon footprints.

Energy Security and Reliability

Energy security and reliability are critical concerns for nations around the world. Unstable energy sources, such as wind and solar, can be intermittent and weather-dependent, which makes grid stability a challenge. In contrast, hydropower provides a consistent and reliable source of electricity, making it an essential driver in the global energy landscape. Hydropower plants can respond quickly to fluctuations in demand, making them valuable assets for grid stability and energy security.

As countries seek to reduce their dependence on imported fossil fuels and enhance their energy resilience, investments in hydropower turbines and infrastructure continue to rise.

Infrastructure Modernization and Rehabilitation

Many existing hydropower facilities around the world are aging and in need of modernization or rehabilitation. This presents a significant driver for the global hydropower turbine market. Governments and utilities recognize the potential to enhance the efficiency, capacity, and lifespan of these facilities by upgrading their turbine systems.

Modern turbine technologies offer improved efficiency, greater power generation, and reduced maintenance costs. Thus, the need to refurbish and upgrade older hydropower plants is boosting demand for new hydropower turbines and associated equipment.

Growing Urbanization and Energy Demand

Rapid urbanization and population growth are driving up global energy demand. As more people move to cities and economies expand, the need for electricity continues to grow. Hydropower is uniquely positioned to meet this escalating demand due to its ability to provide a stable and substantial energy supply.

Emerging economies are particularly keen on harnessing hydropower to support their expanding industrial and residential needs. As a result, investments in new hydropower projects and turbines are on the rise.

Government Incentives and Policies

Government policies and incentives play a pivotal role in shaping the growth of the hydropower turbine market. Many countries offer financial incentives, subsidies, and favorable regulatory frameworks to encourage the development of hydropower projects. These policies can include feed-in tariffs, tax credits, and grants, which attract private sector investments and drive market expansion.

Additionally, governments may set renewable energy targets and emissions reduction goals, further incentivizing the adoption of hydropower as a clean and sustainable energy source.

Technological Advancements and Innovation

Advancements in turbine technology and innovation are transforming the hydropower industry. New turbine designs, materials, and control systems are enhancing efficiency and performance while reducing environmental impacts. Miniaturization and modularization of turbines are making smaller-scale hydropower projects more feasible and cost-effective.

Moreover, the integration of digital technologies, such as predictive maintenance and remote monitoring, is optimizing the operation and maintenance of hydropower turbines, minimizing downtime and maximizing energy output.

In conclusion, the global hydropower turbine market is being driven by a combination of factors, including the renewable energy transition, energy security concerns, infrastructure modernization, urbanization, government policies, and technological advancements. As the world continues to prioritize clean and sustainable energy sources, the demand for hydropower turbines is expected to remain strong in the coming years.

Government Policies are Likely to Propel the Market

Renewable Portfolio Standards (RPS)

Renewable Portfolio Standards, commonly known as RPS or Renewable Energy Standards (RES), are government policies that mandate a certain percentage of electricity generation to come from renewable sources, including hydropower. These standards vary by country and region but typically require utilities to produce a specified portion of their electricity from renewable sources by a certain target year.

RPS policies create a strong incentive for the development of hydropower projects, as they provide a guaranteed market for renewable energy. They encourage the growth of the hydropower turbine market by ensuring a consistent demand for hydropower-generated electricity. To meet these standards, utilities often invest in the construction and upgrading of hydropower plants, leading to increased demand for hydropower turbines and related equipment.

Additionally, RPS policies drive innovation in the hydropower industry by encouraging the adoption of more efficient and environmentally friendly turbine technologies to meet renewable energy goals.

Investment Tax Credits (ITC) and Production Tax Credits (PTC)

Investment Tax Credits (ITC) and Production Tax Credits (PTC) are fiscal incentives provided by governments to promote the development of renewable energy, including hydropower. These policies offer financial incentives to investors, developers, and operators of hydropower projects.

The Investment Tax Credit provides a direct reduction in the income tax liability of those investing in hydropower projects. This tax credit can significantly lower the overall project costs, making hydropower investments more attractive to private investors.

Production Tax Credits, on the other hand, offer a per-kilowatt-hour tax credit for the electricity generated by qualified renewable energy facilities, including hydropower plants. These credits provide ongoing financial support for the operation of hydropower projects, ensuring their long-term viability.

Both ITC and PTC policies stimulate investment in the hydropower turbine market by reducing the financial burden on project developers and investors. This encourages the construction of new hydropower facilities and the modernization of existing ones.

Environmental Regulations and Permitting

Government regulations and permitting processes significantly impact the hydropower turbine market, particularly concerning environmental considerations. Hydropower projects often involve the construction of dams, which can have environmental and ecological implications. Therefore, governments establish stringent regulations and permitting requirements to ensure that hydropower developments are conducted responsibly and sustainably.

Environmental impact assessments, fish passage requirements, and water quality standards are some of the key components of these regulations. Compliance with these regulations often necessitates the installation of advanced turbine technologies and fish-friendly designs, which drive innovation in the hydropower industry.

While these regulations can add complexity and cost to hydropower projects, they also help ensure the long-term sustainability of the industry. Governments may offer incentives or streamlined permitting processes for projects that meet high environmental standards, further incentivizing the use of advanced hydropower turbines and responsible project development.

Research and Development Funding

Government funding for research and development (R&D) in the hydropower sector plays a crucial role in advancing turbine technologies and increasing the efficiency of hydropower generation. Governments often allocate budgets to support R&D initiatives aimed at enhancing the performance, reliability, and environmental sustainability of hydropower turbines.

R&D funding can be directed towards various aspects of hydropower technology, including materials research, turbine design, and control systems. These investments lead to the development of cutting-edge turbine technologies that can increase energy output, reduce maintenance costs, and minimize environmental impacts.

Additionally, government-funded research projects often involve collaboration between academia, industry, and government agencies, fostering innovation and knowledge sharing within the hydropower turbine market.

Export Credit Agencies (ECAs) and International Support

Export Credit Agencies are government entities that provide financial and risk mitigation services to domestic companies engaged in international trade and investment. In the context of the hydropower turbine market, ECAs can play a pivotal role in supporting the export of domestically manufactured turbines to foreign markets.

Many governments offer support through their ECAs to promote the export of renewable energy technologies, including hydropower turbines. This support may include financing options, insurance against political and commercial risks, and assistance with market entry strategies.

By facilitating the export of hydropower turbines, governments can boost the domestic manufacturing sector, create jobs, and expand the global reach of their hydropower industry. This policy encourages turbine manufacturers to invest in research and development, quality control, and competitiveness in the global marketplace.

Renewable Energy Subsidies and Incentive Programs

Renewable energy subsidies and incentive programs are critical government policies that directly impact the hydropower turbine market. These programs are designed to reduce the financial barriers associated with hydropower project development and encourage the adoption of renewable energy.

Subsidies may include grants, low-interest loans, or direct financial incentives for the construction and operation of hydropower plants. Incentive programs often provide financial rewards for each unit of electricity generated from renewable sources, such as feed-in tariffs, which guarantee a fixed payment per kilowatt-hour of hydropower electricity produced.

These policies stimulate investment in hydropower projects by making them more economically viable. They create a predictable revenue stream for project developers and operators, which, in turn, drives demand for hydropower turbines and encourages the expansion of hydropower capacity.

In conclusion, government policies have a profound impact on the global hydropower turbine market. Renewable Portfolio Standards, tax incentives, environmental regulations, research funding, export support, and subsidies all play crucial roles in shaping the growth, innovation, and sustainability of the hydropower industry worldwide. These policies are essential drivers for meeting renewable energy goals and mitigating climate change through the adoption of clean and sustainable hydropower technologies.

Key Market Challenges

Environmental and Ecological Concerns

The global hydropower turbine market, while crucial for sustainable energy generation, is not without its challenges. One of the most significant challenges pertains to environmental and ecological concerns associated with the construction and operation of hydropower projects.

Environmental Impact on Waterways:

Hydropower projects typically involve the construction of dams and reservoirs to regulate water flow, which can have a range of environmental impacts. Large dams can disrupt natural river ecosystems, altering the flow of sediment and nutrients downstream, and potentially harming aquatic life. The creation of reservoirs often results in the flooding of land, which can displace local communities and affect terrestrial ecosystems. Additionally, changes in water temperature and flow can impact the breeding and migration patterns of fish, potentially leading to declines in fish populations.

Mitigation Efforts:

Addressing these environmental concerns requires careful planning and mitigation measures. Fish-friendly turbine designs, such as fish-friendly turbines and fish ladders, are being developed and implemented to facilitate fish passage and reduce the impact on aquatic life. Additionally, environmental impact assessments and thorough monitoring are critical components of responsible hydropower project development.

Sustainability and Licensing Challenges:

The approval and licensing of hydropower projects can be time-consuming and challenging due to the need to demonstrate environmental sustainability. Some projects may face opposition from environmental groups and local communities concerned about the potential harm to ecosystems. Balancing the need for clean energy with environmental protection is an ongoing challenge for the industry.

Aging Infrastructure and Rehabilitation Needs

Another significant challenge in the global hydropower turbine market is the aging infrastructure of existing hydropower facilities and the associated need for rehabilitation and modernization.

Aging Hydropower Infrastructure:

Many hydropower facilities around the world were constructed several decades ago and are now showing signs of aging. As these facilities deteriorate, they become less efficient and more costly to maintain. Outdated turbine technologies may result in lower energy output, higher maintenance costs, and reduced reliability.

Modernization Requirements:

To address this challenge, governments and hydropower operators must invest in the modernization and rehabilitation of existing facilities. This often involves upgrading turbines, control systems, and other components to improve efficiency and reliability. Modernization efforts may also focus on enhancing environmental performance, such as implementing fish-friendly turbine designs and improving water management practices.

Financial and Technical Challenges:

Modernization projects can be complex and costly, presenting financial and technical challenges. Funding such projects can be a barrier, especially for older facilities that may not have generated revenue to support ongoing maintenance and upgrades. Additionally, retrofitting older facilities with advanced turbine technology may require significant engineering and technical expertise.

Balancing Preservation and Upgrades:

Another challenge is striking a balance between preserving the historical and cultural value of older hydropower facilities and the need for technological upgrades. Some older dams are considered historical landmarks, and their preservation is important, but this must be done while ensuring their continued functionality and compliance with modern environmental standards.

In conclusion, the global hydropower turbine market faces challenges related to environmental and ecological concerns, as well as the aging infrastructure of existing hydropower facilities. Addressing these challenges requires a multi-faceted approach that includes responsible project development, mitigation measures, modernization efforts, and finding ways to balance the need for clean energy with environmental preservation. Overcoming these challenges is essential for the continued growth and sustainability of the hydropower industry as a reliable and clean source of electricity.

Segmental Insights

Reactive Insights

The Reactive (Reactive also known as Francis) segment held the largest Market share in 2022. Francis turbines are highly versatile and can operate effectively across a wide range of water flow rates and heads. This adaptability makes them suitable for a broad spectrum of hydropower projects, from low-head to high-head applications. Their flexibility in handling varying flow conditions is a significant advantage in regions with fluctuating water availability. Francis turbines are renowned for their efficiency. They can convert a significant portion of the kinetic energy from flowing water into electricity. This high efficiency is attractive to hydropower developers because it maximizes the energy output from a given water source, optimizing the return on investment. Francis turbines provide stable and predictable performance under varying load conditions. They can adapt to changes in water flow and load demand, making them reliable for continuous power generation. This stability is essential for maintaining grid reliability and meeting energy demand. Francis turbines have been in use for many decades and have undergone continuous improvement. Their design and manufacturing processes are well-established, leading to the production of high-quality and durable turbines. This maturity in technology contributes to their dominance in the market. The adaptability of Francis turbines allows them to be used in a wide range of geographic locations and climate conditions. They are found in various settings, from mountainous regions with high-head hydropower potential to river-based projects with lower heads. Francis turbines are often considered cost-effective due to their widespread use, mature technology, and efficiency. Their proven track record makes them an attractive choice for project developers looking to minimize risks and optimize project economics. Regulatory bodies and governments often have established guidelines and standards for hydropower projects. Francis turbines, being a well-understood and widely accepted technology, tend to receive regulatory approval more readily, simplifying the permitting and licensing process for projects.

Power Generation Insights

The Power Generation segment held the largest Market share in 2022. Hydropower has been a reliable and proven source of electricity generation for over a century. It represents one of the oldest and most established forms of renewable energy. As a result, the infrastructure for hydropower generation, including dams, reservoirs, and hydropower plants, has been extensively developed, making it the leading application for hydropower turbines. Hydropower projects can be developed in a wide range of geographical locations, from high mountainous regions with significant heads to lowland river systems. This versatility means that hydropower resources are abundant in many parts of the world, contributing to its dominance in power generation. Hydropower turbines provide reliable and consistent electricity generation. Unlike some other renewable sources, such as wind and solar, which are weather-dependent and intermittent, hydropower can be controlled and dispatched as needed. This stability makes it an ideal source for baseload and peaking power generation, ensuring a steady supply of electricity. Hydropower turbines are known for their high efficiency in converting the kinetic energy of flowing water into electricity. They can achieve efficiency levels well above 90%, making them a cost-effective and energy-efficient choice for power generation. Once hydropower plants are constructed, their operating and maintenance costs are relatively low compared to fossil fuel-based power plants. This cost-effectiveness makes hydropower an attractive option for utilities and governments aiming to reduce electricity production costs. Hydropower is a clean and environmentally friendly source of energy. It produces no direct greenhouse gas emissions during operation and has a minimal environmental footprint compared to many other forms of electricity generation. This environmental advantage aligns with global efforts to combat climate change and reduce air pollution. Hydropower plants and their associated turbines have long lifecycles, often exceeding 50 years with proper maintenance. This long-term reliability and durability are attractive to investors and utilities seeking a stable and enduring source of electricity. Hydropower provides grid stability due to its ability to respond quickly to fluctuations in electricity demand. It can be used for load following, helping to maintain grid reliability and balance supply and demand. Many countries have untapped hydroelectric potential, meaning there are opportunities to develop new hydropower projects. As global energy demand continues to rise, governments and utilities are exploring the expansion of hydropower capacity. Many governments incentivize and promote hydropower as part of their renewable energy and environmental policies. Supportive regulatory frameworks, subsidies, and incentives encourage the development of hydropower projects for electricity generation.

.

Regional Insights

Asia-Pacific:

The Asia-Pacific region is witnessing a growing demand for hydropower turbines from both developed and developing countries. The region is home to a number of large hydroelectric projects, and many more are under development. The key trends in the Asia-Pacific hydropower turbine market include:

Increasing focus on renewable energy development.

Government initiatives promoting hydropower development.

Technological advancements in turbine designs and manufacturing processes

North America:

The North American hydropower turbine market is expected to witness significant growth in the coming years, driven by the increasing focus on renewable energy development. The US government is investing heavily in hydropower development, and a number of new hydroelectric projects are under development in the country.

Europe:

The European hydropower turbine market is expected to grow at a moderate pace in the coming years. The key trends in the European hydropower turbine market include:

Increasing focus on renewable energy development

Refurbishment of existing hydropower plants

Development of new hydropower technologies

Key Market Players

General Electric Company

Voith Group

Andritz AG

Siemens Energy AG

Harbin Electric Corporation

Dongfang Electric Machinery Co. Ltd

Hitachi Ltd

Mitsubishi Heavy Industries Ltd

Toshiba Corp.

GE Renewable Energy.

Report Scope:

In this report, the Global Hydropower Turbine Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Hydropower Turbine Market, By Type:

  • Reactive
  • Impulse
  • Gravity
  • Others

Hydropower Turbine Market, By Application:

  • Power Generation
  • Power Storage
  • Marine
  • Aeronautics

Hydropower Turbine Market, By Capacity:

  • Less than 1 MW
  • Between 1 - 10 MW
  • Above 10 MW

Hydropower Turbine Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Hydropower Turbine Market.

Available Customizations:

  • Global Hydropower Turbine Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Hydropower Turbine Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Reactive, Impulse, Gravity, Others),
    • 5.2.2. By Capacity (Less than 1 MW, Between 1 - 10 MW, Above 10 MW),
    • 5.2.3. By Application (Power Generation, Power Storage, Marine, Aeronautics)
    • 5.2.4. By Region
    • 5.2.5. By Company (2022)
  • 5.3. Market Map

6. North America Hydropower Turbine Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Capacity
    • 6.2.3. By Application
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Hydropower Turbine Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Capacity
        • 6.3.1.2.3. By Application
    • 6.3.2. Canada Hydropower Turbine Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Capacity
        • 6.3.2.2.3. By Application
    • 6.3.3. Mexico Hydropower Turbine Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Capacity
        • 6.3.3.2.3. By Application

7. Europe Hydropower Turbine Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Capacity
    • 7.2.3. By Application
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Hydropower Turbine Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Capacity
        • 7.3.1.2.3. By Application
    • 7.3.2. United Kingdom Hydropower Turbine Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Capacity
        • 7.3.2.2.3. By Application
    • 7.3.3. Italy Hydropower Turbine Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Capacity
        • 7.3.3.2.3. By Application
    • 7.3.4. France Hydropower Turbine Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Capacity
        • 7.3.4.2.3. By Application
    • 7.3.5. Spain Hydropower Turbine Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Capacity
        • 7.3.5.2.3. By Application

8. Asia-Pacific Hydropower Turbine Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Capacity
    • 8.2.3. By Application
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Hydropower Turbine Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Capacity
        • 8.3.1.2.3. By Application
    • 8.3.2. India Hydropower Turbine Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Capacity
        • 8.3.2.2.3. By Application
    • 8.3.3. Japan Hydropower Turbine Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Capacity
        • 8.3.3.2.3. By Application
    • 8.3.4. South Korea Hydropower Turbine Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Capacity
        • 8.3.4.2.3. By Application
    • 8.3.5. Australia Hydropower Turbine Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Capacity
        • 8.3.5.2.3. By Application

9. South America Hydropower Turbine Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Capacity
    • 9.2.3. By Application
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Hydropower Turbine Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Capacity
        • 9.3.1.2.3. By Application
    • 9.3.2. Argentina Hydropower Turbine Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Capacity
        • 9.3.2.2.3. By Application
    • 9.3.3. Colombia Hydropower Turbine Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Capacity
        • 9.3.3.2.3. By Application

10. Middle East and Africa Hydropower Turbine Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Capacity
    • 10.2.3. By Application
    • 10.2.4. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Hydropower Turbine Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Capacity
        • 10.3.1.2.3. By Application
    • 10.3.2. Saudi Arabia Hydropower Turbine Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Capacity
        • 10.3.2.2.3. By Application
    • 10.3.3. UAE Hydropower Turbine Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Capacity
        • 10.3.3.2.3. By Application
    • 10.3.4. Kuwait Hydropower Turbine Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Capacity
        • 10.3.4.2.3. By Application
    • 10.3.5. Turkey Hydropower Turbine Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Capacity
        • 10.3.5.2.3. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

13. Company Profiles

  • 13.1. General Electric Company
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. Voith Group
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel/Key Contact Person
    • 13.2.5. Key Product/Services Offered
  • 13.3. Andritz AG
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel/Key Contact Person
    • 13.3.5. Key Product/Services Offered
  • 13.4. Siemens Energy AG
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel/Key Contact Person
    • 13.4.5. Key Product/Services Offered
  • 13.5. Harbin Electric Corporation
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel/Key Contact Person
    • 13.5.5. Key Product/Services Offered
  • 13.6. Dongfang Electric Machinery Co. Ltd
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel/Key Contact Person
    • 13.6.5. Key Product/Services Offered
  • 13.7. Hitachi Ltd
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel/Key Contact Person
    • 13.7.5. Key Product/Services Offered
  • 13.8. Mitsubishi Heavy Industries Ltd
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel/Key Contact Person
    • 13.8.5. Key Product/Services Offered
  • 13.9. Toshiba Corp.
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel/Key Contact Person
    • 13.9.5. Key Product/Services Offered
  • 13.10. GE Renewable Energy
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel/Key Contact Person
    • 13.10.5. Key Product/Services Offered

14. Strategic Recommendations

15. About Us & Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제