![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1406531
ÁúȰ¥·ý(GaN) ¹ÝµµÃ¼ µð¹ÙÀ̽º ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø : Á¦Ç°º°, ±¸¼º¿ä¼Òº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°, °æÀﺰ(2018-2028³â)Gallium Nitride Semiconductor Devices Market - Global Industry Size, Share, Trends, Opportunity, and Forecast Segmented By Product, By Component, By End-User, By Region, By Competition 2018-2028. |
ÁúȰ¥·ý(GaN) ¹ÝµµÃ¼ µð¹ÙÀ̽º ¼¼°è ½ÃÀå ±Ô¸ð´Â 2022³â 247¾ï 7,000¸¸ ´Þ·¯·Î 2028³â±îÁö 5.80%ÀÇ CAGR·Î ¿¹Ãø ±â°£ µ¿¾È °·ÂÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
GaN µð¹ÙÀ̽º´Â ½º¸¶Æ®Æù, ³ëÆ®ºÏ, TV µî °¡ÀüÁ¦Ç°¿¡ Á¡Á¡ ´õ ¸¹ÀÌ Ã¤Åõǰí ÀÖ½À´Ï´Ù. GaN µð¹ÙÀ̽º´Â ÀÌ·¯ÇÑ Á¦Ç°ÀÇ ¼º´É°ú ¿¡³ÊÁö È¿À²À» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ 5G ³×Æ®¿öÅ©ÀÇ È®»êÀº GaN ¹ÝµµÃ¼ µð¹ÙÀ̽º ½ÃÀå¿¡ »õ·Î¿î ±âȸ¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç, GaN µð¹ÙÀ̽º´Â ±âÁö±¹, Àü·Â ÁõÆø±â, ÇÊÅÍ µî ´Ù¾çÇÑ 5G ±¸¼º¿ä¼Ò¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. GaN ¹ÝµµÃ¼ µð¹ÙÀ̽º ½ÃÀåÀº ´Ù¾çÇÑ ºÐ¾ß¿¡¼ °í¼º´É ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ÃÖ±Ù ¸î ³â µ¿¾È °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ±âÀÎÇÑ´Ù: GaN µð¹ÙÀ̽º´Â ±âÁ¸ ½Ç¸®ÄÜ ¼ÒÀÚ¿¡ ºñÇØ ¿ì¼öÇÑ Àü·Â È¿À²À» Á¦°øÇϸç, ¿¡³ÊÁö ¼Õ½ÇÀÌ ÀûÀº Àü·Â º¯È¯ÀÌ °¡´ÉÇϱ⠶§¹®¿¡ Àü¿ø °ø±Þ ÀåÄ¡, Àü±â GaNÀº ¹êµå°¸ÀÌ ³Ð¾î ´õ ³ôÀº Á֯ļö¿¡¼ ÀÛµ¿ÇÒ ¼ö ÀÖ¾î 5G Åë½Å, ·¹ÀÌ´õ ½Ã½ºÅÛ, ÷´Ü ¹«¼± ±â¼ú¿¡ ÀûÇÕÇϸç, GaN µð¹ÙÀ̽º´Â ½Ç¸®ÄÜ ¼ÒÀÚº¸´Ù ´õ ÀÛ°í °¡º¿ö ½º¸¶Æ®Æù, ³ëÆ®ºÏ, ÅÂºí¸´PC, ³ëÆ®ºÏ¿¡ Àû¿ëÇϱâ ÁÁ½À´Ï´Ù. ½º¸¶Æ®Æù, ³ëÆ®ºÏ, µå·Ð°ú °°Àº ÈÞ´ë¿ë ±â±â ¹× ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇÕ´Ï´Ù. ±¹¹æ ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼´Â °íÁÖÆÄ ±â´É°ú °ß°í¼ºÀ¸·Î ÀÎÇØ ·¹ÀÌ´õ ½Ã½ºÅÛ, ÀüÀÚÀü ¹× Åë½Å¿¡ GaN µð¹ÙÀ̽ºÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ ºÐ¾ß¿¡¼´Â Àü±âÀÚµ¿Â÷ÀÇ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ GaN µð¹ÙÀ̽º°¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ¾î ´õ ºü¸¥ ÃæÀü°ú ÁÖÇà°Å¸® ¿¬ÀåÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. GaN ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ž籤 ÀιöÅÍ¿Í Ç³·Â Åͺó ÄÁ¹öÅÍÀÇ È¿À²À» Çâ»ó½Ã۰í, ADAS(÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ)¿¡µµ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT)°ú ½º¸¶Æ® ±â±âÀÇ ¼ºÀå¿¡ µû¶ó GaN µð¹ÙÀ̽º´Â Àü·Â È¿À²°ú °íÁÖÆÄ ¿¬°á ¼Ö·ç¼Ç¿¡ ÇʼöÀûÀÔ´Ï´Ù. Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ß ³ë·ÂÀ¸·Î GaN µð¹ÙÀ̽ºÀÇ ¼º´É, ½Å·Ú¼º ¹× ºñ¿ë È¿À²¼ºÀÌ Áö¼ÓÀûÀ¸·Î Çâ»óµÇ¾î ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
2022³â ½ÃÀå ±Ô¸ð | 247¾ï 7,000¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 350¾ï 5,000¸¸ ´Þ·¯ |
CAGR 2023-2028 | 5.80% |
±Þ¼ºÀå ºÎ¹® | Æ®·£Áö½ºÅÍ |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
GaN ¹ÝµµÃ¼ µð¹ÙÀ̽º°¡ äÅõǴ ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ½Ç¸®ÄÜ ±â¹Ý ¼ÒÀÚ¿¡ ºñÇØ Àü·Â È¿À²ÀÌ ³ô´Ù´Â Á¡À¸·Î, GaN µð¹ÙÀ̽º´Â ¿¡³ÊÁö ¼Õ½ÇÀ» Å©°Ô ÁÙÀÎ Àü·Â º¯È¯À» °¡´ÉÇÏ°Ô ÇÏ¿© ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇÕ´Ï´Ù. Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡¼ GaN ±â¹Ý Àü·Â º¯È¯±â´Â ž籤 ÀιöÅÍÀÇ È¿À²¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, SolarEdge Technologies¿Í °°Àº ȸ»ç´Â GaN ±â¼úÀ» ÀιöÅÍ¿¡ ÅëÇÕÇÏ¿© ž籤¹ßÀü ¼³ºñÀÇ Àüü ¿¡³ÊÁö ¼öÀ²À» ³ôÀ̰í ÀÖ½À´Ï´Ù.
GaNÀÇ ³ÐÀº ¹êµå°¸Àº µð¹ÙÀ̽º°¡ ´õ ³ôÀº Á֯ļö¿¡¼ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº 5G Åë½Å ½Ã½ºÅÛ, ·¹ÀÌ´õ ¾ÖÇø®ÄÉÀ̼Ç, ÷´Ü ¹«¼± ¼Ö·ç¼Ç°ú °°Àº ½Å±â¼ú¿¡ ÇʼöÀûÀ̸ç, 5G ºÐ¾ß¿¡¼ ¼±µµÀûÀÎ GaN ¹ÝµµÃ¼ µð¹ÙÀ̽º Á¦Á¶¾÷üÀÎ Qorvo´Â 5G ±âÁö±¹À» À§ÇÑ °í¼º´É GaN RF ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ GaN µð¹ÙÀ̽º´Â ´õ ºü¸¥ µ¥ÀÌÅÍ Àü¼Û°ú ´õ ³ªÀº ³×Æ®¿öÅ© Ä¿¹ö¸®Áö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
GaN µð¹ÙÀ̽º´Â ½Ç¸®ÄÜ µð¹ÙÀ̽º¿¡ ºñÇØ º»ÁúÀûÀ¸·Î ÀÛ°í °¡º±±â ¶§¹®¿¡ ÈÞ´ë¿ë ¹× ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇϸç, GaN ±â¹Ý Àü·Â ÁõÆø±â´Â Ç×°ø¿ìÁÖ »ê¾÷¿¡¼ À§¼º ÆäÀ̷ε带 °æ·®ÈÇϱâ À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¦°øÇÏ´Â ÀÌ ÁõÆø±â´Â °¡º±°í ºñ¿ë È¿À²ÀûÀÎ À§¼º ½Ã½ºÅÛ °³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
±¹¹æ ¹× Ç×°ø¿ìÁÖ ¿ëµµ :
±¹¹æ ¹× Ç×°ø¿ìÁÖ »ê¾÷Àº °íÁÖÆÄ ±â´É°ú °ß°í¼ºÀ¸·Î ÀÎÇØ ·¹ÀÌ´õ ½Ã½ºÅÛ, ÀüÀÚÀü ¹× º¸¾È Åë½Å¿¡ ÀûÇÕÇÑ GaN µð¹ÙÀ̽º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ³ë½º·Ó±×·ç¸Õ°ú °°Àº ȸ»çÀÇ GaN Àü·Â ÁõÆø±â´Â ÷´Ü ·¹ÀÌ´õ ½Ã½ºÅÛ¿¡ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ ÁõÆø±â´Â ·¹ÀÌ´õÀÇ ¼º´ÉÀ» Çâ»ó½ÃÄÑ ±ºÀε鿡°Ô Áß¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.
GaN µð¹ÙÀ̽º´Â ÀÚµ¿Â÷ ºÐ¾ß, ƯÈ÷ Àü±âÀÚµ¿Â÷(EV)¿¡¼ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. °íÁÖÆÄ ¹× °íÀü¾ÐÀ» ó¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº EVÀÇ È¿À²ÀûÀÎ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î, ÃæÀü ¼Óµµ¸¦ ³ôÀ̰í ÁÖÇà°Å¸®¸¦ ´Ã¸± ¼ö ÀÖÀ¸¸ç, EV Á¦Á¶¾÷üÀÇ ¼±±¸ÀÚÀÎ Å×½½¶ó´Â Àü±âÀÚµ¿Â÷ÀÇ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ GaN ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» ÅëÇØ ÃæÀü ½Ã°£À» ´ÜÃàÇÏ°í ¿¡³ÊÁö È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
GaN ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ž籤 ÀιöÅÍ¿Í Ç³·Â Åͺó ÄÁ¹öÅÍÀÇ È¿À²°ú ¼º´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀιöÅÍ¿ë GaN ±â¹Ý Àü·Â ¸ðµâÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ¸ðµâÀº ÅÂ¾ç ¿¡³ÊÁö¸¦ Àü·ÂÀ¸·Î º¯È¯ÇÏ´Â È¿À²À» Çâ»ó½Ãŵ´Ï´Ù.
»ç¹°ÀÎÅͳÝ(IoT)ÀÇ ±Þ¼ÓÇÑ ¼ºÀå°ú ½º¸¶Æ® ±â±âÀÇ º¸±Þ¿¡ µû¶ó GaN µð¹ÙÀ̽º´Â Àü·Â È¿À²°ú °íÁÖÆÄ ¿¬°á ¼Ö·ç¼Ç¿¡ ÇʼöÀûÀ̸ç, GaN Àü·Â ÁõÆø±â´Â ¿ø°Ý ¼¾¼ ¹× ½º¸¶Æ® °¡Àü°ú °°Àº IoT ±â±â¿¡ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î È¿À²ÀûÀÎ ¹«¼± Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
GaN ÃæÀü±â´Â ¼ÒºñÀÚ ÀüÀÚ±â±â¿¡¼ Á¡Á¡ ´õ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. Anker¿Í RAVPower¿Í °°Àº ºê·£µå´Â ±âÁ¸ ÃæÀü±âº¸´Ù ÀÛ°í È¿À²ÀûÀÎ GaN ±â¹Ý ÃæÀü±â¸¦ Á¦°øÇÏ¿© »ç¿ëÀÚ°¡ ºü¸£°í Æí¸®ÇÏ°Ô ±â±â¸¦ ÃæÀüÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ´Â ¼ÒÇü ¹× °í¼Ó ÃæÀü ±â´ÉÀ» °®Ãß°í ÀÖ¾î Çö´ë ¼ÒºñÀÚÀÇ ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù.
GaN ¹ÝµµÃ¼ µð¹ÙÀ̽º ºÐ¾ßÀÇ Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ßÀº ¼ÒÀÚÀÇ ¼º´É, ½Å·Ú¼º ¹× ºñ¿ë È¿À²¼ºÀ» Áö¼ÓÀûÀ¸·Î Çâ»ó½ÃÄÑ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è ´ëÇаú ¿¬±¸ ±â°üÀº GaN °ü·Ã ¿¬±¸¿¡ Àû±ØÀûÀ¸·Î Âü¿©Çϰí ÀÖ½À´Ï´Ù. Àç·á °úÇÐ ¹× ÀåÄ¡ °³¹ß¿¡ ´ëÇÑ ±×µéÀÇ ±â¿©´Â GaN ±â¼ú ¹ßÀü¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ƯÈ÷ ±¹¹æ, Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ GaN µð¹ÙÀ̽º äÅÃÀÇ ÃÖÀü¼±¿¡ ¼ ÀÖ½À´Ï´Ù. ·¹À̽ÿ Å×Å©³î·ÎÁö½º(Raytheon Technologies)¿Í Æ÷µå ¸ðÅÍ ÄÄÆÛ´Ï(Ford Motor Company)¿Í °°Àº ±â¾÷µéÀº GaN µð¹ÙÀ̽º¸¦ ½Ã½ºÅÛ¿¡ Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼´Â GaN µð¹ÙÀ̽ºÀÇ »ý»ê°ú ¼Òºñ°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÀüÀÚ »ê¾÷°ú ÀÚµ¿Â÷ »ê¾÷ÀÇ ¹ø¿µÀÌ ÀÌ·¯ÇÑ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Çѱ¹ÀÇ ÀüÀÚ±â±â ´ë±â¾÷ÀÎ »ï¼ºÀº °íÁÖÆÄ ÀåÄ¡¿¡ GaN ±â¼úÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.
ÁÖ¿ä ½ÃÀå °úÁ¦
GaN µð¹ÙÀ̽º´Â ¿ª»çÀûÀ¸·Î ½Ç¸®ÄÜ ¼ÒÀÚº¸´Ù Á¦Á¶ ºñ¿ëÀÌ ³ô¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë Â÷ÀÌ´Â ºñ¿ë¿¡ ¹Î°¨ÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼ äÅÃÀ» Á¦ÇÑÇØ ¿Ô½À´Ï´Ù. ÇöÀç GaN µð¹ÙÀ̽ºÀÇ Á¦Á¶ ºñ¿ëÀ» ³·Ãß±â À§ÇØ ¸¹Àº ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ±Ô¸ðÀÇ °æÁ¦, °øÁ¤ °³¼±, GaN-on-silicon ±â¼úÀÇ ¹ßÀüÀ¸·Î ºñ¿ë °ÝÂ÷°¡ Á¡Â÷ ÁÙ¾îµé°í ÀÖ½À´Ï´Ù. ½ÇÁ¦ GaN-on-silicon ±âÆÇÀÇ °³¹ßÀº ºñ¿ë Àý°¨À¸·Î À̾îÁ³°í, GaN µð¹ÙÀ̽º´Â ƯÁ¤ ÀÀ¿ë ºÐ¾ß¿¡¼ ½Ç¸®ÄÜ ¼ÒÀÚ¿ÍÀÇ °æÀï·ÂÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
¸¹Àº ¾÷°è¿Í Àü¹®°¡µéÀº GaN ±â¼ú°ú ±× ÀåÁ¡¿¡ ´ëÇØ Àß ¾ËÁö ¸øÇÕ´Ï´Ù. ÀÎ½Ä ºÎÁ·Àº GaN ÀåÄ¡ÀÇ Ã¤ÅÃÀ» ¹æÇØÇÒ ¼ö ÀÖÀ¸¸ç, GaN ±â¼ú¿¡ ´ëÇÑ Àνİú ÀÌÇØ¸¦ ³ôÀ̱â À§Çؼ´Â ±³À°Àû ³ë·Â°ú Çù·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¾÷°è ¼¼¹Ì³ª, ¿öÅ©¼¥ ¹× Çмú ±â°ü°úÀÇ Çù·ÂÀº Áö½ÄÀÇ °ÝÂ÷¸¦ ÇØ¼ÒÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ½ÇÁ¦ ¹ÝµµÃ¼ ±â¾÷ ¹× ¾÷°è ´Üü°¡ ÁÖÃÖÇÏ´Â GaN ±â¼ú ¼¼¹Ì³ª ¹× ¿þºñ³ª¸¦ ÅëÇØ ¿£Áö´Ï¾î¿Í ÀÇ»ç°áÁ¤±ÇÀÚ¿¡°Ô GaNÀÇ ÀåÁ¡À» ¼º°øÀûÀ¸·Î ±³À°Çϰí ÀÖ½À´Ï´Ù.
GaN Àç·á¿Í ±âÆÇÀº ½Ç¸®Äܸ¸Å ³Î¸® º¸±ÞµÇ¾î ÀÖÁö ¾Ê¾Æ °ø±Þ¸ÁÀÇ º´¸ñÇö»óÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. °ø±Þ¸Á Á¦¾àÀ» ¿ÏÈÇϱâ À§ÇØ ¾÷°è´Â GaN Àç·áÀÇ °ø±Þó¸¦ ´Ù¾çÈÇÏ°í °ø±Þ¾÷ü¿Í Çù·ÂÇÏ¿© ¾ÈÁ¤ÀûÀÎ °ø±Þ¸ÁÀ» È®º¸Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ½ÇÁ¦ »ç·Ê: ±â¾÷µéÀº GaN Àç·á °ø±Þ¾÷ü¿Í Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¸Î¾î °íǰÁúÀÇ GaN Àç·áÀÇ ¾ÈÁ¤ÀûÀÌ°í ´Ù¾çÇÑ °ø±ÞÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.
GaN µð¹ÙÀ̽ºÀÇ »ç¾ç°ú Å×½ºÆ® ¹æ¹ýÀÌ Ç¥ÁØÈµÇÁö ¾ÊÀº °ÍÀº GaN µð¹ÙÀ̽ºÀÇ Ã¤ÅÃÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾÷°è ´Üü¿Í ÄÁ¼Ò½Ã¾öÀº GaN µð¹ÙÀ̽º Ç¥ÁØÈ¸¦ À§ÇØ Àû±ØÀûÀ¸·Î ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â Ç¥ÁØÈµÈ Å×½ºÆ® ¹æ¹ý ¹× ¼º´É ÃøÁ¤ ±âÁØÀ» È®¸³ÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ½ÇÁ¦ GaN µð¹ÙÀ̽º Á¦Á¶¾÷ü ¹× »ç¿ëÀÚ ÄÁ¼Ò½Ã¾öÀÎ Power GaN Community´Â GaN ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ »óÈ£¿î¿ë¼º°ú Àϰü¼ºÀ» ÃËÁøÇϴ ǥÁØÀ» Á¦Á¤Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.
½Å·Ú¼º ¹× ǰÁú º¸Áõ:
GaN µð¹ÙÀ̽ºÀÇ ½Å·Ú¼º°ú ǰÁúÀ» º¸ÀåÇÏ´Â °ÍÀº ƯÈ÷ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÏÁö¸¸ ¾î·Á¿î °úÁ¦À̸ç, GaN µð¹ÙÀ̽ºÀÇ ½Å·Ú¼ºÀ» ³ôÀ̱â À§ÇØ ¾ö°ÝÇÑ Å×½ºÆ® ¹× ÀÎÁõ ÇÁ·Î¼¼½º°¡ ½ÃÇàµÇ°í ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â °¡¼Ó ¼ö¸í Å×½ºÆ®, °íÀå ¸ðµå ºÐ¼®, ÆÐŰ¡ ±â¼ú °³¼± µîÀÌ Æ÷ÇԵ˴ϴÙ. ½ÇÁ¦ ±¹¹æ ¹× Ç×°ø¿ìÁÖ ±â¾÷µéÀº Áß¿äÇÑ ½Ã½ºÅÛ¿¡ »ç¿ëµÇ´Â GaN µð¹ÙÀ̽º¿¡ ´ëÇØ ¾ö°ÝÇÑ ½Å·Ú¼º Ç¥ÁØÀ» ¼³Á¤Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØÀº GaN ºÎǰÀÌ ¿ä±¸µÇ´Â ½Å·Ú¼º º¥Ä¡¸¶Å©¸¦ ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù.
±âÁ¸ ½Ã½ºÅÛ ¹× °øÁ¤¿¡ GaN µð¹ÙÀ̽º¸¦ ÅëÇÕÇÏ´Â °ÍÀº ƯÈ÷ ½Ç¸®ÄÜ ±â¹Ý ºÎǰ¿¡¼ ÀüȯÇÏ´Â °æ¿ì º¹ÀâÇÒ ¼ö ÀÖ½À´Ï´Ù. °¢ ¾÷üµéÀº GaN µð¹ÙÀ̽º¸¦ ´Ù¾çÇÑ ½Ã½ºÅÛ¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï ¾ÖÇø®ÄÉÀ̼ǿ¡ Æ¯ÈµÈ Áö¿ø°ú ·¹ÆÛ·±½º µðÀÚÀÎÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â Á¾ÇÕÀûÀÎ ±â¼ú ¹®¼¿Í ¾ÖÇø®ÄÉÀÌ¼Ç ³ëÆ®¸¦ Á¦°øÇÏ´Â °Íµµ Æ÷ÇԵ˴ϴÙ. »ç·Ê: GaN µð¹ÙÀ̽º Á¦Á¶¾÷ü´Â ½Ã½ºÅÛ ÅëÇÕ¾÷ü¿Í Çù·ÂÇÏ¿© ÅëÇÕÀ» °£¼ÒÈÇÏ°í ¼º´ÉÀ» ÃÖÀûÈÇÏ´Â ¿ëµµº° ¼Ö·ç¼ÇÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù.
°úÁ¦: GaN µð¹ÙÀ̽º´Â »ó´çÇÑ ¿À» ¹ß»ý½Ãų ¼ö ÀÖÀ¸¸ç, ÃÖÀûÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ È¿À²ÀûÀ¸·Î °ü¸®ÇØ¾ß ÇÕ´Ï´Ù. ¹æ¿ÆÇ, ¿ ÀÎÅÍÆäÀ̽º Àç·á, ÆÐŰ¡ Çõ½Å°ú °°Àº ÷´Ü ¿ °ü¸® ¼Ö·ç¼ÇÀº ¿À» È¿°úÀûÀ¸·Î ¹æÃâÇϱâ À§ÇØ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ½ÇÁ¦ GaN Àü·Â ÁõÆø±â Á¦Á¶¾÷üµéÀº È¿À²ÀûÀÎ ¹æ¿À» º¸ÀåÇϰí ÀåÄ¡ÀÇ ¼ö¸íÀ» Çâ»ó½Ã۱â À§ÇØ °í±Þ ¿ ¼³°è ±â´ÉÀ» Á¦Ç°¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.
GaN µð¹ÙÀ̽º´Â ¿ëµµ¿¡ µû¶ó ƯÁ¤ ±ÔÁ¤°ú Ç¥ÁØÀ» ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ±â¾÷µéÀº öÀúÇÑ Å×½ºÆ® ¹× ÀÎÁõ ÇÁ·Î¼¼½º¸¦ ÅëÇØ GaN µð¹ÙÀ̽º°¡ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÏ´ÂÁö Àû±ØÀûÀ¸·Î È®ÀÎÇÕ´Ï´Ù. ½ÇÁ¦ GaN ºÎǰÀ» »ç¿ëÇÏ´Â ÀÇ·á±â±â Á¦Á¶¾÷üµéÀº ÀÚ»ç Á¦Ç°ÀÌ ¾ÈÀü ¹× ¼º´É¿¡ ´ëÇÑ FDA ½ÂÀΰú °°Àº ¾ö°ÝÇÑ ±ÔÁ¦ Ç¥ÁØÀ» ÁؼöÇϵµ·Ï º¸ÀåÇϰí ÀÖÀ¸¸ç, GaN ¹ÝµµÃ¼ µð¹ÙÀ̽º ½ÃÀåÀº ¶Ù¾î³ ¼º´É Ư¼ºÀ¸·Î ÀÎÇØ Å« ÆøÀ¸·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ºñ¿ë, ½ÃÀå ±³À°, °ø±Þ¸Á Á¦¾à, Ç¥ÁØÈ, ½Å·Ú¼º, ÅëÇÕ, ¿ °ü¸®, ±ÔÁ¦ Áؼö µîÀÇ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀÌ GaNÀÇ ÀáÀç·ÂÀ» ±Ø´ëÈÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Çù·ÂÀû ³ë·Â, ±â¼ú Çõ½Å ¹× ¾ö°ÝÇÑ Å×½ºÆ®¸¦ Ư¡À¸·ÎÇÏ´Â ¾÷°èÀÇ Àû±ØÀûÀÎ Á¢±Ù ¹æ½ÄÀº ÀÌ·¯ÇÑ °úÁ¦¸¦ ²ÙÁØÈ÷ ±Øº¹Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, GaN ±â¼úÀº º¸´Ù Ä£¼÷ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡¼ ±¹¹æ, Àç»ý¿¡³ÊÁö¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. °á·ÐÀûÀ¸·Î, GaN ¹ÝµµÃ¼ µð¹ÙÀ̽º ½ÃÀåÀº µµÀü°úÁ¦¸¦ ±Øº¹Çϰí ÀÌ ÆÄ±«ÀûÀÎ ±â¼úÀÇ ¾öû³ ÀáÀç·ÂÀ» ½ÇÇöÇϱâ À§ÇÑ ¾÷°è ¸®´õµéÀÇ ÃÑüÀûÀÎ ³ë·ÂÀ¸·Î ¼ºÀå°ú º¯ÈÀÇ ±Ëµµ¿¡ ¿Ã¶ó¼¹½À´Ï´Ù.
ÁÖ¿ä ½ÃÀå µ¿Çâ
GaN µð¹ÙÀ̽º´Â ±âÁ¸ ½Ç¸®ÄÜ ¼ÒÀÚ¿¡ ºñÇØ ¿ì¼öÇÑ Àü·Â È¿À²À» Á¦°øÇÕ´Ï´Ù. ¿¡³ÊÁö ¼Õ½ÇÀÌ ÀûÀº Àü·Â º¯È¯ÀÌ °¡´ÉÇϱ⠶§¹®¿¡ ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇÕ´Ï´Ù. Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡¼ GaN ±â¹Ý Àü·Â º¯È¯±â´Â ž籤 ÀιöÅÍÀÇ È¿À²À» Çõ½ÅÀûÀ¸·Î °³¼±Çϰí ÀÖÀ¸¸ç, SolarEdge Technologies¿Í °°Àº ȸ»ç´Â GaN ±â¼úÀ» ÀιöÅÍ¿¡ ÅëÇÕÇÏ¿© ž籤¹ßÀü ¼³ºñÀÇ ¿¡³ÊÁö »ý»ê·®À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. Çϰí ÀÖ½À´Ï´Ù.
GaNÀÇ ³ÐÀº ´ë¿ªÆøÀº µð¹ÙÀ̽º°¡ ´õ ³ôÀº Á֯ļö¿¡¼ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© 5G Åë½Å ½Ã½ºÅÛ, ·¹ÀÌ´õ ¾ÖÇø®ÄÉÀ̼Ç, ÷´Ü ¹«¼± ¼Ö·ç¼Ç°ú °°Àº ½Å±â¼ú¿¡ ÀûÇÕÇϸç, 5G ºÐ¾ß¿¡¼ GaN ¹ÝµµÃ¼ µð¹ÙÀ̽ºÀÇ ¼±µµÀû ÀÎ Á¦Á¶ ¾÷üÀÎ Qorvo´Â 5G ±âÁö±¹¿ë °í¼º´É GaN RF ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ GaN µð¹ÙÀ̽º´Â ´õ ºü¸¥ µ¥ÀÌÅÍ Àü¼Û°ú ³×Æ®¿öÅ© Ä¿¹ö¸®Áö¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
¼ÒÇüÈ ¹× °æ·®È µðÀÚÀÎ:
GaN µð¹ÙÀ̽º´Â ½Ç¸®ÄÜ ¼ÒÀÚ¿¡ ºñÇØ º»ÁúÀûÀ¸·Î ÀÛ°í °¡º±±â ¶§¹®¿¡ ÈÞ´ë¿ë ¹× ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇϸç, GaN ±â¹Ý Àü·Â ÁõÆø±â´Â Ç×°ø¿ìÁÖ »ê¾÷¿¡¼ À§¼º ÆäÀ̷ε带 °æ·®ÈÇϱâ À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¦°øÇÏ´Â ÀÌ ÁõÆø±â´Â °¡º±°í ºñ¿ë È¿À²ÀûÀÎ À§¼º ½Ã½ºÅÛ °³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¹æÀ§ ¹× Ç×°ø¿ìÁÖ »ê¾÷Àº °íÁÖÆÄ ±â´É°ú °ß°í¼ºÀ¸·Î ÀÎÇØ ·¹ÀÌ´õ ½Ã½ºÅÛ, ÀüÀÚÀü ¹× º¸¾È Åë½Å¿¡ ÀûÇÕÇÑ GaN ÀåÄ¡¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ³ë½º·Ó±×·ç¸Õ°ú °°Àº ȸ»çÀÇ GaN Àü·Â ÁõÆø±â´Â ÷´Ü ·¹ÀÌ´õ ½Ã½ºÅÛ¿¡ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ ÁõÆø±â´Â ·¹ÀÌ´õÀÇ ¼º´ÉÀ» Çâ»ó½ÃÄÑ ±ºÀε鿡°Ô Áß¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.
ÀÚµ¿Â÷¿ë ÀüÀÚÁ¦Ç°
GaN µð¹ÙÀ̽º´Â ÀÚµ¿Â÷ ºÐ¾ß, ƯÈ÷ Àü±âÀÚµ¿Â÷(EV)¿¡¼ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. °íÁÖÆÄ ¹× °íÀü¾ÐÀ» Áö¿øÇÏ´Â ´É·ÂÀº EVÀÇ È¿À²ÀûÀÎ Àü·Â ÀüÀÚÀåÄ¡¿¡ ÇʼöÀûÀ̸ç, ÀÌ´Â ÃæÀü ¼Óµµ¸¦ ³ôÀ̰í ÁÖÇà°Å¸®¸¦ ¿¬ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» ÅëÇØ ÃæÀü ½Ã°£À» ´ÜÃàÇÏ°í ¿¡³ÊÁö È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
GaN ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ž籤 ÀιöÅÍ¿Í Ç³·Â Åͺó ÄÁ¹öÅÍÀÇ È¿À²°ú ¼º´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀιöÅÍ¿ë GaN ±â¹Ý Àü·Â ¸ðµâÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ¸ðµâÀº ÅÂ¾ç ¿¡³ÊÁö¸¦ Àü·ÂÀ¸·Î º¯È¯ÇÏ´Â È¿À²À» Çâ»ó½Ãŵ´Ï´Ù.
»ç¹°ÀÎÅͳÝ(IoT)ÀÇ ±Þ¼ÓÇÑ ¼ºÀå°ú ½º¸¶Æ® ±â±âÀÇ º¸±Þ¿¡ µû¶ó GaN µð¹ÙÀ̽º´Â Àü·Â È¿À²°ú °íÁÖÆÄ ¿¬°á ¼Ö·ç¼Ç¿¡ ÇʼöÀûÀ̸ç, GaN Àü·Â ÁõÆø±â´Â ¿ø°Ý ¼¾¼ ¹× ½º¸¶Æ® °¡Àü°ú °°Àº IoT ±â±â¿¡ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î È¿À²ÀûÀÎ ¹«¼± Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
Æ®·»µå: GaN ÃæÀü±â´Â ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡ Á¡Á¡ ´õ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ÃæÀü±â´Â ÄÄÆÑÆ®ÇÏ°í ºü¸¥ ÃæÀü ±â´ÉÀ» °®Ãß°í ÀÖ¾î Çö´ë ¼ÒºñÀÚÀÇ ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖÀ¸¸ç, Anker ¹× RAVPower¿Í °°Àº ºê·£µå´Â ±âÁ¸ ÃæÀü±âº¸´Ù ÀÛ°í È¿À²ÀûÀÎ GaN ±â¹Ý ÃæÀü±â¸¦ Á¦°øÇÏ¿© »ç¿ëÀÚ°¡ ºü¸£°í Æí¸®ÇÏ°Ô ±â±â¸¦ ÃæÀüÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
ºÎ¹®º° ÀλçÀÌÆ®
ÄÄÆ÷³ÍÆ®º° ÀλçÀÌÆ®
±¸¼º¿ä¼Ò¿¡ µû¶ó ½ÃÀåÀº Æ®·£Áö½ºÅÍ, Àü·Â IC, Á¤·ù±â ¹× ±âŸ·Î ³ª´¹´Ï´Ù. ÁúȰ¥·ý(GaN) ¹ÝµµÃ¼ µð¹ÙÀ̽º ½ÃÀåÀº Æ®·£Áö½ºÅÍ ºÐ¾ß°¡ ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÃÖ±Ù GaN ±â¹Ý Àü·Â Æ®·£Áö½ºÅÍ¿Í 4G ±â¼úÀ» Áö¿øÇÏ´Â µð¹ÙÀ̽º°¡ ºü¸£°Ô ¼ö¿ëµÇ¸é¼ Åë½Å »ê¾÷¿¡¼ »ç¿ëµÇ´Â ±âÁö±¹¿ë °íÀü·Â Æ®·£Áö½ºÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü°èÈ¿°ú Æ®·£Áö½ºÅÍ(FET) ¹× Àý¿¬ °ÔÀÌÆ® ¹ÙÀÌÆú¶ó Æ®·£Áö½ºÅÍ(IGBT)¿Í °°Àº Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µå ÀÚµ¿Â÷ÀÇ ÃßÁø ½Ã½ºÅÛ¿¡¼ GaN Æ®·£Áö½ºÅÍÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
ÃÖÁ¾»ç¿ëÀÚº° ÀλçÀÌÆ®
ÃÖÁ¾»ç¿ëÀÚº°·Î´Â Á¤º¸ Åë½Å ±â¼ú, ±¹¹æ ¹× Ç×°ø¿ìÁÖ, °¡Àü, ÇコÄɾî, ±âŸ·Î ±¸ºÐµË´Ï´Ù. Á¤º¸ Åë½Å ±â¼ú ºÐ¾ß°¡ ÁúȰ¥·ý(GaN) ¹ÝµµÃ¼ µð¹ÙÀ̽º ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, »ç¹°ÀÎÅͳÝ(IoT) ±â¼úÀÇ Àü ¼¼°èÀûÀÎ È®»êÀÌ ÀÌ ºÐ¾ßÀÇ ¼ºÀå¿¡ Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. GaN ±â¹Ý ¹ÝµµÃ¼´Â IoT Áö¿ø Á¦Ç°ÀÇ ÀúÀü·Â ¹× °íÈ¿À² ±âÁØÀ» ÃæÁ·½Ãų °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Áö¿ªº° ÀλçÀÌÆ®
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀÌ ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áö¿ªº° ºÐ¼®¿¡¼ ¼¼°è ÁúȰ¥·ý(GaN) ¹ÝµµÃ¼ µð¹ÙÀ̽º´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾çÀ¸·Î ºÐ·ùµË´Ï´Ù. ºÏ¹Ì°¡ °¡Àå Å« ÁúȰ¥·ý(GaN) ¹ÝµµÃ¼ µð¹ÙÀ̽º ½ÃÀåÀ» Â÷ÁöÇÒ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ ½ÃÀå È®´ë´Â ±¹¹æ ¹× Ç×°ø¿ìÁÖ »ê¾÷ÀÇ R&D ºñ¿ë Áõ°¡¿¡ ÈûÀÔ¾î ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ºñÁö´Ï½º´Â ¹ÝµµÃ¼ ±â¾÷¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø¿¡ ÈûÀÔ¾î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºü¸¥ ±â¼ú ¹ßÀüÀ¸·Î °í¼º´É, °íÈ¿À²ÀÇ ¹«¼± Á֯ļö ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È °úµµÇÏ°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Global Gallium Nitride Semiconductor Devices Market was valued at USD 24.77 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 5.80% through 2028. GaN devices are increasingly being adopted in consumer electronics products, such as smartphones, laptops, and televisions. This is due to the fact that GaN devices can help to improve the performance and energy efficiency of these products. The rollout of 5G networks is creating new opportunities for the GaN semiconductor devices market. GaN devices are used in a variety of 5G components, such as base stations, power amplifiers, and filters. The GaN semiconductor devices market has witnessed significant growth in recent years, driven by increasing demand for high-performance electronics across various sectors. The market's growth can be attributed to several key factors: GaN devices offer superior power efficiency compared to traditional silicon devices. They enable power conversion with reduced energy losses, making them ideal for applications like power supplies, electric vehicles, and renewable energy systems. GaN's wide bandgap allows devices to operate at higher frequencies, making them suitable for 5G communications, radar systems, and advanced wireless technologies. GaN devices are smaller and lighter than their silicon counterparts, making them ideal for portable and mobile applications, such as smartphones, laptops, and drones. The defense and aerospace industries are increasingly adopting GaN devices for radar systems, electronic warfare, and communications due to their high-frequency capabilities and ruggedness. GaN devices are becoming crucial in the automotive sector for electric vehicle power electronics, enabling faster charging and increased range. They also find applications in advanced driver-assistance systems (ADAS). GaN power electronics play a vital role in renewable energy systems, improving the efficiency of solar inverters and wind turbine converters. With the growth of the Internet of Things (IoT) and smart devices, GaN devices are essential for power-efficient and high-frequency connectivity solutions. Ongoing research and development efforts are continuously enhancing GaN device performance, reliability, and cost-effectiveness, further driving market growth.
Key Market Drivers
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 24.77 Billion |
Market Size 2028 | USD 35.05 Billion |
CAGR 2023-2028 | 5.80% |
Fastest Growing Segment | Transistor |
Largest Market | North America |
One of the primary drivers for the adoption of GaN semiconductor devices is their superior power efficiency compared to silicon-based counterparts. GaN devices enable power conversion with significantly reduced energy losses, making them ideal for various applications. In the field of renewable energy, GaN-based power converters are revolutionizing the efficiency of solar inverters. Companies like SolarEdge Technologies have integrated GaN technology into their inverters, increasing the overall energy yield of solar installations.
GaN's wide bandgap allows devices to operate efficiently at higher frequencies. This property is critical for emerging technologies such as 5G communication systems, radar applications, and advanced wireless solutions. In the realm of 5G, Qorvo, a leading GaN semiconductor device manufacturer, supplies high-performance GaN RF solutions for 5G base stations. These GaN devices enable faster data transmission and improved network coverage.
GaN devices are inherently smaller and lighter than their silicon counterparts, making them a preferred choice for portable and mobile applications. GaN-based power amplifiers are used in the aerospace industry to reduce the weight of satellite payloads. These amplifiers, provided by companies like Cree, contribute to the development of lightweight and cost-effective satellite systems.
Defense and Aerospace Applications:
The defense and aerospace industries are increasingly turning to GaN devices due to their high-frequency capabilities and ruggedness, making them suitable for radar systems, electronic warfare, and secure communications. GaN power amplifiers from companies like Northrop Grumman are integrated into advanced radar systems. These amplifiers enhance the radar's performance, providing critical information to military personnel.
GaN devices are gaining prominence in the automotive sector, particularly in electric vehicles (EVs). Their ability to handle high frequencies and voltages is vital for efficient power electronics in EVs, leading to faster charging and increased range. Tesla, a pioneering EV manufacturer, utilizes GaN technology in its electric vehicle power electronics. This integration results in faster charging times and improved energy efficiency.
GaN power electronics play a vital role in renewable energy systems, where they enhance the efficiency and performance of solar inverters and wind turbine converters. Infineon Technologies, a prominent player in the GaN semiconductor devices market, provides GaN-based power modules for solar inverters. These modules improve the conversion efficiency of solar energy into electricity.
With the rapid growth of the Internet of Things (IoT) and the proliferation of smart devices, GaN devices are essential for power-efficient and high-frequency connectivity solutions. GaN power amplifiers are integral components of IoT devices like remote sensors and smart appliances, enabling efficient wireless communication.
GaN chargers are becoming increasingly popular in consumer electronics. These chargers are compact and deliver fast-charging capabilities, addressing the demands of modern consumers. Brands like Anker and RAVPower offer GaN-based chargers that are smaller and more efficient than traditional chargers, enabling users to charge their devices quickly and conveniently.
Ongoing research and development efforts in the GaN semiconductor devices sector are continuously improving device performance, reliability, and cost-effectiveness, further driving market growth. Universities and research institutions worldwide are actively engaged in GaN-related research. Their contributions to materials science and device development play a crucial role in advancing GaN technology.. The United States and Canada are at the forefront of GaN device adoption, particularly in defense, aerospace, and automotive applications. Companies like Raytheon Technologies and Ford Motor Company are actively integrating GaN devices into their systems. Countries such as China, Japan, and South Korea are witnessing significant growth in GaN device production and consumption. The thriving electronics and automotive industries in the region are driving this expansion. For instance, South Korean electronics giant Samsung incorporates GaN technology into its high-frequency devices.
Key Market Challenges
GaN devices have historically been more expensive to manufacture than silicon devices. This cost disparity has limited their adoption in cost-sensitive applications. Significant efforts are underway to reduce the production costs of GaN devices. Economies of scale, process refinements, and advancements in GaN-on-silicon technology are gradually narrowing the cost gap. Real-world example: The development of GaN-on-silicon substrates has led to cost reductions, making GaN devices more competitive with silicon devices in certain applications.
Many industries and professionals are not familiar with GaN technology and its benefits. Lack of awareness can impede the adoption of GaN devices. Educational initiatives and collaborative efforts are essential for increasing awareness and understanding of GaN technology. Industry seminars, workshops, and partnerships with academic institutions can help bridge the knowledge gap. Real-world example: GaN technology seminars and webinars organized by semiconductor companies and industry associations have successfully educated engineers and decision-makers about GaN's advantages.
GaN materials and substrates are not as widely available as silicon, leading to potential supply chain bottlenecks. To mitigate supply chain constraints, the industry is diversifying its sources of GaN materials and collaborating with suppliers to ensure a stable supply chain. Real-world example: Companies are forming strategic partnerships with GaN material suppliers to secure a consistent and diversified supply of high-quality GaN materials.
The absence of standardized specifications and testing procedures for GaN devices can hinder their adoption. Industry organizations and consortia are actively working on developing standards for GaN devices. This includes establishing standardized test methods and performance metrics. Real-world example: The Power GaN Community, a consortium of GaN device manufacturers and users, is working to create standards that promote interoperability and consistency in GaN power electronics.
Reliability and Quality Assurance:
Ensuring the reliability and quality of GaN devices, particularly for mission-critical applications, is crucial but challenging. Rigorous testing and qualification processes are being implemented to enhance GaN device reliability. This includes accelerated lifetime testing, failure mode analysis, and improved packaging techniques. Real-world example: Defense and aerospace companies have stringent reliability standards for GaN devices used in critical systems. These standards ensure that GaN components meet the required reliability benchmarks.
Integrating GaN devices into existing systems and processes can be complex, especially when transitioning from silicon-based components. Companies are providing application-specific support and reference designs to ease the integration of GaN devices into various systems. This includes offering comprehensive technical documentation and application notes. Real-world example: GaN device manufacturers collaborate with system integrators to develop application-specific solutions that streamline integration and optimize performance.
Challenge: GaN devices can generate substantial heat, which must be efficiently managed to ensure optimal performance and reliability. Advanced thermal management solutions, such as heat sinks, thermal interface materials, and packaging innovations, are being developed to dissipate heat effectively. Real-world example: GaN power amplifier manufacturers incorporate advanced thermal design features into their products to ensure efficient heat dissipation, enhancing device longevity.
GaN devices may require compliance with specific regulations and standards, depending on their application. Companies are proactively ensuring that their GaN devices meet regulatory requirements by conducting thorough testing and certification processes. Real-world example: Medical device manufacturers using GaN components ensure that their products adhere to stringent regulatory standards, including FDA approvals for safety and performance. The GaN semiconductor devices market is poised for substantial growth due to its exceptional performance characteristics. However, addressing challenges such as cost, market education, supply chain constraints, standardization, reliability, integration, heat management, and regulatory compliance is vital to unlocking GaN's full potential. The industry's proactive approach, characterized by collaborative efforts, innovation, and rigorous testing, is steadily overcoming these challenges. As a result, GaN technology is becoming more accessible and reliable, leading to increased adoption in diverse applications, from consumer electronics to defense and renewable energy. In conclusion, the GaN semiconductor devices market is on a trajectory of growth and transformation, driven by the collective efforts of industry leaders to overcome challenges and realize the vast potential of this disruptive technology.
Key Market Trends
GaN devices offer superior power efficiency compared to traditional silicon devices. They enable power conversion with reduced energy losses, making them ideal for various applications. In the renewable energy sector, GaN-based power converters are revolutionizing the efficiency of solar inverters. Companies like SolarEdge Technologies have integrated GaN technology into their inverters, leading to increased energy yields in solar installations.
GaN's wide bandgap allows devices to operate efficiently at higher frequencies, making them suitable for emerging technologies such as 5G communication systems, radar applications, and advanced wireless solutions. In the 5G arena, Qorvo, a leading GaN semiconductor device manufacturer, supplies high-performance GaN RF solutions for 5G base stations. These GaN devices enable faster data transmission and improved network coverage.
Miniaturization and Lightweight Design:
GaN devices are inherently smaller and lighter than their silicon counterparts, making them a preferred choice for portable and mobile applications. GaN-based power amplifiers are used in the aerospace industry to reduce the weight of satellite payloads. These amplifiers, provided by companies like Cree, contribute to the development of lightweight and cost-effective satellite systems. The defense and aerospace industries are increasingly turning to GaN devices due to their high-frequency capabilities and ruggedness, making them suitable for radar systems, electronic warfare, and secure communications. GaN power amplifiers from companies like Northrop Grumman are integrated into advanced radar systems. These amplifiers enhance the radar's performance, providing critical information to military personnel.
Automotive Electronics
GaN devices are gaining prominence in the automotive sector, particularly in electric vehicles (EVs). Their ability to handle high frequencies and voltages is vital for efficient power electronics in EVs, leading to faster charging and increased range. Tesla, a pioneering EV manufacturer, utilizes GaN technology in its electric vehicle power electronics. This integration results in faster charging times and improved energy efficiency.
GaN power electronics play a vital role in renewable energy systems, where they enhance the efficiency and performance of solar inverters and wind turbine converters. Infineon Technologies, a prominent player in the GaN semiconductor devices market, provides GaN-based power modules for solar inverters. These modules improve the conversion efficiency of solar energy into electricity.
With the rapid growth of the Internet of Things (IoT) and the proliferation of smart devices, GaN devices are essential for power-efficient and high-frequency connectivity solutions. GaN power amplifiers are integral components of IoT devices like remote sensors and smart appliances, enabling efficient wireless communication.
Trend: GaN chargers are becoming increasingly popular in consumer electronics. These chargers are compact and deliver fast-charging capabilities, addressing the demands of modern consumers. Brands like Anker and RAVPower offer GaN-based chargers that are smaller and more efficient than traditional chargers, enabling users to charge their devices quickly and conveniently.
Segmental Insights
Component Insights
Based on Component, the market is bifurcated into Transistors, Power IC, Rectifier, and Others. The Transistor segment is anticipated to dominate the Gallium Nitride Semiconductor Device Market. GaN-based power transistors and devices supporting 4G technology have seen a surge in acceptance in recent years, raising demand for high-power transistors for base stations used in the telecommunications industry. Additionally, the segment growth has been supported by the growing use of GaN transistors in propulsion systems for electric and hybrid cars, such as Field Effect Transistors (FET) and Insulated Gate Bipolar Transistors (IGBT).
End-User Insights
Based on End-User, the market is bifurcated into Information & Communication Technology, Defense & Aerospace, Consumer Electronics, Healthcare, and Others. The Information & Communication Technology segment is anticipated to dominate the Gallium Nitride Semiconductor Device Market. The global deployment of Internet-of-Things (IoT) technology is a significant factor in the category growth. IoT devices require effective and economical parts that allow for a continuous flow of information. GaN-based semiconductors are anticipated to meet the criteria for IoT-enabled goods' low power consumption and high efficiency.
Regional Insights
North America is expected to dominate the market during the forecast period. On the basis of Regional Analysis, the Global Gallium Nitride (GaN) Semiconductor Device is classified into North America, Europe, Asia Pacific, and the Rest of the world. North America will hold the largest Gallium Nitride Semiconductor Device Market. The market expansion in the area is being fueled by the defense and aerospace industry's growing spending in R&D. Furthermore, it is anticipated that the business in the region would be driven by government support given to semiconductor firms.
Rapid technological improvements are expected to enhance demand for high-performance and efficient radio frequency components, which will cause the Asia Pacific regional market to overgrow during the projected period.
Cree, Inc.
Efficient Power Conversion Corporation
Fujitsu Ltd.
GaN Systems
Infineon Technologies AG
NexgenPowerSystems
NXP Semiconductor
Qorvo, Inc.
In this report, the Global Gallium Nitride Semiconductor Devices Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: