![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1407617
¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø - ¿þÀÌÆÛ »çÀÌÁ, ±â¼úº°, Á¦Ç° À¯Çüº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº°, °æÀﺰ(2018-2028³â)Semiconductor Wafer Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Wafer Size, By Technology, By Product Type, By End Use, By Region, By Competition, 2018-2028 |
¼¼°èÀÇ ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀº 2022³â¿¡ 174¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2028³â±îÁöÀÇ CAGRÀº 5.03%·Î, ¿¹Ãø ±â°£ Áß °·ÂÇÑ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù.
¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀº ÇöÀç ±â¾÷ÀÇ ±â¼ú ÀÎÇÁ¶ó °ü¸® ¹æ½ÄÀ» À籸¼ºÇÏ´Â ´Ù¾çÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ Å« º¯ÈÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ¿þÀÌÆÛ´Â ÀÌ·¯ÇÑ º¯È¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ´Ù¾çÇÑ ºÐ¾ßÀÇ Á¶Á÷ÀÌ º¯ÈÇÏ´Â ±â¼ú ȯ°æ¿¡ ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ¹ÝµµÃ¼ ¿þÀÌÆÛ ±â¼úÀÇ ¼ºÀå°ú äÅÃÀ» ÃËÁøÇÏ´Â ÁÖ¿ä Ã˸ÅÁ¦¿¡ ´ëÇØ ÀÚ¼¼È÷ ¾Ë¾Æº¸ÀÚ.
Àü ¼¼°è Á¶Á÷µéÀº Çö´ë ºñÁî´Ï½º ȯ°æ¿¡¼ °æÀï ¿ìÀ§¸¦ À¯ÁöÇϱâ À§ÇØ µðÁöÅÐ Çõ¸íÀÇ ÇѰ¡¿îµ¥¿¡ ¼ ÀÖ½À´Ï´Ù. À̸¦ À§Çؼ´Â ÃÖ÷´Ü ±â¼ú µµÀÔ, µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤, °í°´ Áß½ÉÀÇ ¿ëµµ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¹ÝµµÃ¼ ¿þÀÌÆÛÀÇ ¼Ö·ç¼ÇÀº ÀÌ·¯ÇÑ º¯ÈÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, Á¶Á÷ÀÌ ·¹°Å½Ã ½Ã½ºÅÛÀ» Çö´ëÈÇϰí, Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ¾ÆÅ°ÅØÃ³¸¦ äÅÃÇϰí, µðÁöÅÐ ½Ã´ëÀÇ ¿ä±¸¿¡ ºÎÇÕÇÏ´Â ¹ÎøÇÏ°í »ç¿ëÀÚ Ä£ÈÀûÀÎ ¿ëµµÀ» ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
±â¼ú Çõ½ÅÀÇ ¼Óµµ´Â ±× ¾î´À ¶§º¸´Ù ºü¸£°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI), ¸Ó½Å·¯´×, »ç¹°ÀÎÅͳÝ(IoT), ºí·ÏüÀΰú °°Àº ½Å±â¼úÀº ºñÁî´Ï½º ¿î¿µ°ú °í°´ÀÇ ±â´ëÄ¡¸¦ Áö¼ÓÀûÀ¸·Î À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀÇ ÀÌÁ¡À» Ȱ¿ëÇϱâ À§ÇØ Á¶Á÷Àº ·¹°Å½Ã ¿ëµµÀ» Ãֽбâ¼ú¿¡ Á¤ÅëÇÑ ¼Ö·ç¼ÇÀ¸·Î ¾÷±×·¹À̵åÇØ¾ß ÇÕ´Ï´Ù. ¹ÝµµÃ¼ ¿þÀÌÆÛ ±â¼úÀº ÀÌ·¯ÇÑ Ã·´Ü ±â¼úÀ» ±âÁ¸ ½Ã½ºÅÛ¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ¿© ±â¾÷ÀÌ Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ¼µµ·Ï µ½½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
½ÃÀå ±Ô¸ð 2022³â | 174¾ï 3,000¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 236¾ï 1,000¸¸ ´Þ·¯ |
CAGR 2023-2028 | 5.03% |
±Þ¼ºÀå ºÎ¹® | 12ÀÎÄ¡ |
ÃÖ´ë ½ÃÀå | ¾Æ½Ã¾ÆÅÂÆò¾ç |
¿À´Ã³¯ÀÇ Ä¡¿ÇÑ ½ÃÀå °æÀï¿¡¼ °í°´ °æÇèÀº ¸Å¿ì Áß¿äÇÑ Â÷º°È ¿ä¼ÒÀÔ´Ï´Ù. Çö´ëÀÇ ¼ÒºñÀÚµéÀº ±â¾÷°ú ¿øÈ°ÇÏ°í °³ÀÎȵǰí È¿À²ÀûÀÎ »óÈ£ ÀÛ¿ëÀ» ±â´ëÇÕ´Ï´Ù. ¹ÝµµÃ¼ ¿þÀÌÆÛÀÇ ¼Ö·ç¼ÇÀ» ÅëÇØ ±â¾÷Àº °í°´ ¿ëµµÀ» Çõ½ÅÇÏ°í ¹ÝÀÀ¼º, Á÷°ü¼º, ½Ç½Ã°£ ÀλçÀÌÆ®À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °í°´ °æÇèÀÇ °³¼±Àº °í°´ Âü¿©µµ¸¦ ³ôÀ̰í, ºê·£µå Ãæ¼ºµµ¸¦ ³ôÀ̸ç, ¸ÅÃâ ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù.
±â¼úÀÇ ¹ßÀü°ú ¼ÒÇüÈ:
¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ÁÖ¿ä Æ®·»µå Áß Çϳª´Â ²÷ÀÓ¾ø´Â ±â¼ú ¹ßÀü ¼Óµµ¿Í ¼ÒÇüÈ Ãß¼¼ÀÔ´Ï´Ù. ¹ÝµµÃ¼´Â Çö´ë ÀüÀÚ±â±âÀÇ ÄÄÆ÷³ÍÆ®À̸ç, ±× ¼º´ÉÀº ³»ºÎ ºÎǰÀÇ Å©±â¿Í Á¤¹Ðµµ¿¡ Å©°Ô ¿µÇâÀ»¹Þ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ´õ ÀÛ°í, ´õ °·ÂÇϰí, ´õ ¿¡³ÊÁö È¿À²ÀûÀÎ ¹ÝµµÃ¼ Àåºñ¿¡ ´ëÇÑ ¿ä±¸°¡ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù.
¼ÒÇüÈ, °í¼º´É ¹ÝµµÃ¼ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä´Â ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, ½º¸¶Æ®Æù, ³ëÆ®ºÏ, ¿þ¾î·¯ºí ±â±â, »ç¹°ÀÎÅͳÝ(IoT) ±â±â µî CE(Consumer Electronics)ÀÇ ¼ÒÇüÈ ¹× ´Ù±â´ÉȰ¡ Áö¼ÓµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¸ðµç ±â´ÉÀ» ÀÛÀº ÆûÆÑÅÍ¿¡ ´ãÀ¸·Á¸é Á¦Á¶¾÷ü´Â ÃÖ÷´Ü ¹ÝµµÃ¼ ±â¼úÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. µÑ°, ÀÚµ¿Â÷ ¹× ÇコÄɾî¿Í °°Àº »ê¾÷¿¡¼ ¾ÈÀü, ¿¬°á¼º, °í±Þ ±â´ÉÀ» ¹ÝµµÃ¼ ±â¼ú¿¡ ÀÇÁ¸ÇÏ´Â °æÇâÀÌ ³ô¾ÆÁö¸é¼ ¼ÒÇüȰ¡ Áß¿äÇÑ ¿ä¼Ò·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¼Â°, ÀΰøÁö´É, ¸Ó½Å·¯´×, µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀº ´õ °·ÂÇÑ ÇÁ·Î¼¼¼¿Í ¸Þ¸ð¸®¸¦ ÇÊ¿ä·Î Çϸç, À̸¦ À§ÇØ ¹ÝµµÃ¼ ±¸Á¶ÀÇ ¼ÒÇüÈ, °í¹ÐµµÈ°¡ ÇÊ¿äÇÕ´Ï´Ù.
¹ÝµµÃ¼ »ê¾÷Àº Á¦Á¶ °øÁ¤À» Áö¼ÓÀûÀ¸·Î °³¼±ÇÏ¿© ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. Æ÷Å丮¼Ò±×·¡ÇÇ ¹× ÈÇÐ ±â»ó ¼ºÀå°ú °°Àº ±â¼úÀÌ °³¼±µÇ¾î ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡ Á¡Á¡ ´õ ÀÛ°í º¹ÀâÇÑ Æ¯Â¡À» ¸¸µé ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇüÈ Ãß¼¼´Â 3D ÀûÃþ ¹× ºñ ½Ç¸®ÄÜ ¹ÝµµÃ¼¿Í °°Àº »õ·Î¿î Àç·á¿Í ¾ÆÅ°ÅØÃ³ÀÇ °³¹ß·Î ÀÎÇØ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
Á¾ÇÕÀûÀ¸·Î º¼ ¶§, ±â¼ú ¹ßÀüÀÇ °¡¼ÓÈ ¼Óµµ¿Í ¹Ì¼¼È Ãß¼¼°¡ ¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ÁÖ¿ä µ¿·ÂÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸ðµç »ê¾÷ÀÌ ´õ ÀÛ°í, ´õ °·ÂÇϰí, ´õ È¿À²ÀûÀÎ ¹ÝµµÃ¼ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶¾÷üµéÀº ¹ÝµµÃ¼ ¿þÀÌÆÛ Á¦Á¶ °¡´É¼ºÀÇ ÇѰ迡 °è¼Ó µµÀüÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
»ç¹°ÀÎÅͳÝ(IoT) Çõ¸íÀº ¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ¶Ç ´Ù¸¥ Å« ¿øµ¿·ÂÀÔ´Ï´Ù. IoT´Â ÀÏ»óÀÇ »ç¹°À» ÀÎÅͳݷΠ¿¬°áÇÏ¿© µ¥ÀÌÅ͸¦ ¼öÁýÇÏ°í ±³È¯ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Çö»óÀº ¿¬°á¼º, µ¥ÀÌÅÍ Ã³¸® ¹× ÀúÀü·Â ÀÛµ¿À» °¡´ÉÇÏ°Ô ÇÏ´Â ¹ÝµµÃ¼ ºÎǰ¿¡ ´ëÇÑ ´ë±Ô¸ð ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
IoT´Â ½º¸¶Æ®È¨°ú µµ½Ã, »ê¾÷ ÀÚµ¿È ¹× ÀÇ·á Àåºñ¿¡ À̸£±â±îÁö ¹æ´ëÇÑ ¿ëµµÀ» Æ÷°ýÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¸ðµç ¿ëµµ´Â ¼¾¼, ÇÁ·Î¼¼¼, Åë½Å ¸ðµâ¿¡ Àü·ÂÀ» °ø±ÞÇϱâ À§ÇØ ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â±â¿¡´Â ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ĨÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ¹ÝµµÃ¼ ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁøÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.
¹ÝµµÃ¼ ¿þÀÌÆÛ´Â ¿©·¯ °¡Áö ÀÌÀ¯·Î IoT µð¹ÙÀ̽ºÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ù°, IoT ¼¾¼¿Í ¿§Áö µð¹ÙÀ̽º¿¡ ÇʼöÀûÀÎ ÀúÀü·Â, °í¼º´É ÇÁ·Î¼¼¼¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. µÑ°, ¿Âµµ, ½Àµµ, ¸ð¼Ç µî ´Ù¾çÇÑ ¼¾¼¸¦ ÀÛ°í È¿À²ÀûÀÎ ÆÐŰÁö¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼Â°, IoT ±â±â°¡ ³×Æ®¿öÅ©¿Í ´Ù¸¥ ±â±â·Î ¿¬°áµÉ ¼ö ÀÖµµ·Ï Wi-Fi, ºí·çÅõ½º, ¼¿·ê·¯ ±â¼ú µî ¹«¼±Åë½Å ¸ðµâ¿¡ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
IoTÀÇ ¼ºÀåÀº ±âÇϱ޼öÀûÀ¸·Î Áõ°¡Çϰí ÀÖÀ¸¸ç, »óÈ£ ¿¬°áµÈ ÀåºñÀÇ »ýŰè´Â °è¼Ó È®ÀåµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ÝµµÃ¼ ¿þÀÌÆÛ ¼ö¿äÀÇ ±ÞÁõÀº ´ÜÀÏ »ê¾÷¿¡ ±¹ÇѵÇÁö ¾Ê°í CE(Consumer Electronics), ÇコÄɾî, Á¦Á¶, ¿î¼Û µî ´Ù¾çÇÑ ºÐ¾ß·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.
°á·ÐÀûÀ¸·Î IoT¿Í Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ È®»êÀº ´Ù¾çÇÑ »ê¾÷¿¡¼ È¿À²ÀûÀÌ°í ¿¬°áµÈ ¿î¿µÀ» °¡´ÉÇÏ°Ô ÇÏ´Â °íµµ·Î Àü¹®ÈµÈ ¹ÝµµÃ¼ ºÎǰÀÇ »ý»êÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
ÀΰøÁö´É°ú ¸Ó½Å·¯´×:
ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)Àº Æø¹ßÀûÀÎ ¼ºÀå¼¼¸¦ º¸À̸ç ÇコÄɾî¿Í ±ÝÀ¶¿¡¼ ÀÚµ¿Â÷, ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »ê¾÷À» ÀçÆíÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº °í¼º´É ÄÄÇ»ÆÃ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ÀÌ ÄÄÇ»ÆÃÀº ÃÖ÷´Ü ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù.
AI ¹× ML ¿ëµµÀÇ °³¹ß ¹× ¹èÆ÷¿¡´Â ¹æ´ëÇÑ Ã³¸® ´É·ÂÀ» °®Ãá Æ¯¼ö ¹ÝµµÃ¼ ºÎǰÀÌ ÇÊ¿äÇÕ´Ï´Ù. AI °¡¼Ó±â ¶Ç´Â AI ĨÀ¸·Î ºÒ¸®´Â ÀÌ Ä¨Àº À̹ÌÁö ÀνÄ, ÀÚ¿¬¾î ó¸®, ÀÚÀ²Àû ÀÇ»ç °áÁ¤ µîÀÇ ÀÛ¾÷¿¡ ÇʼöÀûÀ̸ç, AI¿Í MLÀÌ ´Ù¾çÇÑ ºÐ¾ß·Î È®ÀåµÊ¿¡ µû¶ó ÀÌ·¯ÇÑ °í¼º´É ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù. ¿ëµµ¿¡´Â ´ë¿ë·®ÀÇ ¸Þ¸ð¸®°¡ ÇÊ¿äÇϸç, ¹ÝµµÃ¼ ¿þÀÌÆÛ´Â µ¿Àû ·£´ý ¾×¼¼½º ¸Þ¸ð¸®(DRAM), Ç÷¡½Ã¸Þ¸ð¸® µî ¸Þ¸ð¸® ±â¼úÀÇ ÇÙ½ÉÀ» ´ã´çÇÕ´Ï´Ù. ¸Þ¸ð¸® ºÎǰÀÇ È¿À²¼º, ¿ë·®, ¼Óµµ´Â AI ¹× ML ½Ã½ºÅÛÀÇ ¼º´É¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ AI ¹× ML °³¹ßÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ç¿ëÇÏ¿© ¸ðµ¨À» ÈÆ·Ã½ÃŰ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ °úÁ¤¿¡¼ °·ÂÇÑ ÇÁ·Î¼¼¼»Ó¸¸ ¾Æ´Ï¶ó È¿À²ÀûÀÎ µ¥ÀÌÅÍ ÀúÀå ¼Ö·ç¼Çµµ ÇÊ¿äÇÕ´Ï´Ù. ¹ÝµµÃ¼ ¿þÀÌÆÛ´Â °í¼Ó µ¥ÀÌÅÍ ¾×¼¼½º ¹× ÀúÀå¿¡ ÇʼöÀûÀΠ÷´Ü ¼Ö¸®µå ½ºÅ×ÀÌÆ® µå¶óÀ̺ê(SSD)¿Í ½ºÅ丮Áö±Þ ¸Þ¸ð¸® Á¦Á¶¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
°á·ÐÀûÀ¸·Î AI¿Í ¸Ó½Å·¯´× ±â¼úÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀº ¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ½ÇÁúÀûÀÎ ÃËÁøÁ¦ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» Áö¿øÇÏ´Â °í¼º´É ÇÁ·Î¼¼¼, °í±Þ ¸Þ¸ð¸®, È¿À²ÀûÀÎ ½ºÅ丮Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ¹ÝµµÃ¼ ¿þÀÌÆÛ Á¦Á¶¾÷ü¸¦ Çõ½Å°ú »ý»êÀÇ »õ·Î¿î ¿µ¿ªÀ¸·Î ¹Ð¾îºÙÀ̰í ÀÖ½À´Ï´Ù.
ÁÖ¿ä ½ÃÀå °úÁ¦
°ø±Þ¸ÁÀÇ È¥¶õ°ú ºÎÁ·:
¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ °¡Àå Áß¿äÇÑ °úÁ¦ Áß Çϳª´Â °ø±Þ¸Á È¥¶õ°ú °ø±Þ ºÎÁ·ÀÇ Áö¼ÓÀûÀÎ À§ÇùÀÔ´Ï´Ù. ÀÌ ¹®Á¦´Â ´Ù¾çÇÑ »ê¾÷°ú ¼¼°è °æÁ¦¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ ÃÖ±Ù ¼ö³â°£ Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù.
¹ÝµµÃ¼ ¿þÀÌÆÛ´Â ¹ÝµµÃ¼ Á¦Á¶ÀÇ ÇÙ½ÉÀ̸ç, ±× Á¦Á¶´Â º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â °øÁ¤ÀÔ´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå, ÀÚ¿¬ÀçÇØ ¶Ç´Â COVID-19¿Í °°Àº ¿¹±âÄ¡ ¸øÇÑ »ç°ÇÀ¸·Î ÀÎÇØ °ø±Þ¸Á¿¡ È¥¶õÀÌ ¹ß»ýÇÏ¸é °ø±ÞÀÌ Å©°Ô Áö¿¬µÇ°Å³ª °ø±Þ ºÎÁ·ÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ È¥¶õÀº CE(Consumer Electronics), ÀÚµ¿Â÷, Åë½Å µî ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡ ÀÇÁ¸ÇÏ´Â Àü¹æ»ê¾÷¿¡ ¿¬¼âÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀÚµ¿Â÷ »ê¾÷¿¡¼ ¹ÝµµÃ¼ ¿þÀÌÆÛ ºÎÁ·Àº ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡ »ý»ê Áö¿¬°ú ºñ¿ë Áõ°¡¸¦ °¡Á®¿Ô½À´Ï´Ù. ¸¶Âù°¡Áö·Î CE(Consumer Electronics) ½ÃÀåµµ ¿µÇâÀ» ¹Þ¾Æ °¡°ÝÀÌ »ó½ÂÇϰí Á¦Ç° Ãâ½Ã°¡ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ´Â °ø±Þ¸Á ¼Ò½º¸¦ ´Ù¾çÈÇϰí, Àç°í °ü¸®¸¦ °ÈÇϸç, ¿¹Ãø ¸ðµ¨À» °³¼±ÇØ¾ß ÇÕ´Ï´Ù. ±×·¯³ª ¹ÝµµÃ¼ ¿þÀÌÆÛ »ý»êÀº °íµµ·Î Àü¹®ÈµÇ¾î ÀÖÀ¸¹Ç·Î °©ÀÛ½º·± È¥¶õ¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÏ±â ¾î·Æ°í, Àå±âÀûÀÎ ÇØ°áÃ¥À» À§Çؼ´Â ½ÅÁßÇÑ °èȹ°ú ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù.
÷´Ü ±â¼ú ³ëµåÀÇ ºñ¿ë ¹× º¹À⼺:
¹ÝµµÃ¼ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ÁÖ¿ä °úÁ¦´Â ÷´Ü ±â¼ú ³ëµå¿¡¼ Á¦Á¶¿¡ µû¸¥ ºñ¿ë°ú º¹À⼺ Áõ°¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼ú ³ëµå´Â ´õ ÀÛ°í, ´õ °·ÂÇϰí, ´õ ¿¡³ÊÁö È¿À²ÀûÀÎ ¹ÝµµÃ¼ µð¹ÙÀ̽º¸¦ ¸¸µå´Â µ¥ ÇʼöÀûÀÌÁö¸¸, ³ôÀº ´ë°¡¸¦ Ä¡·¯¾ß ÇÕ´Ï´Ù.
÷´Ü ³ëµå¿¡¼ ¹ÝµµÃ¼ ¿þÀÌÆÛ¸¦ Á¦Á¶Çϱâ À§Çؼ´Â ÃÖ÷´Ü Àåºñ, Àç·á, °øÁ¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» °³¹ßÇϰí À¯ÁöÇϱâ À§Çؼ´Â ¹ÝµµÃ¼ Á¦Á¶¾÷üÀÇ ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ¹«¾îÀÇ ¹ýÄ¢À» µû¶óÀâ°í ´õ ÀÛ°í ´õ Á¤±³ÇÑ ¹ÝµµÃ¼¸¦ Á¦Á¶ÇÏ´Â µ¥ ÇÊ¿äÇÑ ¿¬±¸°³¹ß¿¡´Â ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë°ú º¹À⼺ÀÇ ¹®Á¦´Â ¹ÝµµÃ¼ ĨÀÇ Æ®·£Áö½ºÅÍ ¼ö°¡ ¾à 2³â¸¶´Ù µÎ ¹è·Î ´Ã¾î³ª´Â ¹«¾îÀÇ ¹ýÄ¢ÀÇ ¼öÈ®·® Áõ°¡·Î ÀÎÇØ ´õ¿í ½É°¢ÇØÁý´Ï´Ù. ¹ÝµµÃ¼ ºÎǰÀÌ ¿øÀÚ ±Ô¸ð¿¡ °¡±î¿öÁú¼ö·Ï ´õ ¹Ì¼¼ÈÇÏ´Â °ÍÀº Á¡Á¡ ´õ ¾î·Á¿öÁö°í ºñ¿ëµµ Áõ°¡ÇÏ°Ô µË´Ï´Ù.
¹ÝµµÃ¼ »ê¾÷Àº »õ·Î¿î Àç·á, Çõ½ÅÀûÀÎ Á¦Á¶ ±â¼ú, ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ´ë¾ÈÀû Á¢±Ù ¹æ½ÄÀ» ¸ð»öÇÏ¿© ÀÌ ¹®Á¦¸¦ ÇØ°áÇØ¾ß ÇÕ´Ï´Ù. ÷´Ü ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÏ´Â µ¿½Ã¿¡ º¸´Ù ºñ¿ë È¿À²ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ °øÁ¤À¸·Î ÀüȯÇÏ´Â °ÍÀº ÇöÀç ÁøÇà ÁßÀÎ ½Î¿òÀÔ´Ï´Ù.
ȯ°æ°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á:
Áö¼Ó°¡´É¼º°ú ȯ°æ¿¡ ´ëÇÑ °ü½ÉÀº Àü ¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀå¿¡¼ Á¡Á¡ ´õ Áß¿äÇÑ À̽´°¡ µÇ°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶ °øÁ¤Àº ´Ù¾çÇÑ ÈÇй°Áú, ¹°, ¿¡³ÊÁö¸¦ »ç¿ëÇϱ⠶§¹®¿¡ ȯ°æ¿¡ ¾Ç¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ´Â ¾÷°è°¡ ź¼Ò ¹èÃâ·®°ú Æó±â¹° ¹ß»ý·®À» ÁÙÀÌ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.
¹ÝµµÃ¼ Á¦Á¶ ½Ã¼³Àº ¿¡³ÊÁö Áý¾àÀûÀÎ °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ³ôÀº »ý»ê ¼öÁØÀ» À¯ÁöÇÏ¸é¼ ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÏ ¼ö ÀÖ´Â ¹æ¹ýÀ» ã´Â °ÍÀÌ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ¶ÇÇÑ À¯ÇØ ÈÇй°ÁúÀÇ »ç¿ë°ú Æó±â´Â ȯ°æ ¿À¿°À¸·Î À̾îÁ® ±Ù·ÎÀÚ¿Í ÁÖº¯ Áö¿ª»çȸ¿¡ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹°Àº ¹ÝµµÃ¼ Á¦Á¶¿¡ ÀÖÀ¸¸ç, ¶Ç ´Ù¸¥ Áß¿äÇÑ ÀÚ¿øÀ̸ç, ¹° ºÎÁ·ÀÌ ½ÉÇÑ Áö¿ª¿¡¼ ¹°À» ¸¹ÀÌ »ç¿ëÇÏ´Â °ÍÀº Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Åµ´Ï´Ù. ¹ÝµµÃ¼ »ê¾÷Àº ÀçȰ¿ë°ú ¹° È¿À²ÀÌ ³ôÀº °øÁ¤ °³¹ßÀ» ÅëÇØ ¹° »ç¿ë·®À» ÁÙÀ̱â À§ÇØ Àû±ØÀûÀ¸·Î ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹ÝµµÃ¼ »ê¾÷Àº ÈÇÐÁ¦Ç°º°, °áÇÔÀÌ ÀÖ´Â ½Ç¸®ÄÜ ¿þÀÌÆÛ µî »ó´çÇÑ ¾çÀÇ Æó±â¹°À» ¹ß»ý½Ãŵ´Ï´Ù. ÀûÀýÇÑ Æó±â¹° °ü¸®¿Í ÀçȰ¿ë °øÁ¤Àº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÏ°í ¿øÀÚÀç ¼ö¿ä¸¦ ÁÙÀ̱â À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
ÀÌ·¯ÇÑ Áö¼Ó°¡´É¼º ¹®Á¦¿¡ ´ëÀÀÇϱâ À§ÇØ ¹ÝµµÃ¼ ¾÷°è´Â ģȯ°æ Á¦Á¶ ±â¼ú ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí, ģȯ°æÀûÀÎ »ç¾÷ ¿î¿µ ¹æ½ÄÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº ¹ÝµµÃ¼ ¿þÀÌÆÛ »ý»êÀÇ È¯°æÀû ¹ßÀÚ±¹À» ÁÙÀÌ´Â µ¿½Ã¿¡ ¼¼°è »ê¾÷ ¼ºÀå°ú °æÀï·ÂÀ» À¯ÁöÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.
ÁÖ¿ä ½ÃÀå µ¿Çâ
÷´Ü ¹ÝµµÃ¼ ³ëµå·ÎÀÇ Àüȯ:
¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ÁÖ¿ä Æ®·»µå Áß Çϳª´Â ÇöÀç ÁøÇà ÁßÀΠ÷´Ü ¹ÝµµÃ¼ ³ëµå·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ¹ÝµµÃ¼ ³ëµå¶õ ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡¼ Æ®·£Áö½ºÅÍ ¹× ±âŸ ºÎǰÀÇ ÃÖ¼Ò Å©±â¸¦ ÀǹÌÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÎǰÀÇ Å©±â¸¦ ÁÙÀÌ¸é °°Àº °ø°£¿¡ ´õ ¸¹Àº Æ®·£Áö½ºÅ͸¦ ÁýÀûÇÒ ¼ö ÀÖ°í, ±× °á°ú ´õ ÀÛ°í °í¼º´ÉÀÌ¸ç ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº µð¹ÙÀ̽º¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù.
ÃÖ±Ù ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº 7nm, 5nm, ½ÉÁö¾î 3nm ³ëµå¸¦ µµÀÔÇÏ¸ç ¹Ì¼¼ÈÀÇ ÇѰ迡 µµÀüÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ³ëµå µµÀÔÀº ½º¸¶Æ®Æù, µ¥ÀÌÅͼ¾ÅÍ, ÀΰøÁö´É ¹× 5G¿Í °°Àº ½Å±â¼ú¿¡¼ º¼ ¼ö ÀÖµíÀÌ, ´õ ³ôÀº ÄÄÇ»ÆÃ ¼º´É¿¡ ´ëÇÑ ²÷ÀÓ¾ø´Â ¼ö¿ä¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÷´Ü ³ëµå´Â Àü·Â ¼Òºñ¸¦ ÁÙÀÌ¸é¼ ¶Ù¾î³ ¼º´ÉÀ» ¹ßÈÖÇÏ´Â ÇÁ·Î¼¼¼¿Í ¸Þ¸ð¸® µð¹ÙÀ̽º¸¦ Á¦Á¶ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.
±×·¯³ª ÷´Ü ³ëµå·ÎÀÇ ÀüȯÀº ±â¼úÀû, ÀçÁ¤Àû Ãø¸é¿¡¼ Å« µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ Ã·´Ü Á¦Á¶ Àåºñ¸¦ °³¹ßÇϰí À¯ÁöÇÏ´Â µ¥ µå´Â ºñ¿ëÀº »ó´çÇϸç, ÀÌ·¯ÇÑ ¼Ò±Ô¸ð ÀÛ¾÷ÀÇ º¹À⼺À¸·Î ÀÎÇØ Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀÌ ¿ä±¸µË´Ï´Ù. ¶ÇÇÑ Æ®·£Áö½ºÅͰ¡ ¿øÀÚ Å©±â·Î Ãà¼ÒµÊ¿¡ µû¶ó ¼öÈ®·®ÀÌ °¨¼ÒÇÔ¿¡ µû¶ó ¹«¾îÀÇ ¹ýÄ¢À» À¯ÁöÇÏ°í ¹ÝµµÃ¼ »ê¾÷ÀÌ ¿ª»çÀûÀÎ ½ÇÀû ±Ëµµ¸¦ À¯ÁöÇϱâ À§Çؼ´Â âÀÇÀûÀÎ ¹®Á¦ ÇØ°áÀÌ ÇÊ¿äÇÕ´Ï´Ù.
ÀÌ·¯ÇÑ µµÀü¿¡µµ ºÒ±¸Çϰí ÷´Ü ¹ÝµµÃ¼ ³ëµå·ÎÀÇ ÀüȯÀº Â÷¼¼´ë ±â¼ú Çõ½ÅÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ±â¹ÝÀ̱⠶§¹®¿¡ ÇÇÇÒ ¼ö ¾ø´Â Ãß¼¼ÀÔ´Ï´Ù. »ê¾÷°è´Â ÀÌ·¯ÇÑ °úÁ¦¸¦ ±Øº¹Çϰí Á¡Á¡ ´õ ¼ÒÇüÈµÇ°í °íµµÈµÇ´Â ¹ÝµµÃ¼ ¿þÀÌÆÛ¸¦ »ý»êÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ °è¼ÓÇÒ °ÍÀÔ´Ï´Ù.
Ư¼ö ½ÃÀå°ú Æ´»õ ½ÃÀåÀÇ ÃâÇö:
¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ¶Ç ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Æ®·»µå´Â Ư¼ö ½ÃÀå°ú Æ´»õ ½ÃÀåÀÇ ÃâÇöÀÔ´Ï´Ù. ¹ÝµµÃ¼ ¿þÀÌÆÛ´Â ÀüÅëÀûÀ¸·Î ±¤¹üÀ§ÇÑ ¼ÒºñÀÚ ÀüÀÚ ¹× ÄÄÇ»ÆÃ »ê¾÷¿¡ °ø±ÞµÇ¾î ¿ÔÁö¸¸, ±× Àû¿ë ¹üÀ§°¡ Àü¹® ºÐ¾ß·Î ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÈ´Â ÀÚµ¿Â÷, ÇコÄɾî, Ç×°ø¿ìÁÖ, »ê¾÷ ¿ëµµ µî ´Ù¾çÇÑ ºÐ¾ßÀÇ °íÀ¯ÇÑ ¼ö¿ä¿¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
¿¹¸¦ µé¾î ÀÚµ¿Â÷ »ê¾÷Àº ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS), ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, Àü±âÀÚµ¿Â÷ ÆÄ¿öÆ®·¹ÀÎ¿ë ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¿ëµµÀÇ ¾ÈÀü°ú ½Å·Ú¼º¿¡ ´ëÇÑ ±î´Ù·Î¿î ¿ä±¸»çÇ×Àº ¸ÂÃãÇü ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ÇコÄÉ¾î ºÐ¾ß´Â ÀÇ·á¿ë ¿µ»ó ó¸®, Áø´Ü Àåºñ, ¿þ¾î·¯ºí °Ç° ±â¼úÀ» À§ÇÑ ¹ÝµµÃ¼ ¿þÀÌÆÛ¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, °¢°¢ °íÀ¯ÇÑ ¼º´É°ú ½Å·Ú¼ºÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ Æ¯¼ö ½ÃÀå¿¡¼´Â Àå±âÀûÀÎ ½Å·Ú¼º, °ß°í¼º, »ê¾÷º° ±ÔÁ¦ Áؼö¿¡ ÁßÁ¡À» µÐ ¸ÂÃãÇü ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº ÀÌ·¯ÇÑ ±âȸ¸¦ ÀνÄÇÏ°í ¿ëµµ¿¡ Æ¯ÈµÈ ¹ÝµµÃ¼ ¿þÀÌÆÛ¸¦ ¸¸µé±â À§ÇÑ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.
Ư¼ö ½ÃÀå°ú Æ´»õ ½ÃÀåÀ¸·ÎÀÇ ÁøÃâÀº ´Ü¼øÇÑ Æ®·»µåÀÏ »Ó¸¸ ¾Æ´Ï¶ó ¹ÝµµÃ¼ ¾÷°èÀÇ Àü·«Àû ¿òÁ÷ÀÓÀÔ´Ï´Ù. ±â¾÷ ¸ÅÃâ È帧À» ´Ù¾çÈÇϰí CE(Consumer Electronics) »çÀÌŬ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç, ¹ÝµµÃ¼ ±â¾÷ÀÌ ÀÌ·¯ÇÑ ½ÅÈï ºÐ¾ß°¡ °¡Á®´ÙÁÖ´Â °íÀ¯ÇÑ µµÀü°ú ±âȸ¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
ÀÌÁ¾ ÁýÀû ¹× Æ÷Àå:
ÇÏÀÌÆÛÁýÀû°ú ÷´Ü Æ÷Àå ±â¼úÀº Àü ¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀ» º¯È½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ Æ®·»µåÀÇ ÇÙ½ÉÀº ¹ÝµµÃ¼ µð¹ÙÀ̽ºÀÇ ¸ðµç ÄÄÆ÷³ÍÆ®¸¦ µ¿ÀÏÇÑ °øÁ¤À¸·Î ´ÜÀÏ ¿þÀÌÆÛ¿¡ Á¦Á¶ÇÒ Çʿ䰡 ¾ø½À´Ï´Ù´Â °³³äÀÔ´Ï´Ù. ´ë½Å ÇÁ·Î¼¼¼, ¸Þ¸ð¸®, ¼¾¼ µî ¼·Î ´Ù¸¥ ¿ä¼ÒµéÀ» µû·Îµû·Î ¸¸µé¾î ´ÜÀÏ ÆÐŰÁö¿¡ ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù.
À̱âÁ¾ ÅëÇÕÀº ¼·Î ´Ù¸¥ ¹ÝµµÃ¼ °øÁ¤°ú Àç·á·Î Á¦Á¶µÈ ºÎǰÀ̶ó ÇÒÁö¶óµµ ÃÖ°íÀÇ ¼º´ÉÀ» °¡Áø ºÎǰÀ» Á¶ÇÕÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ¹ÝµµÃ¼ ¼³°èÀÇ À¯¿¬¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¿¹¸¦ µé¾î ÷´Ü ³ëµå·Î Á¦Á¶µÈ ÇÁ·Î¼¼¼¸¦ Ư¼ö ¼¾¼ ¹× ¸Þ¸ð¸® ÄÄÆ÷³ÍÆ®¿Í °áÇÕÇÏ¿© °í¼º´É ÁÖ¹®Çü ÁýÀûȸ·Î(ASIC)¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù.
ÇÏÀÌÆÛ ÁýÀûȸ¦ ½ÇÇöÇϱâ À§Çؼ´Â ÷´Ü Æ÷Àå ±â¼úÀÌ ÇʼöÀûÀÔ´Ï´Ù. ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP)³ª 3D Æ÷Àå°ú °°ÀÌ ÇϳªÀÇ ÆÐŰÁö¿¡ ¿©·¯ °³ÀÇ ¹ÝµµÃ¼ Ãþ°ú ºÎǰÀ» ÀûÃþÇÏ¿© ¼ÒÇüÈ ¹× °í¼º´É ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±â¼úÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ´õ ÀÛ°í, Àü·Â È¿À²ÀûÀ̸ç, ´ÙÀç´Ù´ÉÇÑ ¹ÝµµÃ¼ µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù.
ÀÌÁ¾ ÅëÇÕ°ú ÷´Ü Æ÷ÀåÀº ³ëµåÀÇ ¹Ì¼¼È¿¡¸¸ ÀÇÁ¸ÇÏÁö ¾Ê°í ¹ÝµµÃ¼ ¿þÀÌÆÛÀÇ ¿ë·®À» È®ÀåÇÒ ¼ö ÀÖ´Â ±æÀ» Á¦°øÇϱ⠶§¹®¿¡ ¾ÕÀ¸·Îµµ °è¼Ó ¹ßÀüÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Çö´ë ±â¼ú ȯ°æÀÇ ´Ù¾çÇÑ ¿ä±¸¸¦ ÃæÁ·½Ãų ¼ö ÀÖ´Â º¸´Ù Àü¹®ÀûÀÌ°í ¿ëµµ¿¡ Æ¯ÈµÈ ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº ½ÅÈï ½ÃÀå°ú ¿ëµµ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ÀÌ·¯ÇÑ Çõ½ÅÀûÀÎ ÁýÀû ¹× Æ÷Àå ±â¼úÀ» °³¹ßÇÏ°í ±¸ÇöÇÏ´Â µ¥ ÀÖÀ¸¸ç, Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù.
ºÎ¹®º° ÀλçÀÌÆ®
±â¼úÀû ÀλçÀÌÆ®
¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀå¿¡¼ 12ÀÎÄ¡(300mm) ¿þÀÌÆÛ ºÎ¹®ÀÌ ¾ÐµµÀûÀÎ Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ÀÌÀ¯´Â 12ÀÎÄ¡ ¿þÀÌÆÛ°¡ ¼ÒÇü ¿þÀÌÆÛ¿¡ ºñÇØ ´ÙÀ½°ú °°Àº ¸¹Àº ÀåÁ¡À» °¡Áö°í Àֱ⠶§¹®ÀÔ´Ï´Ù.
³ôÀº Ĩ ¹Ðµµ: 12ÀÎÄ¡ ¿þÀÌÆÛ´Â ¼ÒÇü ¿þÀÌÆÛº¸´Ù ¿þÀÌÆÛ´ç ´õ ¸¹Àº ĨÀ» žÀçÇÒ ¼ö ÀÖÀ¸¸ç, ´ÙÀÌ´ç ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.
°í¼º´É: 12ÀÎÄ¡ ¿þÀÌÆÛ´Â °í¼º´É CPU, GPU µî ÷´Ü ¹ÝµµÃ¼ ¼ÒÀÚ Á¦Á¶¿¡ ÀûÇÕÇÕ´Ï´Ù.
ºÒ·®·ü °¨¼Ò: 12ÀÎÄ¡ ¿þÀÌÆÛ´Â ¼ÒÇü ¿þÀÌÆÛ¿¡ ºñÇØ ºÒ·®·üÀÌ ³·¾Æ Àüü ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ¼öÀ²À» Çâ»ó½Ãŵ´Ï´Ù.
ÀÌ·¯ÇÑ ÀåÁ¡À¸·Î ÀÎÇØ 12ÀÎÄ¡ ¿þÀÌÆÛ´Â ´ëºÎºÐÀÇ ÃֽŠ¹ÝµµÃ¼ ¼ÒÀÚ »ý»ê¿¡ ÀûÇÕÇÑ ¿þÀÌÆÛ »çÀÌÁî°¡ µÇ¾ú½À´Ï´Ù.
Áö¿ªº° ÀλçÀÌÆ®
¾Æ½Ã¾ÆÅÂÆò¾ç(APAC)Àº ¼¼°è ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ´Â Áö¿ªÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ¾ÕÀ¸·Îµµ Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ±× ¿øµ¿·ÂÀº ´ÙÀ½°ú °°Àº ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù.
°·ÂÇÑ ³»¼ö: °·ÂÇÑ ³»¼ö: ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, Àεµ, Çѱ¹ µî ¼¼°è ÃÖ´ë ±Ô¸ðÀÇ CE(Consumer Electronics) ½ÃÀåÀ» º¸À¯Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °·ÂÇÑ ³»¼ö ¼ö¿ä´Â ÀÌ Áö¿ªÀÇ ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
Á¤ºÎ Áö¿ø: APAC °¢±¹ Á¤ºÎ´Â ¹ÝµµÃ¼ »ê¾÷¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Áß±¹ Á¤ºÎ´Â ¹ÝµµÃ¼ »ê¾÷À» ¹ßÀü½Ã۱â À§ÇØ 1,500¾ï ´Þ·¯ ±Ô¸ðÀÇ ÅõÀÚ ÇÁ·Î±×·¥À» ½ÃÀÛÇß½À´Ï´Ù.
´ëÇü ¹ÝµµÃ¼ Á¦Á¶¾÷üÀÇ Á¸Àç: APAC¿¡´Â TSMC, »ï¼º, SKÇÏÀ̴нº¿Í °°Àº ¼¼°è ÃÖ´ë ±Ô¸ðÀÇ ¹ÝµµÃ¼ Á¦Á¶¾÷ü°¡ ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº ÀÌ Áö¿ª¿¡¼ Å« ¿µÇâ·ÂÀ» Çà»çÇϰí ÀÖÀ¸¸ç, »õ·Î¿î ¿þÀÌÆÛ Á¦Á¶ ½Ã¼³¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù.
APAC ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ÁÖ¿ä ±¹°¡´Â ´ÙÀ½°ú °°½À´Ï´Ù.
Áß±¹: Áß±¹Àº ¼¼°è ÃÖ´ë ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÔ´Ï´Ù. Áß±¹¿¡´Â SMIC, ÈÈ˹ݵµÃ¼ µî ¸¹Àº ´ëÇü ¹ÝµµÃ¼ ¾÷ü°¡ ÁøÃâÇØ ÀÖ½À´Ï´Ù.
´ë¸¸: ´ë¸¸µµ ÁÖ¿ä ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÔ´Ï´Ù. ´ë¸¸¿¡´Â ¼¼°è ÃÖ´ë ¹ÝµµÃ¼ ÆÄ¿îµå¸® ¾÷üÀÎ TSMC°¡ ÀÖ½À´Ï´Ù.
Çѱ¹: Çѱ¹¿¡´Â ¼¼°è ÃÖ´ë ¸Þ¸ð¸® Ä¨ Á¦Á¶¾÷üÀÎ »ï¼ºÀÌ ÀÖ½À´Ï´Ù. »ï¼ºÀº ¹ÝµµÃ¼ ¿þÀÌÆÛ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷À̱⵵ ÇÕ´Ï´Ù.
Global Semiconductor Wafer Market was valued at USD 17.43 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 5.03% through 2028. The Global Semiconductor Wafer Market is currently undergoing a significant transformation, driven by a confluence of factors that are reshaping the way businesses manage their technological infrastructure. Semiconductor wafers are playing a pivotal role in this evolution, empowering organizations across diverse sectors to adapt to the ever-changing technological landscape. Let's delve into the primary catalysts propelling the growth and adoption of Semiconductor Wafer technology across various industries.
Organizations worldwide are in the midst of a digital revolution to maintain competitiveness in the modern business landscape. This entails the adoption of cutting-edge technologies, data-driven decision-making, and the development of customer-centric applications. Semiconductor Wafer solutions are at the forefront of this transformation, allowing organizations to modernize legacy systems, embrace cloud-native architectures, and craft agile, user-friendly applications that align with the demands of the digital age.
The pace of technological innovation is accelerating at an unprecedented rate. Emerging technologies such as artificial intelligence (AI), machine learning, the Internet of Things (IoT), and blockchain are consistently reshaping business operations and customer expectations. To harness the benefits of these innovations, organizations must revamp their legacy applications into modern, tech-savvy solutions. Semiconductor Wafer technology facilitates the seamless integration of these cutting-edge technologies into existing systems, empowering businesses to stay at the forefront of innovation.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 17.43 Billion |
Market Size 2028 | USD 23.61 Billion |
CAGR 2023-2028 | 5.03% |
Fastest Growing Segment | 12 Inch |
Largest Market | Asia-Pacific |
In today's fiercely competitive market, customer experience is a vital differentiator. Modern consumers expect seamless, personalized, and efficient interactions with businesses. Semiconductor Wafer solutions enable organizations to revamp their customer-facing applications, ensuring they are responsive, intuitive, and capable of delivering real-time insights. This enhancement in customer experience leads to improved customer engagement, fosters brand loyalty, and drives revenue growth.
Legacy applications often come with high maintenance costs, security vulnerabilities, and scalability limitations. Semiconductor Wafer initiatives are designed to address these challenges by optimizing IT spending, reducing operational overhead, and enhancing resource utilization. Through the transition to cloud-based infrastructures, organizations can achieve cost-efficiency, scalability, and improved performance, all of which contribute to a healthier bottom line.
With the rising frequency and sophistication of cyber threats, security and regulatory compliance have become paramount concerns. Semiconductor Wafer solutions incorporate security enhancements that safeguard data, applications, and infrastructure. By modernizing applications and adhering to security best practices, organizations can mitigate risks, protect sensitive information, and maintain compliance with industry-specific regulations.
The global shift towards remote work has necessitated the adaptation of applications to support remote collaboration, secure access, and seamless communication. Modernized applications enable employees to work effectively from anywhere, fostering productivity and business continuity, even in challenging circumstances.
Semiconductor Wafer technology isn't solely about keeping pace with the competition; it's also about gaining a competitive edge. Organizations that successfully transform their applications can respond quickly to market changes, launch new services faster, and innovate more effectively. This agility allows them to outperform rivals and capture a larger share of the market.
In conclusion, the Global Semiconductor Wafer Market is experiencing remarkable growth due to the imperatives of digital transformation, rapid technological advancements, the need for enhanced customer experiences, cost optimization, security and compliance concerns, remote work trends, and the pursuit of a competitive advantage. As organizations continue to adapt to the evolving technology landscape, Semiconductor Wafer technology will remain a central driver in shaping the future of IT strategies and enabling innovation and resilience across industries.
Technological Advancements and Miniaturization:
One of the primary driving factors in the Global Semiconductor Wafer Market is the relentless pace of technological advancements and the trend towards miniaturization. Semiconductors serve as the building blocks of modern electronic devices, and their performance is heavily influenced by the size and precision of the components within them. As technology advances, there is a continuous push for smaller, more powerful, and more energy-efficient semiconductor devices.
The demand for smaller and more powerful semiconductor components is driven by several key factors. Firstly, consumer electronics continue to become more compact and feature-rich, from smartphones and laptops to wearable devices and IoT gadgets. To fit all these capabilities into a small form factor, manufacturers require cutting-edge semiconductor technology. Secondly, industries like automotive and healthcare are increasingly relying on semiconductor technology for safety, connectivity, and advanced features, making miniaturization a critical factor. Thirdly, advancements in artificial intelligence, machine learning, and data analytics require more powerful processors and memory, and this necessitates smaller, denser semiconductor structures.
The semiconductor industry responds to these demands by continuously improving manufacturing processes. Techniques like photolithography and chemical vapor deposition are refined, allowing for the creation of increasingly smaller and more intricate features on semiconductor wafers. This trend towards miniaturization is also fueled by the development of new materials and architectures, such as 3D stacking and non-silicon semiconductors.
In summary, the ever-accelerating pace of technological advancements and the drive towards miniaturization are key driving factors in the Global Semiconductor Wafer Market. As industries across the board demand smaller, more powerful, and more efficient semiconductor components, manufacturers will continue to push the boundaries of what's possible in semiconductor wafer production.
The Internet of Things (IoT) revolution is another major driving force in the Global Semiconductor Wafer Market. IoT is all about connecting everyday objects to the internet, enabling them to collect and exchange data. This phenomenon has given rise to a massive demand for semiconductor components that can enable connectivity, data processing, and low-power operation.
IoT encompasses a vast range of applications, from smart homes and cities to industrial automation and healthcare devices. All of these applications rely on semiconductor wafers to power their sensors, processors, and communication modules. The need for energy-efficient chips in these devices is a crucial driver for the semiconductor market.
Semiconductor wafers are key to IoT devices for several reasons. First, they enable the production of low-power, high-performance processors, which are essential for IoT sensors and edge devices. Second, they facilitate the integration of various sensors, including temperature, humidity, motion, and more, into compact and efficient packages. Third, they are essential for wireless communication modules like Wi-Fi, Bluetooth, and cellular technologies, which enable IoT devices to connect to networks and other devices.
The growth of IoT is exponential, with an ever-expanding ecosystem of interconnected devices. This surge in demand for semiconductor wafers is not limited to a single industry but extends across sectors, including consumer electronics, healthcare, manufacturing, and transportation.
In conclusion, the proliferation of IoT and connected devices is a significant driver in the Global Semiconductor Wafer Market, as it necessitates the production of highly specialized semiconductor components that enable efficient and connected operations across various industries.
Artificial Intelligence and Machine Learning:
Artificial intelligence (AI) and machine learning (ML) are experiencing explosive growth, and they are reshaping industries, from healthcare and finance to automotive and entertainment. These technologies rely heavily on high-performance computing, which, in turn, relies on advanced semiconductor wafers.
The development and deployment of AI and ML applications require specialized semiconductor components with immense processing power. These chips, often referred to as AI accelerators or AI chips, are essential for tasks like image recognition, natural language processing, and autonomous decision-making. As AI and ML continue to expand into different sectors, the demand for such high-performance semiconductor wafers increases. AI and ML applications also require large amounts of memory, and semiconductor wafers are at the heart of memory technology, such as dynamic random-access memory (DRAM) and flash memory. The efficiency, capacity, and speed of memory components are crucial for the performance of AI and ML systems. Furthermore, AI and ML development often involves training models using massive datasets. This process requires not only powerful processors but also efficient data storage solutions. Semiconductor wafers are instrumental in the production of advanced solid-state drives (SSDs) and storage-class memory, both of which are crucial for fast data access and storage.
In conclusion, the rapid growth of AI and machine learning technologies is a substantial driving factor in the Global Semiconductor Wafer Market. The demand for high-performance processors, advanced memory, and efficient storage solutions to support these technologies is propelling semiconductor wafer manufacturers into new frontiers of innovation and production.
Key Market Challenges
Supply Chain Disruptions and Shortages:
One of the foremost challenges in the Global Semiconductor Wafer Market is the persistent threat of supply chain disruptions and shortages. This issue has gained significant attention in recent years due to its profound impact on various industries and the global economy.
Semiconductor wafers are at the core of semiconductor manufacturing, and their production is a complex, time-consuming process. Any disruption in the supply chain, whether due to geopolitical tensions, natural disasters, or unexpected events like the COVID-19 pandemic, can lead to significant delays and shortages.
These disruptions can have a cascading effect on downstream industries that rely on semiconductor wafers for their products, such as consumer electronics, automotive, and telecommunications. For instance, the shortage of semiconductor wafers in the automotive sector has caused production delays and increased costs for car manufacturers. Similarly, the consumer electronics market has been affected, leading to higher prices and delays in product launches.
Addressing this challenge involves diversifying supply chain sources, enhancing inventory management, and improving forecasting models. However, the highly specialized nature of semiconductor wafer production makes it difficult to rapidly adapt to sudden disruptions, and a long-term solution requires careful planning and investment.
Cost and Complexity of Advanced Technology Nodes:
As semiconductor technology advances, a significant challenge in the Global Semiconductor Wafer Market is the escalating cost and complexity associated with manufacturing at advanced technology nodes. These advanced nodes are essential for creating smaller, more powerful, and energy-efficient semiconductor devices, but they come at a high price.
Manufacturing semiconductor wafers at advanced nodes requires cutting-edge equipment, materials, and processes. The development and maintenance of these technologies demand substantial investments from semiconductor manufacturers. Additionally, the research and development necessary to keep up with Moore's Law and produce ever smaller and more advanced semiconductors is both time-consuming and expensive. This cost and complexity challenge is exacerbated by the diminishing returns of Moore's Law, which states that the number of transistors on a semiconductor chip doubles approximately every two years. As semiconductor components approach the atomic scale, producing further miniaturization becomes progressively challenging and costly.
The semiconductor industry must tackle this challenge by exploring new materials, innovative manufacturing techniques, and alternative approaches to computing. Transitioning to more cost-effective and sustainable processes while continuing to meet the growing demand for advanced semiconductor wafers is an ongoing battle.
Environmental and Sustainability Concerns:
Sustainability and environmental concerns have become increasingly important challenges in the Global Semiconductor Wafer Market. The semiconductor manufacturing process involves the use of a variety of chemicals, water, and energy, which can have a negative impact on the environment. The industry's commitment to reducing its carbon footprint and waste production is vital for addressing these concerns.
Semiconductor manufacturing facilities are often energy-intensive, and finding ways to reduce energy consumption while maintaining high production levels is a significant challenge. Additionally, the use and disposal of hazardous chemicals can lead to environmental contamination and pose risks to both workers and surrounding communities.
Water is another critical resource in semiconductor manufacturing, and the industry's heavy water usage in areas prone to water scarcity raises sustainability concerns. The semiconductor industry is actively working to reduce its water usage through recycling and the development of more water-efficient processes. Furthermore, the semiconductor industry generates a substantial amount of waste, including chemical byproducts and silicon wafers with defects. Proper waste management and recycling processes are essential for minimizing the environmental impact and reducing the demand for raw materials.
To address these sustainability challenges, the semiconductor industry is investing in research and development of greener manufacturing technologies, as well as adopting eco-friendly practices in its operations. These efforts aim to reduce the environmental footprint of semiconductor wafer production while maintaining the industry's growth and competitiveness on a global scale.
Key Market Trends
Transition to Advanced Semiconductor Nodes:
One of the prevailing trends in the Global Semiconductor Wafer Market is the ongoing transition to advanced semiconductor nodes. Semiconductor nodes refer to the size of the smallest transistors and other components on a semiconductor wafer. Shrinking these components allows for more transistors to be packed into the same space, resulting in smaller, more powerful, and energy-efficient devices.
In recent years, semiconductor manufacturers have been pushing the boundaries of miniaturization, with the introduction of 7nm, 5nm, and even 3nm nodes. This trend toward advanced nodes is driven by the insatiable demand for higher computing power, as seen in smartphones, data centers, and emerging technologies like artificial intelligence and 5G. Advanced nodes enable the creation of processors and memory devices with superior performance while consuming less power.
However, transitioning to advanced nodes presents significant technical and financial challenges. The cost of developing and maintaining the advanced manufacturing equipment required is substantial, and the complexity of working at such small scales demands innovative solutions. Additionally, the diminishing returns associated with shrinking transistors to atomic dimensions require creative problem-solving to maintain Moore's Law and keep the semiconductor industry on its historical performance trajectory.
Despite these challenges, the transition to advanced semiconductor nodes is an inexorable trend, as it is foundational to enabling the next generation of technological innovations. The industry will continue to invest in research and development to overcome these challenges and produce increasingly smaller and more advanced semiconductor wafers.
Emergence of Specialty and Niche Markets:
Another notable trend in the Global Semiconductor Wafer Market is the emergence of specialty and niche markets. While semiconductor wafers have traditionally served the broader consumer electronics and computing industries, their application scope is expanding rapidly into specialized fields. This diversification is driven by the unique demands of various sectors, including automotive, healthcare, aerospace, and industrial applications.
For instance, the automotive industry is increasingly reliant on semiconductor wafers for advanced driver-assistance systems (ADAS), infotainment systems, and electric vehicle powertrains. The stringent requirements for safety and reliability in automotive applications necessitate customized semiconductor solutions. Similarly, the healthcare sector depends on semiconductor wafers for medical imaging, diagnostic devices, and wearable health tech, each with specific performance and reliability needs.
These specialty markets require tailored semiconductor solutions, often with an emphasis on long-term reliability, ruggedness, and compliance with industry-specific regulations. Semiconductor manufacturers are recognizing these opportunities and investing in research and development to create application-specific semiconductor wafers.
The expansion into specialty and niche markets is not only a trend but also a strategic move for the semiconductor industry. It diversifies revenue streams, reduces dependency on consumer electronics cycles, and positions semiconductor companies to address the unique challenges and opportunities presented by these emerging sectors.
Heterogeneous Integration and Packaging:
Heterogeneous integration and advanced packaging techniques are transforming the Global Semiconductor Wafer Market. This trend centers on the idea that not all components of a semiconductor device need to be manufactured on a single wafer using the same process. Instead, different elements, such as processors, memory, and sensors, can be created separately and integrated into a single package.
Heterogeneous integration allows for the combination of the best-performing components, even if they are produced using different semiconductor processes or materials. This approach enables greater flexibility and efficiency in semiconductor design. For example, processors manufactured using advanced nodes can be combined with specialized sensors or memory components to create high-performance, application-specific integrated circuits (ASICs).
Advanced packaging techniques are essential for realizing heterogeneous integration. These methods, such as system-in-package (SiP) and 3D packaging, involve stacking multiple semiconductor layers or components within a single package, allowing for compact and high-performance designs. This trend is driven by the demand for smaller, more power-efficient, and versatile semiconductor devices across various industries.
Heterogeneous integration and advanced packaging are expected to continue evolving, as they provide a path to extend the capabilities of semiconductor wafers without relying solely on further node miniaturization. This trend will enable more specialized and application-specific semiconductor solutions that can address the diverse needs of the modern technology landscape. Semiconductor manufacturers will play a crucial role in developing and implementing these innovative integration and packaging techniques to meet the demands of emerging markets and applications.
Segmental Insights
Technology Insights
The 12-inch (300mm) wafer segment is the dominating segment in the global semiconductor wafer market.
This is because 12-inch wafers offer a number of advantages over smaller wafers, including:
Higher chip density: 12-inch wafers can accommodate more chips per wafer than smaller wafers, which reduces the cost per die.
Better performance: 12-inch wafers are better suited for the fabrication of advanced semiconductor devices, such as high-performance CPUs and GPUs.
Lower defect rates: 12-inch wafers have lower defect rates than smaller wafers, which improves the overall yield of semiconductor devices.
As a result of these advantages, 12-inch wafers are the preferred wafer size for the production of most modern semiconductor devices.
Regional Insights
The dominating region in the global semiconductor wafer market is Asia-Pacific (APAC). This dominance is expected to continue in the coming years, driven by the following factors:
Strong domestic demand: APAC is home to some of the largest consumer electronics markets in the world, such as China, India, and South Korea. This strong domestic demand is driving the growth of the semiconductor wafer market in the region.
Government support: Governments in APAC are investing heavily in the semiconductor industry. For example, the Chinese government has launched a $150 billion investment program to develop the country's semiconductor industry.
Presence of major semiconductor manufacturers: APAC is home to some of the world's largest semiconductor manufacturers, such as TSMC, Samsung, and SK Hynix. These companies have a significant presence in the region and are investing heavily in new wafer fabrication facilities.
Some of the key countries in the APAC semiconductor wafer market include:
China: China is the largest semiconductor wafer market in the world. The country is home to a number of major semiconductor manufacturers, such as SMIC and Hua Hong Semiconductor.
Taiwan: Taiwan is another major semiconductor wafer market. The country is home to TSMC, the world's largest semiconductor foundry.
South Korea: South Korea is home to Samsung, the world's largest memory chip maker. Samsung is also a major player in the semiconductor wafer market.
Taiwan Semiconductor Manufacturing Co., Ltd.
Samsung Electronics Co., Ltd.
United Microelectronics Corporation
GlobalFoundries
Semiconductor Manufacturing International Corporation
HH Grace Technology Co., Ltd.
Power Semiconductor Manufacturing Corporation
Vanguard International Semiconductor Corporation
DB HiTek Co., Ltd.
Tower Semiconductor Ltd.
In this report, the Global Semiconductor Wafer Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: