½ÃÀ庸°í¼­
»óǰÄÚµå
1703498

À̼ӻçÇ÷çÅç ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø - ÀÛ¹°º°(ä¼Ò, »çÅÁ¼ö¼ö, ¾Æ¸óµå, º¹¼þ¾Æ, ¿Á¼ö¼ö, »ç°ú, ±âŸ), Áö¿ªº°, °æÀﺰ(2020-2030³â)

Isoxaflutole Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Crops (Vegetables, Sugarcane, Almonds, Peaches, Maize, Apple, Others), By Region and Competition, 2020-2030F

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ À̼ӻçÇ÷çÅç ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 1¾ï 6,113¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ Áß CAGRÀº 5.02%·Î 2030³â±îÁö´Â 2¾ï 1,373¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ À̼ӻçÇ÷çÅç ½ÃÀåÀº °ß°íÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, ±× ÁÖ¿ä ¿äÀÎÀº ¼¼°è Àα¸ Áõ°¡¿Í ±×¿¡ µû¸¥ ½Ä·® ¼ö¿äÀÇ ±Þ°ÝÇÑ Áõ°¡ÀÔ´Ï´Ù. ¼¼°è Àα¸°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ´õ ¸¹Àº ½Ä·®À» »ý»êÇØ¾ß ÇÑ´Ù´Â ³ó¾÷ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¾Ð·ÂÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ³ó°¡´Â ½Ä·® ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ÀÛ¹° ¼öÈ®·®À» ´Ã·Á¾ß ÇÏ´Â °úÁ¦¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, È¿°úÀûÀÎ ÀâÃÊ °ü¸®´Â ÀÌ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¼±ÅÃÀû Á¦ÃÊÁ¦ÀÎ À̼ӻçÇ÷çÅçÀº ³ó°¡°¡ ÇÊ¿äÇÑ ¿µ¾çºÐ, ¹°, ÇÞºûÀ» ³õ°í ÀÛ¹°°ú °æÀïÇϴ ħÀÔ ÀâÃÊ¿Í ½Î¿ï ¼ö ÀÖµµ·Ï µµ¿ÍÁÜÀ¸·Î½á Çö´ë ³ó¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2026-2030³â
½ÃÀå ±Ô¸ð : 2024³â 1¾ï 6,113¸¸ ´Þ·¯
½ÃÀå ±Ô¸ð : 2030³â 2¾ï 1,373¸¸ ´Þ·¯
CAGR : 2025-2030³â 5.02%
±Þ¼ºÀå ºÎ¹® ¿Á¼ö¼ö
ÃÖ´ë ½ÃÀå ¾Æ½Ã¾ÆÅÂÆò¾ç

°æÀÛ °¡´ÉÇÑ °æÀÛÁö°¡ ÇÑÁ¤µÇ¾î ÀÖ°í ±âÈÄ º¯È­ÀÇ ¾Ç¿µÇâÀÌ ´õ¿í Å« µµÀüÀÌ µÇ°í ÀÖ´Â °¡¿îµ¥, È¿À²ÀûÀÎ ÀâÃÊ ¹æÁ¦ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ °¡Àå Àý½ÇÇÕ´Ï´Ù. À̼ӻçÇ÷çÅçÀº ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â È¿°úÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼ö´ÜÀ» Á¦°øÇÏ¿© ³ó°¡°¡ ÀâÃÊÀÇ È®»êÀ» ¾ïÁ¦ÇÏ¿© ÀÛ¹° ¼öÈ®·®À» ±Ø´ëÈ­ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ÀÌ Á¦ÃÊÁ¦´Â ´Ù¾çÇÑ ÀâÃÊ Á¾À» ±¤¹üÀ§ÇÏ°Ô ¹æÁ¦ÇϹǷΠ¿Á¼ö¼ö, Äá, »çÅÁ¼ö¼ö µî ´Ù¾çÇÑ ÀÛ¹°¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦ÃÊÁ¦ ³»¼º Äá°ú ¿Á¼ö¼ö¿Í °°Àº À¯ÀüÀÚ º¯Çü(GM) ÀÛ¹°ÀÇ Ã¤ÅÃÀº À̼ӻçÇ÷çÅç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ GM ÀÛ¹°Àº À̼ӻçÇ÷çÅçÀ» Æ÷ÇÔÇÑ Á¦ÃÊÁ¦ »ìÆ÷¿¡ °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î ³ó°¡°¡ ÀÛ¹°¿¡ ÇØ¸¦ ³¢Ä¡Áö ¾Ê°í ÀâÃʸ¦ Á¦°ÅÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. À̼ӻçÇ÷çÅç°ú Á¦ÃÊÁ¦ ³»¼º GM ÀÛ¹° °£ÀÇ ÀÌ·¯ÇÑ È£È¯¼ºÀ¸·Î ÀÎÇØ Á¦ÃÊÁ¦´Â Çö´ë ³ó¾÷¿¡ ÇʼöÀûÀÎ ÅøÀÌ µÇ¾î ¼¼°è ½Ä·® ¼ö¿ä¿¡ ´ëÀÀÇÏ´Â »ý»ê¼º Çâ»ó¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

À¯ÀüÀÚÀçÁ¶ÇÕ(GM) ÀÛ¹°ÀÇ Ã¤ÅÃ

ÁÖ¿ä ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦

Á¦ÃÊÁ¦ ³»¼º

ÁÖ¿ä ½ÃÀå µ¿Çâ

Áö¼Ó°¡´É ³ó¾÷À¸·ÎÀÇ À̵¿

¸ñÂ÷

Á¦1Àå Á¦Ç° °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ¼¼°èÀÇ À̼ӻçÇ÷çÅç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • ÀÛ¹°º°(ä¼Ò, »çÅÁ¼ö¼ö, ¾Æ¸óµå, º¹¼þ¾Æ, ¿Á¼ö¼ö, »ç°ú, ±âŸ)
    • Áö¿ªº°
    • ±â¾÷º°(2024³â)
  • ½ÃÀå ¸Ê
    • ÀÛ¹°º°
    • Áö¿ªº°

Á¦5Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ À̼ӻçÇ÷çÅç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • ÀÛ¹°º°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ÀϺ»
    • Çѱ¹

Á¦6Àå À¯·´ÀÇ À̼ӻçÇ÷çÅç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
  • À¯·´ : ±¹°¡º° ºÐ¼®
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ¿µ±¹

Á¦7Àå ºÏ¹ÌÀÇ À̼ӻçÇ÷çÅç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
  • ºÏ¹Ì : ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ¸ß½ÃÄÚ
    • ij³ª´Ù

Á¦8Àå ³²¹ÌÀÇ À̼ӻçÇ÷çÅç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
  • ³²¹Ì : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ÄÝ·Òºñ¾Æ

Á¦9Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ À̼ӻçÇ÷çÅç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º° ºÐ¼®
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®

Á¦10Àå ½ÃÀå ¿ªÇÐ

  • ÃËÁø¿äÀÎ
  • °úÁ¦

Á¦11Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

  • ÃÖ±Ù µ¿Çâ
  • Á¦Ç° Ãâ½Ã
  • ÇÕº´°ú Àμö

Á¦12Àå ¼¼°èÀÇ À̼ӻçÇ÷çÅç ½ÃÀå : SWOT ºÐ¼®

Á¦13Àå Porter's Five Forces ºÐ¼®

  • ¾÷°è³» °æÀï
  • ½Å±Ô Âü¿©ÀÇ °¡´É¼º
  • °ø±Þ¾÷üÀÇ Èû
  • °í°´ÀÇ Èû
  • ´ëüǰÀÇ À§Çù

Á¦14Àå °æÀï ±¸µµ

  • BASF SE
  • Bayer AG
  • CHEMOS GmbH & Co. KG
  • Merck KGaA
  • Santa Cruz Biotechnology, Inc.
  • Shanghai E-Tong Chemical Co., Ltd.
  • Shijiazhuang Awiner Biotechnology ltd
  • Wanko Chemical Co. Ltd.

Á¦15Àå Àü·«Àû Á¦¾È

Á¦16Àå Á¶»çȸ»ç ¼Ò°³¡¤¸éÃ¥»çÇ×

KSA

Global Isoxaflutole Market was valued at USD 161.13 Million in 2024 and is expected to reach USD 213.73 Million by 2030 with a CAGR of 5.02% during the forecast period. The global isoxaflutole market is witnessing robust growth, primarily fueled by the ever-growing global population and the consequent surge in food demand. As the world's population continues to expand, the pressure on agricultural systems to produce more food intensifies. Farmers are confronted with the challenge of increasing crop yields to meet the rising demand for food, and effective weed management is central to achieving this goal. Isoxaflutole, a selective herbicide, plays a pivotal role in modern agriculture by helping farmers combat invasive weeds that compete with crops for essential nutrients, water, and sunlight.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 161.13 Million
Market Size 2030USD 213.73 Million
CAGR 2025-20305.02%
Fastest Growing SegmentMaize
Largest MarketAsia-Pacific

With limited arable land available for cultivation and the adverse effects of climate change posing additional challenges, the need for efficient weed control solutions has become paramount. Isoxaflutole offers an effective and reliable means of addressing this challenge, allowing farmers to maximize crop yields by curbing weed infestations. This herbicide's broad-spectrum control of various weed species makes it a versatile choice for a range of crops, including corn, soybeans, and sugarcane. Furthermore, the adoption of genetically modified (GM) crops, such as herbicide-tolerant soybeans and corn, has further amplified the demand for isoxaflutole. These GM crops have been engineered to withstand herbicide applications, including isoxaflutole, enabling farmers to target weeds without harming their crops. This compatibility between isoxaflutole and herbicide-tolerant GM crops has made the herbicide an indispensable tool for modern agriculture, contributing to increased productivity in response to the global food demand.

Key Market Drivers

Adoption of Genetically Modified (GM) Crops

The global isoxaflutole market has experienced a significant boost thanks to the widespread adoption of genetically modified (GM) crops, which has revolutionized modern agriculture. GM crops engineered for herbicide tolerance, such as herbicide-tolerant soybeans and corn, have reshaped farming practices and contributed to the increased demand for herbicides like isoxaflutole. GM crops engineered to tolerate specific herbicides, including isoxaflutole, offer several advantages to farmers. They allow for efficient and targeted weed control, as the crops can withstand herbicide applications that would otherwise harm non-GM counterparts. This compatibility with isoxaflutole has made the herbicide an indispensable tool for weed management in GM crop systems.

Key Market Challenges

Herbicide Resistance

Herbicide resistance has become a major challenge in the global isoxaflutole market, raising concerns about its long-term effectiveness in weed control and sustainability in modern agriculture. Isoxaflutole, a selective herbicide widely utilized across various crops, has encountered growing resistance in recent years, diminishing its reliability as a weed management solution. One of the primary factors driving this resistance is the repeated and continuous application of isoxaflutole in crop production. Weeds, known for their adaptability, can gradually develop resistance through natural selection, reducing the herbicide's efficacy over time. As farmers rely on isoxaflutole season after season, resistant weed populations can emerge, making control increasingly difficult.

The implications of herbicide resistance are significant. The proliferation of resistant weeds can lead to increased competition for essential resources, ultimately reducing crop yields and overall agricultural productivity. This not only places financial pressure on farmers but also raises concerns about global food security. Addressing herbicide resistance requires the implementation of integrated weed management strategies, such as rotating or alternating herbicides with different modes of action. However, these approaches can be complex and costly, requiring in-depth knowledge of local weed populations, careful planning, and potentially the use of multiple herbicides. Proactive resistance management is essential to preserving the long-term efficacy of isoxaflutole. This includes routine weed monitoring, early detection of resistance, and educating farmers on best practices to mitigate its impact.

Key Market Trends

Shift Towards Sustainable Agriculture

The global isoxaflutole market is experiencing a boost thanks to the growing shift towards sustainable agriculture practices. Sustainable agriculture, characterized by reduced environmental impact and a focus on responsible resource management, has become a dominant trend in modern farming. Researchers are actively investigating the potential of artificial intelligence (AI) to enhance agricultural sustainability. AI-driven models analyze historical weather patterns, soil conditions, and other critical factors to provide more accurate crop yield predictions. Additionally, AI-powered irrigation systems utilize sensor-equipped hardware and real-time data analytics to optimize water distribution based on soil moisture levels and plant requirements. This approach not only minimizes water consumption but also significantly improves overall water-use efficiency. Isoxaflutole, a selective herbicide, is playing a pivotal role in supporting these sustainable practices, and this shift is positively impacting its market demand. One of the key drivers of this trend is the increasing awareness and concern for environmental sustainability. Consumers, regulatory bodies, and farmers alike are increasingly recognizing the importance of reducing the ecological footprint of agricultural activities. Isoxaflutole, when used judiciously, can contribute to sustainable weed management by minimizing the need for extensive tillage, which can lead to soil erosion and compaction. The herbicide's targeted action helps conserve soil structure and biodiversity, aligning with sustainable farming principles.

Key Market Players

  • BASF SE
  • Bayer AG
  • CHEMOS GmbH & Co. KG
  • Merck KGaA
  • Santa Cruz Biotechnology, Inc.
  • Shanghai E-Tong Chemical Co., Ltd.
  • Shijiazhuang Awiner Biotechnology ltd
  • Wanko Chemical Co. Ltd

Report Scope:

In this report, the Global Isoxaflutole Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Isoxaflutole Market, By Crops:

  • Vegetables
  • Sugarcane
  • Almonds
  • Peaches
  • Maize
  • Apple
  • Others

Isoxaflutole Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Isoxaflutole Market.

Available Customizations:

Global Isoxaflutole Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Global Isoxaflutole Market Outlook

  • 4.1. Market Size & Forecast
    • 4.1.1. By Value
  • 4.2. Market Share & Forecast
    • 4.2.1. By Crops (Vegetables, Sugarcane, Almonds, Peaches, Maize, Apple, Others)
    • 4.2.2. By Region
    • 4.2.3. By Company (2024)
  • 4.3. Market Map
    • 4.3.1. By Crops
    • 4.3.2. By Region

5. Asia Pacific Isoxaflutole Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Crops
    • 5.2.2. By Country
  • 5.3. Asia Pacific: Country Analysis
    • 5.3.1. China Isoxaflutole Market Outlook
      • 5.3.1.1. Market Size & Forecast
        • 5.3.1.1.1. By Value
      • 5.3.1.2. Market Share & Forecast
        • 5.3.1.2.1. By Crops
    • 5.3.2. India Isoxaflutole Market Outlook
      • 5.3.2.1. Market Size & Forecast
        • 5.3.2.1.1. By Value
      • 5.3.2.2. Market Share & Forecast
        • 5.3.2.2.1. By Crops
    • 5.3.3. Australia Isoxaflutole Market Outlook
      • 5.3.3.1. Market Size & Forecast
        • 5.3.3.1.1. By Value
      • 5.3.3.2. Market Share & Forecast
        • 5.3.3.2.1. By Crops
    • 5.3.4. Japan Isoxaflutole Market Outlook
      • 5.3.4.1. Market Size & Forecast
        • 5.3.4.1.1. By Value
      • 5.3.4.2. Market Share & Forecast
        • 5.3.4.2.1. By Crops
    • 5.3.5. South Korea Isoxaflutole Market Outlook
      • 5.3.5.1. Market Size & Forecast
        • 5.3.5.1.1. By Value
      • 5.3.5.2. Market Share & Forecast
        • 5.3.5.2.1. By Crops

6. Europe Isoxaflutole Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Crops
    • 6.2.2. By Country
  • 6.3. Europe: Country Analysis
    • 6.3.1. France Isoxaflutole Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Crops
    • 6.3.2. Germany Isoxaflutole Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Crops
    • 6.3.3. Spain Isoxaflutole Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Crops
    • 6.3.4. Italy Isoxaflutole Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Crops
    • 6.3.5. United Kingdom Isoxaflutole Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Crops

7. North America Isoxaflutole Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Crops
    • 7.2.2. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Isoxaflutole Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Crops
    • 7.3.2. Mexico Isoxaflutole Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Crops
    • 7.3.3. Canada Isoxaflutole Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Crops

8. South America Isoxaflutole Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Crops
    • 8.2.2. By Country
  • 8.3. South America: Country Analysis
    • 8.3.1. Brazil Isoxaflutole Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Crops
    • 8.3.2. Argentina Isoxaflutole Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Crops
    • 8.3.3. Colombia Isoxaflutole Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Crops

9. Middle East and Africa Isoxaflutole Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Crops
    • 9.2.2. By Country
  • 9.3. MEA: Country Analysis
    • 9.3.1. South Africa Isoxaflutole Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Crops
    • 9.3.2. Saudi Arabia Isoxaflutole Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Crops
    • 9.3.3. UAE Isoxaflutole Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Crops

10. Market Dynamics

  • 10.1. Drivers
  • 10.2. Challenges

11. Market Trends & Developments

  • 11.1. Recent Developments
  • 11.2. Product Launches
  • 11.3. Mergers & Acquisitions

12. Global Isoxaflutole Market: SWOT Analysis

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Product

14. Competitive Landscape

  • 14.1. BASF SE
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (In case of listed)
    • 14.1.5. Recent Developments
    • 14.1.6. SWOT Analysis
  • 14.2. Bayer AG
  • 14.3. CHEMOS GmbH & Co. KG
  • 14.4. Merck KGaA
  • 14.5. Santa Cruz Biotechnology, Inc.
  • 14.6. Shanghai E-Tong Chemical Co., Ltd.
  • 14.7. Shijiazhuang Awiner Biotechnology ltd
  • 14.8. Wanko Chemical Co. Ltd.

15. Strategic Recommendations

16. About Us & Disclaimer

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦