시장보고서
상품코드
1785168

세계의 유전체학 블록체인 시장 - 산업 규모, 점유율, 동향, 기회, 예측 : 비즈니스 모델별, 서비스별, 용도별, 최종 사용자별, 지역별, 경쟁별(2020-2030년)

Blockchain in Genomics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Business Model, By Service, By Application, By End User, By Region and Competition, 2020-2030F

발행일: | 리서치사: TechSci Research | 페이지 정보: 영문 188 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 유전체학 블록체인 시장 규모는 2024년에 10억 6,000만 달러가 되었으며, 2030년까지의 CAGR은 11.11%를 나타내 예측 기간 동안 강력한 성장이 예상되고 있습니다.

블록체인은 블록이라는 단위로 거래와 데이터를 안전하게 기록하는 디지털 공개 대장입니다. 예를 들어, 2022년 FDA의 의약품 평가 연구센터(CDER)는 37개의 신규 분자 실체(NME)를 승인했습니다. 35개의 치료 NME 중 12개(약 34%)가 맞춤형 의료 연합(PMC)에 의해 개별화된 의약품으로 분류되었습니다. 이는 치료 성적을 개선하고 부작용을 완화하기 위해 개별 유전자, 바이오마커, 분자 프로파일에 기초하여 치료를 조정하는 것이 중요하다는 것을 강조합니다. 각 블록에는 타임 스탬프가 눌려지고 이전 블록과 링크되어 있기 때문에 과거로 거슬러 올라가서 변경할 수없는 불변 체인을 형성합니다. 이 분산 프레임워크는 중앙 기관에 의존하지 않고 상호 연결된 시스템의 네트워크에 데이터를 분산시켜 투명성과 신뢰성을 향상시킵니다. 적절한 권한 부여로 세계 액세스가 가능하므로 사용자는 자신의 데이터를 관리하고 개인 정보와 보안을 보장할 수 있습니다.

시장 개요
예측 기간 2026-2030년
시장 규모 : 2024년 10억 6,000만 달러
시장 규모 : 2030년 19억 8,000만 달러
CAGR : 2025-2030년 11.11%
급성장 부문 제약 및 생명공학 기업
최대 시장 북미

시장 성장 촉진요인

민간기업과 벤처캐피탈 투자 증가

주요 시장 과제

규제 문제

주요 시장 동향

기술 혁신

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 고객의 목소리

제5장 세계의 유전체학 블록체인 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율·예측
    • 비즈니스 모델별(B2B 비즈니스 모델, B2C 비즈니스 모델, C2B 비즈니스 모델)
    • 서비스별(유틸리티 토큰 및 블록체인 플랫폼)
    • 용도별(데이터 공유 및 수익화, 데이터 저장 및 보안, 자동화된 건강 보험)
    • 최종 사용자별(제약 및 생명공학 기업, 병원 및 의료 서비스 제공자, 연구 기관, 데이터 소유자 및 기타)
    • 지역별
    • 기업별(2024년)
  • 시장 맵

제6장 북미의 유전체학 블록체인 시장 전망

  • 시장 규모와 예측
  • 시장 점유율·예측
  • 북미 : 국가별 분석
    • 미국
    • 캐나다
    • 멕시코

제7장 유럽의 유전체학 블록체인 시장 전망

  • 시장 규모와 예측
  • 시장 점유율·예측
  • 유럽 : 국가별 분석
    • 독일
    • 영국
    • 이탈리아
    • 프랑스
    • 스페인

제8장 아시아태평양의 유전체학 블록체인 시장 전망

  • 시장 규모와 예측
  • 시장 점유율·예측
  • 아시아태평양 : 국가별 분석
    • 중국
    • 인도
    • 일본
    • 한국
    • 호주

제9장 남미의 유전체학 블록체인 시장 전망

  • 시장 규모와 예측
  • 시장 점유율·예측
  • 남미 : 국가별 분석
    • 브라질
    • 아르헨티나
    • 콜롬비아

제10장 중동 및 아프리카의 유전체학 블록체인 시장 전망

  • 시장 규모와 예측
  • 시장 점유율·예측
  • 중동 및 아프리카 : 국가별 분석
    • 남아프리카
    • 사우디아라비아
    • 아랍에미리트(UAE)

제11장 시장 역학

  • 성장 촉진요인
  • 과제

제12장 시장 동향과 발전

  • 합병과 인수
  • 제품 출시
  • 최근 동향

제13장 Porter's Five Forces 분석

  • 업계 내 경쟁
  • 신규 진입의 가능성
  • 공급자의 힘
  • 고객의 힘
  • 대체품의 위협

제14장 경쟁 구도

  • Oxford Nanopore Technologies Plc
  • PacBio(Pacific Biosciences of California Inc.)
  • Guardtime Ltd.
  • Agilent Technologies Inc.
  • Illumina Inc.
  • BioRad Laboratories Inc.
  • 10x Genomics Inc.
  • QIAGEN NV
  • Nebula Genomics Inc.
  • Thermo Fisher Scientific

제15장 전략적 제안

제16장 기업 소개와 면책사항

KTH 25.08.12

Global Blockchain in Genomics Market was valued at USD 1.06 Billion in 2024 and is anticipated to project robust growth in the forecast period with a CAGR of 11.11% through 2030. Blockchain is a digital public ledger that securely records transactions and data in units known as blocks. For instane, in 2022, the FDA's Center for Drug Evaluation and Research (CDER) approved 37 new molecular entities (NMEs). Of the 35 therapeutic NMEs, 12-around 34 percent-were classified as personalized medicines by the Personalized Medicine Coalition (PMC). This highlights the growing emphasis on tailoring treatments based on individual genetic, biomarker, or molecular profiles to improve therapeutic outcomes and reduce adverse effects. Each block is timestamped and linked to the previous one, forming an immutable chain that cannot be altered retroactively. This decentralized framework allows data to be distributed across a network of interconnected systems without relying on a central authority, enhancing transparency and reliability. With global accessibility enabled through proper authorization, users maintain control over their data, ensuring privacy and security.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.06 Billion
Market Size 2030USD 1.98 Billion
CAGR 2025-203011.11%
Fastest Growing SegmentPharmaceutical & Biotechnology Companies
Largest MarketNorth America

Key Market Drivers

Rising Investment by Private Players and Venture Capitalists

Increased investment provides researchers and innovators with the financial resources needed to explore and develop blockchain solutions tailored for genomics. This funding supports the creation of new platforms, tools, and applications that leverage blockchain's capabilities. For instance, in March 2024, MENADNA Inc., a prominent bioinformatics and genetic testing startup focused on the Middle East and North Africa (MENA) region, announced an exclusive partnership with Nebula Genomics, a leader in personalized genome sequencing. Under this agreement, MENADNA becomes Nebula's exclusive partner in Jordan, Oman, and Iraq. Currently active in the UAE, MENADNA also plans to expand into Saudi Arabia. The collaboration aims to enhance the region's representation in genomic research by combining Nebula's cutting-edge sequencing technology with MENADNA's proprietary bioinformatics platform, addressing a long-standing gap in global genome-wide association studies. Financial support from private players and venture capitalists accelerates the development of blockchain-based solutions for genomics. This leads to quicker advancements in technology, making blockchain more accessible and applicable to genomic research and data management. Funding supports the development of robust and scalable blockchain infrastructure required to handle large volumes of genomic data securely. This infrastructure enables efficient data storage, sharing, and analysis. Investments attract collaboration among stakeholders, including researchers, industry players, technology providers, and healthcare institutions. These partnerships foster a collaborative ecosystem that accelerates blockchain adoption in genomics. Venture capital investment fuels the growth of genomics-focused start-ups that are developing blockchain solutions. These start-ups contribute to the development of new platforms, tools, and applications, increasing the overall demand for blockchain technology. Investment in blockchain technology enables the streamlining of clinical trials, data sharing, and research collaboration. This leads to more efficient and cost-effective research efforts in genomics. Increasing investments from private players and venture capitalists are contributing to the growth of the Blockchain in Genomic Data Management Market. Recent developments in this field, such as strategic partnerships involving pharmaceutical companies and government bodies, as well as investments from venture capital and other stakeholders, indicate the growing acceptance of blockchain platforms for the storage and management of genetic information in the healthcare industry. These collective efforts will significantly drive the market's growth in the years to come.

Key Market Challenges

Regulatory Challenges

The use of blockchain technology in genomics presents several regulatory challenges that need to be addressed to ensure compliance with existing laws and ethical standards. These challenges stem from the unique nature of genomic data, data privacy concerns, data ownership, and the decentralized nature of blockchain. Genomic data is highly sensitive and personal. Regulatory frameworks, such as the General Data Protection Regulation (GDPR) in the European Union, require strict adherence to data privacy principles. Ensuring that individuals provide informed and explicit consent for their data to be stored, shared, and used on the blockchain is a significant challenge. Blockchain's decentralized nature challenges traditional concepts of data ownership. Determining who has control over genomic data stored on the blockchain and how individuals can assert their rights over their data is a regulatory hurdle. Integrating blockchain into existing regulatory frameworks designed for centralized systems can be difficult. Regulators must adapt or create new regulations that accommodate the unique characteristics of blockchain technology.

Key Market Trends

Innovations in Technology

Innovation in blockchain technology within the field of genomics has the potential to significantly boost its demand in the future by addressing existing challenges, enhancing data management, improving research collaboration, and enabling new possibilities for personalized medicine. Innovative blockchain solutions can offer even stronger data security and privacy features, assuaging concerns about the safe storage and sharing of sensitive genomic data. This can encourage more individuals to contribute their data for research and clinical purposes. Blockchain innovations can introduce advanced consent management and data ownership mechanisms. Individuals will have greater control over their genetic data, leading to increased willingness to participate in research initiatives. Innovative blockchain platforms can facilitate secure cross-border data sharing and collaboration among researchers and institutions. This can accelerate the pace of genomics research by allowing global participation and knowledge exchange. As blockchain technology continues to evolve and new innovations emerge, the demand for its integration in genomics is likely to grow. These innovations can address critical concerns, unlock new research opportunities, and ultimately lead to improved patient care, driving the adoption and utilization of blockchain technology in the field of genomics.

Key Market Player

    • Oxford Nanopore Technologies Plc
  • PacBio (Pacific Biosciences of California Inc.)
  • Guardtime Ltd.
  • Agilent Technologies Inc.
  • Illumina Inc.
  • BioRad Laboratories Inc.
  • 10x Genomics Inc.
  • QIAGEN NV
  • Nebula Genomics Inc.
  • Thermo Fisher Scientific.

Report Scope:

In this report, the Global Blockchain in Genomics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Blockchain in Genomics Market, By Business Model:

  • B2B Business Model
  • B2C Business Model
  • C2B Business Model

Blockchain in Genomics Market, By Service:

  • Utility Tokens
  • Blockchain Platforms

Blockchain in Genomics Market, By Application:

  • Data Sharing & Monetization
  • Data Storage & Security
  • Automated Health Insurance

Blockchain in Genomics Market, By End User:

  • Pharmaceutical & Biotechnology Companies
  • Hospitals & Healthcare Providers
  • Research Institutes
  • Data Owners
  • Others

Blockchain in Genomics Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Blockchain in Genomics Market.

Available Customizations:

Global Blockchain in Genomics market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validations
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Blockchain in Genomics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Business Model (B2B Business Model, B2C Business Model, and C2B Business Model)
    • 5.2.2. By Service (Utility Tokens and Blockchain Platforms)
    • 5.2.3. By Application (Data Sharing & Monetization, Data Storage & Security, and Automated Health Insurance)
    • 5.2.4. By End User (Pharmaceutical & Biotechnology Companies, Hospitals & Healthcare Providers, Research Institutes, Data Owners, And Others)
    • 5.2.5. By Region
    • 5.2.6. By Company (2024)
  • 5.3. Market Map

6. North America Blockchain in Genomics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Business Model
    • 6.2.2. By Service
    • 6.2.3. By Application
    • 6.2.4. By End User
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Blockchain in Genomics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Business Model
        • 6.3.1.2.2. By Service
        • 6.3.1.2.3. By Application
        • 6.3.1.2.4. By End User
    • 6.3.2. Canada Blockchain in Genomics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Business Model
        • 6.3.2.2.2. By Service
        • 6.3.2.2.3. By Application
        • 6.3.2.2.4. By End User
    • 6.3.3. Mexico Blockchain in Genomics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Business Model
        • 6.3.3.2.2. By Service
        • 6.3.3.2.3. By Application
        • 6.3.3.2.4. By End User

7. Europe Blockchain in Genomics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Business Model
    • 7.2.2. By Service
    • 7.2.3. By Application
    • 7.2.4. By End User
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Blockchain in Genomics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Business Model
        • 7.3.1.2.2. By Service
        • 7.3.1.2.3. By Application
        • 7.3.1.2.4. By End User
    • 7.3.2. United Kingdom Blockchain in Genomics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Business Model
        • 7.3.2.2.2. By Service
        • 7.3.2.2.3. By Application
        • 7.3.2.2.4. By End User
    • 7.3.3. Italy Blockchain in Genomics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Business Model
        • 7.3.3.2.2. By Service
        • 7.3.3.2.3. By Application
        • 7.3.3.2.4. By End User
    • 7.3.4. France Blockchain in Genomics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Business Model
        • 7.3.4.2.2. By Service
        • 7.3.4.2.3. By Application
        • 7.3.4.2.4. By End User
    • 7.3.5. Spain Blockchain in Genomics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Business Model
        • 7.3.5.2.2. By Service
        • 7.3.5.2.3. By Application
        • 7.3.5.2.4. By End User

8. Asia-Pacific Blockchain in Genomics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Business Model
    • 8.2.2. By Service
    • 8.2.3. By Application
    • 8.2.4. By End User
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Blockchain in Genomics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Business Model
        • 8.3.1.2.2. By Service
        • 8.3.1.2.3. By Application
        • 8.3.1.2.4. By End User
    • 8.3.2. India Blockchain in Genomics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Business Model
        • 8.3.2.2.2. By Service
        • 8.3.2.2.3. By Application
        • 8.3.2.2.4. By End User
    • 8.3.3. Japan Blockchain in Genomics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Business Model
        • 8.3.3.2.2. By Service
        • 8.3.3.2.3. By Application
        • 8.3.3.2.4. By End User
    • 8.3.4. South Korea Blockchain in Genomics Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Business Model
        • 8.3.4.2.2. By Service
        • 8.3.4.2.3. By Application
        • 8.3.4.2.4. By End User
    • 8.3.5. Australia Blockchain in Genomics Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Business Model
        • 8.3.5.2.2. By Service
        • 8.3.5.2.3. By Application
        • 8.3.5.2.4. By End User

9. South America Blockchain in Genomics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Business Model
    • 9.2.2. By Service
    • 9.2.3. By Application
    • 9.2.4. By End User
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Blockchain in Genomics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Business Model
        • 9.3.1.2.2. By Service
        • 9.3.1.2.3. By Application
        • 9.3.1.2.4. By End User
    • 9.3.2. Argentina Blockchain in Genomics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Business Model
        • 9.3.2.2.2. By Service
        • 9.3.2.2.3. By Application
        • 9.3.2.2.4. By End User
    • 9.3.3. Colombia Blockchain in Genomics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Business Model
        • 9.3.3.2.2. By Service
        • 9.3.3.2.3. By Application
        • 9.3.3.2.4. By End User

10. Middle East and Africa Blockchain in Genomics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Business Model
    • 10.2.2. By Service
    • 10.2.3. By Application
    • 10.2.4. By End User
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Blockchain in Genomics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Business Model
        • 10.3.1.2.2. By Service
        • 10.3.1.2.3. By Application
        • 10.3.1.2.4. By End User
    • 10.3.2. Saudi Arabia Blockchain in Genomics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Business Model
        • 10.3.2.2.2. By Service
        • 10.3.2.2.3. By Application
        • 10.3.2.2.4. By End User
    • 10.3.3. UAE Blockchain in Genomics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Business Model
        • 10.3.3.2.2. By Service
        • 10.3.3.2.3. By Application
        • 10.3.3.2.4. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Oxford Nanopore Technologies Plc
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. PacBio (Pacific Biosciences of California Inc.)
  • 14.3. Guardtime Ltd.
  • 14.4. Agilent Technologies Inc.
  • 14.5. Illumina Inc.
  • 14.6. BioRad Laboratories Inc.
  • 14.7. 10x Genomics Inc.
  • 14.8. QIAGEN NV
  • 14.9. Nebula Genomics Inc.
  • 14.10. Thermo Fisher Scientific

15. Strategic Recommendations

16. About Us & Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제