시장보고서
상품코드
1796822

소매 약국 비식별화 건강 데이터 시장 : 세계 산업 규모, 점유율, 동향, 기회, 예측 - 데이터 세트 유형별, 지역별, 경쟁별 - 예측(2020-2030년)

Retail Pharmacy De-identified Health Data Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Dataset Type, By Region and Competition, 2020-2030F

발행일: | 리서치사: TechSci Research | 페이지 정보: 영문 186 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

소매 약국 비식별화 건강 데이터 세계 시장 규모는 2024년에 81억 1,000만 달러로 평가되었고, CAGR 9.09%를 나타낼 전망이며, 2030년에는 136억 9,000만 달러에 이를 것으로 예측됩니다.

세계 소매 약국 비식별화 건강 데이터 시장은 헬스케어 의사결정에 데이터 분석과 실제 증거의 채택이 증가함에 따라 크게 성장하고 있습니다. 소매 약국에서는 처방전 조제 및 일반의약품 판매 시 방대한 양의 환자 데이터가 생성되는데, 이러한 데이터를 비식별화하면 환자의 프라이버시를 보호하면서 조사 및 분석을 위한 귀중한 리소스가 될 수 있습니다. 이 데이터는 개인 맞춤형 의료를 지원하고, 의료 서비스 제공업체와 제약회사가 치료 패턴, 복약 순응도, 환자 결과를 더 잘 이해할 수 있도록 지원합니다. 금액 기준 진료 모델로 전환하면서 의료 서비스의 효과성을 평가하고 자원 배분을 최적화하기 위해 이러한 데이터의 필요성이 더욱 커지고 있습니다. 전자의무기록, 약국 관리 시스템 등 디지털 헬스 기술의 성장으로 비식별화된 데이터의 원활한 수집과 처리가 용이해지고, 다양한 이해관계자들이 데이터에 쉽게 접근할 수 있게 되었습니다.

시장 개요
예측 기간 2026-2030년
시장 규모 : 2024년 81억 1,000만 달러
시장 규모 : 2030년 136억 9,000만 달러
CAGR : 2025-2030년 9.09%
급성장 부문 에피소드 데이터/약국 처방전 청구 데이터
최대 시장 북미

시장의 새로운 트렌드로는 대규모의 복잡한 데이터 세트에서 실용적인 통찰력을 추출하기 위한 인공지능(AI)과 머신러닝 알고리즘의 통합이 꼽힙니다. 이러한 기술을 통해 환자의 행동, 약효, 부작용을 보다 정확하게 예측할 수 있으며, 임상 검사 설계 및 의료 개입을 개선할 수 있습니다. 소매 약국, 의료 서비스 제공업체, 연구기관 간의 협업을 통해 데이터 공유와 통합을 촉진하고, 비식별화된 건강 데이터의 범위와 유용성을 확대할 수 있습니다. HIPAA 및 GDPR(EU 개인정보보호규정)과 같은 데이터 프라이버시 규제는 비식별화 기술의 중요성을 강조하고 있으며, 데이터의 유용성과 환자의 기밀성 사이에서 균형을 맞추기 위해 끊임없이 진화하고 있습니다. 원격 의료와 디지털 헬스 플랫폼의 확대는 건강 데이터의 양과 다양성을 증가시켜 분석에 사용할 수 있는 데이터 세트를 풍부하게 하고 있습니다.

주요 시장 성장 촉진요인

실제 증거에 대한 수요 증가

주요 시장 과제

데이터 프라이버시 및 보안에 대한 우려

주요 시장 동향

가치 기반 케어(VBC)와 상환 모델의 성장

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 고객의 소리

제5장 세계의 소매 약국 비식별화 건강 데이터 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 데이터 세트 유형별(DSCSA 데이터, 마켓 바스켓 데이터, 사전 승인 데이터, 재고 데이터, 에피소드 데이터/약국 처방전 청구 데이터)
    • 기업별(2024년)
    • 지역별
  • 시장 맵

제6장 북미의 소매 약국 비식별화 건강 데이터 시장 전망

  • 시장 규모와 예측
  • 시장 점유율과 예측
  • 북미 : 국가별 분석
    • 미국
    • 멕시코
    • 캐나다

제7장 유럽의 소매 약국 비식별화 건강 데이터 시장 전망

  • 시장 규모와 예측
  • 시장 점유율과 예측
  • 유럽 : 국가별 분석
    • 프랑스
    • 독일
    • 영국
    • 이탈리아
    • 스페인

제8장 아시아태평양의 소매 약국 비식별화 건강 데이터 시장 전망

  • 시장 규모와 예측
  • 시장 점유율과 예측
  • 아시아태평양 : 국가별 분석
    • 중국
    • 인도
    • 한국
    • 일본
    • 호주

제9장 남미의 소매 약국 비식별화 건강 데이터 시장 전망

  • 시장 규모와 예측
  • 시장 점유율과 예측
  • 남미 : 국가별 분석
    • 브라질
    • 아르헨티나
    • 콜롬비아

제10장 중동 및 아프리카의 소매 약국 비식별화 건강 데이터 시장 전망

  • 시장 규모와 예측
  • 시장 점유율과 예측
  • 중동 및 아프리카 : 국가별 분석
    • 남아프리카공화국
    • 사우디아라비아
    • 아랍에미리트(UAE)

제11장 시장 역학

  • 성장 촉진요인
  • 과제

제12장 시장 동향과 발전

  • 인수합병(M&A)
  • 제품 출시

제13장 혼란 : 분쟁, 팬데믹, 무역장벽

제14장 Porter의 Five Forces 분석

  • 산업내 경쟁
  • 신규 참여 가능성
  • 공급업체의 힘
  • 고객의 힘
  • 대체품의 위협

제15장 경쟁 구도

  • CVS Health Corporation
  • Walgreens Boots Alliance, Inc.
  • Walmart Inc.
  • The Kroger Co.
  • Albertsons Companies, Inc.
  • UnitedHealth Group Incorporated
  • Humana Inc.
  • BrightSpring Health Services, Inc.
  • Costco Wholesale Corporation
  • Centene Corporation

제16장 전략적 제안

제17장 회사 소개 및 면책조항

LSH 25.09.01

The Global Retail Pharmacy De-identified Health Data Market was valued at USD 8.11 Billion in 2024 and is expected to reach USD 13.69 Billion by 2030 with a CAGR of 9.09%. The Global Retail Pharmacy De-identified Health Data Market is witnessing significant growth driven by the increasing adoption of data analytics and real-world evidence in healthcare decision-making. Retail pharmacies generate vast amounts of patient data during prescription dispensing and over-the-counter medication sales, which, when de-identified, becomes a valuable resource for research and analysis while preserving patient privacy. This data supports personalized medicine, enabling healthcare providers and pharmaceutical companies to better understand treatment patterns, medication adherence, and patient outcomes. The shift toward value-based care models further intensifies the need for such data to evaluate healthcare effectiveness and optimize resource allocation. Growth in digital health technologies, including electronic health records and pharmacy management systems, facilitates the seamless collection and processing of de-identified data, enhancing its accessibility for various stakeholders.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 8.11 Billion
Market Size 2030USD 13.69 Billion
CAGR 2025-20309.09%
Fastest Growing SegmentEpisodic Data/Pharmacy Rx Claims Data
Largest MarketNorth America

Emerging trends in the market include the integration of artificial intelligence (AI) and machine learning algorithms to extract actionable insights from large, complex datasets. These technologies enable more accurate predictions of patient behavior, drug efficacy, and adverse reactions, improving clinical trial designs and healthcare interventions. The increasing collaboration between retail pharmacies, healthcare providers, and research organizations fosters data sharing and aggregation, broadening the scope and utility of de-identified health data. Data privacy regulations such as HIPAA and GDPR emphasize the importance of de-identification techniques, which are continuously evolving to balance data utility with patient confidentiality. The expansion of telemedicine and digital health platforms is also contributing to the volume and diversity of health data generated, enriching the datasets available for analysis.

Key Market Drivers

Rising Demand for Real-World Evidence

The rising demand for real-world evidence (RWE) is a powerful driver of the Global Retail Pharmacy De-identified Health Data Market, as stakeholders across the healthcare spectrum seek deeper insights beyond controlled clinical environments. Pharmacy claims and dispensing data when de-identified offer invaluable visibility into actual patient medication usage, treatment adherence patterns, and health outcomes. Pharmaceutical companies utilize this data to inform regulatory submissions, post-market safety surveillance, and label expansions, supported by frameworks such as the FDA's Real-World Evidence Program. The U.S. FDA's Center for Drug Evaluation and Research (CDER) recently announced the establishment of the Center for Real-World Evidence Innovation, tasked with coordinating and promoting use of real-world data (RWD) and real-world evidence in regulatory decisions.

Health insurers and payers rely on RWE from pharmacy data to inform reimbursement decisions and design outcomes-focused payment models. Providers and payers leverage these insights for personalizing patient care, pinpointing gaps in medication adherence, and reducing preventable hospital admissions. The data's de-identified status ensures compliance with strict privacy regulations like HIPAA and GDPR, enabling wide yet secure utilization in analytics. Federal support for RWE is evident: in 2023, the FDA awarded additional U01 grants to advance the use of RWD in regulatory decision-making, reinforcing its increasing institutional reliance on real-world evidence.

As chronic conditions and specialty therapies proliferate, pharmacy-derived RWD becomes even more critical, providing continuous, real-time insight into patient outcomes across diverse populations. Enhanced analytical capabilities now enable stakeholders to extract predictive intelligence that informs drug development, population health strategies, and value-based care initiatives. This growing emphasis on real-world evidence underscores the indispensable role of de-identified pharmacy data in shaping modern healthcare decision-making.

Key Market Challenges

Data Privacy and Security Concerns

Data privacy and security concerns present a significant challenge for the Global Retail Pharmacy De-identified Health Data Market due to the sensitive nature of healthcare information, even when de-identified. Although data is stripped of personal identifiers, the risk of re-identification through advanced analytics or cross-referencing with other datasets remains a pressing issue. Stakeholders must comply with stringent regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States, the General Data Protection Regulation (GDPR) in the European Union, and other regional data protection laws that impose strict requirements on handling, storage, and sharing of health-related data. Any breach, unauthorized access, or misuse of such information can lead to legal liabilities, financial penalties, and reputational damage for organizations involved.

The rapid advancement of data analytics, artificial intelligence, and machine learning tools increases the complexity of safeguarding de-identified health data, as these technologies can unintentionally increase the likelihood of re-identification. Building and maintaining robust cybersecurity infrastructure requires significant investments, yet even well-protected systems can be vulnerable to sophisticated cyberattacks or insider threats. As retail pharmacies expand their data-sharing partnerships with pharmaceutical companies, insurers, and research institutions, the number of access points to sensitive datasets grows, compounding the risk of unauthorized data exposure. Trust among consumers, regulatory bodies, and business partners depends heavily on the ability of market participants to uphold the highest data protection standards, making privacy and security challenges a critical barrier to sustained market growth.

Key Market Trends

Growth in Value Based Care (VBC) and Reimbursement Models

Growth in Value-Based Care (VBC) and evolving reimbursement models is becoming a significant trend shaping the Global Retail Pharmacy De-identified Health Data Market. Healthcare systems worldwide are shifting from volume-driven approaches, where providers are paid based on the quantity of services delivered, to value-based frameworks that reward improved patient outcomes, cost efficiency, and care quality. Retail pharmacies are increasingly positioned as critical touchpoints in this transformation, leveraging de-identified health data to demonstrate measurable impacts on patient health and adherence. The availability of large-scale pharmacy data, including prescription fill patterns, medication adherence rates, and therapeutic outcomes, enables payers and providers to align reimbursement strategies with evidence-based performance metrics.

This shift encourages collaborative care models where retail pharmacies, physicians, and payers work together to manage chronic diseases, reduce hospital readmissions, and prevent avoidable complications. De-identified datasets help assess the effectiveness of interventions, allowing stakeholders to refine care pathways and allocate resources more efficiently. The integration of this data into VBC initiatives also drives innovation in patient engagement, targeted medication management programs, and real-time performance monitoring. As reimbursement models continue to prioritize cost savings and improved patient outcomes, demand for de-identified pharmacy data is set to accelerate, reinforcing its strategic importance in value-based healthcare ecosystems.

Key Market Players

  • CVS Health Corporation
  • Walgreens Boots Alliance, Inc.
  • Walmart Inc.
  • The Kroger Co.
  • Albertsons Companies, Inc.
  • UnitedHealth Group Incorporated
  • Humana Inc.
  • BrightSpring Health Services, Inc.
  • Costco Wholesale Corporation
  • Centene Corporation

Report Scope:

In this report, the Global Retail Pharmacy De-identified Health Data Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Retail Pharmacy De-identified Health Data Market, By Dataset Type:

  • DSCSA Data
    • By Buyer Type
      • Pharmaceutical Manufacturers
      • Drug Distributors
      • Regulatory Tech Vendors
      • Healthcare SaaS Vendors
      • Others
  • Market Basket Data
    • By Buyer Type
      • CPG & Pharma Brands
      • Marketing & AdTech Firms
      • Health Insurers & PBMs
      • Retail Analytics Platforms
      • Others
  • Prior Authorization Data
    • By Buyer Type
      • Payers & PBMs
      • Pharma Market Access Teams
      • Health IT Providers
      • Consulting & Policy Firms
      • Others
  • Inventory Data
    • By Buyer Type
      • Pharma Manufacturers
      • Distributors/Wholesalers
      • AI/ML Inventory Optimization Vendors
      • Others
  • Episodic Data/Pharmacy Rx Claims Data
    • By Buyer Type
      • Value-based Payers & ACOs
      • Pharma Outcomes Teams
      • Real-world Evidence Vendors
      • CMS & Government Organizations
      • Others

Retail Pharmacy De-identified Health Data Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Retail Pharmacy De-identified Health Data Market.

Available Customizations:

Global Retail Pharmacy De-identified Health Data Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Retail Pharmacy De-identified Health Data Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Dataset Type (DSCSA Data, Market Basket Data, Prior Authorization Data, Inventory Data, Episodic Data/Pharmacy Rx Claims Data)
    • 5.2.2. By Company (2024)
    • 5.2.3. By Region
  • 5.3. Market Map

6. North America Retail Pharmacy De-identified Health Data Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Dataset Type
    • 6.2.2. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Retail Pharmacy De-identified Health Data Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Dataset Type
    • 6.3.2. Mexico Retail Pharmacy De-identified Health Data Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Dataset Type
    • 6.3.3. Canada Retail Pharmacy De-identified Health Data Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Dataset Type

7. Europe Retail Pharmacy De-identified Health Data Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Dataset Type
    • 7.2.2. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Dataset Type
    • 7.3.2. Germany Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Dataset Type
    • 7.3.3. United Kingdom Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Dataset Type
    • 7.3.4. Italy Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Dataset Type
    • 7.3.5. Spain Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Dataset Type

8. Asia-Pacific Retail Pharmacy De-identified Health Data Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Dataset Type
    • 8.2.2. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Dataset Type
    • 8.3.2. India Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Dataset Type
    • 8.3.3. South Korea Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Dataset Type
    • 8.3.4. Japan Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Dataset Type
    • 8.3.5. Australia Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Dataset Type

9. South America Retail Pharmacy De-identified Health Data Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Dataset Type
    • 9.2.2. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Retail Pharmacy De-identified Health Data Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Dataset Type
    • 9.3.2. Argentina Retail Pharmacy De-identified Health Data Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Dataset Type
    • 9.3.3. Colombia Retail Pharmacy De-identified Health Data Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Dataset Type

10. Middle East and Africa Retail Pharmacy De-identified Health Data Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Dataset Type
    • 10.2.2. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Retail Pharmacy De-identified Health Data Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Dataset Type
    • 10.3.2. Saudi Arabia Retail Pharmacy De-identified Health Data Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Dataset Type
    • 10.3.3. UAE Retail Pharmacy De-identified Health Data Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Dataset Type

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Disruptions: Conflicts, Pandemics and Trade Barriers

14. Porters Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. CVS Health Corporation
    • 15.1.1. Business Overview
    • 15.1.2. Company Snapshot
    • 15.1.3. Products & Services
    • 15.1.4. Financials (As Reported)
    • 15.1.5. Recent Developments
    • 15.1.6. Key Personnel Details
    • 15.1.7. SWOT Analysis
  • 15.2. Walgreens Boots Alliance, Inc.
  • 15.3. Walmart Inc.
  • 15.4. The Kroger Co.
  • 15.5. Albertsons Companies, Inc.
  • 15.6. UnitedHealth Group Incorporated
  • 15.7. Humana Inc.
  • 15.8. BrightSpring Health Services, Inc.
  • 15.9. Costco Wholesale Corporation
  • 15.10. Centene Corporation

16. Strategic Recommendations

17. About Us & Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제