½ÃÀ庸°í¼­
»óǰÄÚµå
1591740

¼¼°èÀÇ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀå : ÇöȲ ºÐ¼® ¹× ¿¹Ãø(2024-2032³â)

Large Language Model Market: Current Analysis and Forecast (2024-2032)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: UnivDatos Market Insights Pvt Ltd | ÆäÀÌÁö Á¤º¸: ¿µ¹® 155 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀå ±Ô¸ð´Â ¾à 33.8%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̴ Ŭ¶ó¿ìµå ±â¹Ý AI ¼­ºñ½º(AWS, Google Cloud, Azure AI µî)ÀÇ È®»êÀ¸·Î LLMÀÇ È®Àå °¡´ÉÇÑ ¹èÆ÷ ¹× ÈÆ·ÃÀÌ °¡´ÉÇØÁ® ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú±â ¶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ¾÷°è ³» R&D, ÅõÀÚ, Á¦Ç° ¹ßÀü, Çù¾÷ÀÇ Áõ°¡°¡ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®´Â 2023³â 12¿ù ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM)À» Ȱ¿ëÇÑ ÀÚµ¿ µ¥ÀÌÅÍ Å½»ö ½Ã½ºÅÛÀÎ ÀλçÀÌÆ® ÆÄÀÏ·µ(InsightPilot)À» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ Çõ½ÅÀûÀÎ ½Ã½ºÅÛÀº µ¥ÀÌÅÍ Å½»ö ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϱâ À§ÇØ Æ¯º°È÷ ¼³°èµÈ °ÍÀ¸·Î, ÀλçÀÌÆ®ÆÄÀÏ·µÀº µ¥ÀÌÅÍ Å½»öÀ» °£¼ÒÈ­Çϱâ À§ÇØ ¼¼½ÉÇÏ°Ô ¼³°èµÈ ÀÏ·ÃÀÇ ºÐ¼® ÀÛ¾÷À» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÚ¿¬¾î Áú¹®ÀÌ Á¦½ÃµÇ¸é InsightPilotÀº LLM°ú ÅëÇÕÇÏ¿© ÀÏ·ÃÀÇ ºÐ¼® ÀÛ¾÷À» ¼öÇàÇÏ¿© µ¥ÀÌÅÍ Å½»ö°ú °¡Ä¡ ÀÖ´Â ÀλçÀÌÆ® »ý¼ºÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù.

¸ðµ¨ ±Ô¸ð¿¡ µû¶ó ½ÃÀåÀº 10¾ï ÆÄ¶ó¹ÌÅÍ ¹Ì¸¸, 10¾ï-100¾ï ÆÄ¶ó¹ÌÅÍ, 100¾ï-500¾ï ÆÄ¶ó¹ÌÅÍ, 500¾ï-1,000¾ï ÆÄ¶ó¹ÌÅÍ, 1,000¾ï-2,000¾ï ÆÄ¶ó¹ÌÅÍ, 2,000¾ï-5,000¾ï ÆÄ¶ó¹ÌÅÍ, 5,000¾ï ÀÌ»óÀÇ ÆÄ¶ó¹ÌÅÍ·Î ±¸ºÐµË´Ï´Ù. ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ½ÃÀå¿¡¼­ 10¾ï ¸Å°³º¯¼ö ¹Ì¸¸ Ä«Å×°í¸®´Â ÄÄÇ»ÆÃ ¸®¼Ò½º°¡ Á¦ÇÑµÈ ±â¾÷µé¿¡°Ô º¸´Ù Á¢±ÙÇϱ⠽±°í ºñ¿ë È¿À²ÀûÀÌ¸ç °¡º±°í È¿À²ÀûÀÎ ¸ðµ¨À» Á¦°øÇÔÀ¸·Î½á °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇü ¸ðµ¨Àº ó¸® ½Ã°£À» ´ÜÃàÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ¾î ½Ç½Ã°£ ¾ÖÇø®ÄÉÀ̼Ç, ¿§Áö ÄÄÇ»ÆÃ, ¼Ò±Ô¸ð ±â¾÷¿¡ ÀûÇÕÇÕ´Ï´Ù. ¿¡³ÊÁö ¼Òºñ°¡ Àû°í ƯÁ¤ ÀÛ¾÷¿¡ ´ëÇÑ ¹Ì¼¼ Á¶Á¤ÀÌ °¡´ÉÇϱ⠶§¹®¿¡ ƯÈ÷ È®À强°ú ºü¸¥ µµÀÔÀÌ Áß¿äÇÑ »ê¾÷¿¡¼­ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­´Â ¿ëµµº°·Î °í°´ ¼­ºñ½º, ÄÁÅÙÃ÷ »ý¼º, °¨Á¤ ºÐ¼®, ÄÚµå »ý¼º, ¾ð¾î ¹ø¿ª, ±âŸ·Î ±¸ºÐµË´Ï´Ù. ÀÌ Áß °í°´ ¼­ºñ½º ºÎ¹®Àº ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. 꺿À̳ª °¡»ó ºñ¼­ °°Àº Áö´ÉÇü ´ëÈ­Çü AI ¼Ö·ç¼ÇÀ» ÅëÇØ ±â¾÷ÀÌ °í°´°úÀÇ °ü°è¸¦ °³¼±ÇÏ´Â µ¥ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ '°í°´ ¼­ºñ½º' Ä«Å×°í¸®°¡ ¿ìÀ§¸¦ Á¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ LLMÀº °í°´ÀÇ Áú¹®°ú ¿ì·Á¸¦ ÇØ°áÇϰí, ¹®Á¦¸¦ ÇØ°áÇϰí, ´Ù¾çÇÑ ¹Ìµð¾î ÇüÅ·ΠÁï°¢ÀûÀÎ Áö¿øÀ» Á¦°øÇÕ´Ï´Ù. È­ÇÐÁ¦Ç° °ø±Þ¾÷ü´Â ÇÊ¿äÇÑ È°µ¿À» °£¼ÒÈ­Çϰí, ´ëÀÀ Á¤È®µµ¸¦ ³ôÀ̰í, ºñ¿ëÀ» ÃÖ¼ÒÈ­Çϸç, 24½Ã°£ ¿¬Áß¹«ÈÞ·Î ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ °í°´ ¼­ºñ½º °­È­¿¡ ÀÖ¾î AIÀÇ ÀáÀç·ÂÀ» ÆÄ¾ÇÇÏ´Â Á¶Á÷ÀÌ ´Ã¾î³²¿¡ µû¶ó ÀÌ ºÐ¾ß¸¦ Àü¹®À¸·Î ÇÏ´Â LLM¿¡ ´ëÇÑ ¼ö¿ä´Â ³ôÀº ¼öÁØÀ¸·Î À¯ÁöµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

½ÃÀåÀº ¾ç½Ä¿¡ µû¶ó ÅØ½ºÆ®, ÄÚµå, À̹ÌÁö, µ¿¿µ»óÀ¸·Î ±¸ºÐµË´Ï´Ù. ±× Áß¿¡¼­µµ ÅØ½ºÆ® ºÎ¹®Àº ¹®Àå ÀÛ¼º, °¨Á¤ ºÐ¼®, ¹®Àå ¿ä¾à, ¹ø¿ª µî ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ½ÃÀåÀÇ ÁÖ¿ä °ßÀÎÂ÷ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ È¿À²¼ºÀ» ³ôÀ̰í ÀÎÁöÀû »óÈ£ÀÛ¿ëÀ» °³¼±ÇÏ¸ç ¼öÀÍÀ» âÃâÇϱâ À§ÇØ ÅØ½ºÆ® ºÐ¼®°ú °°Àº Ȱµ¿Àº ²ÙÁØÈ÷ LLMÀ¸·Î ¿ÀÇÁ·ÎµåµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµÀÇ Áõ°¡´Â ¸¶ÄÉÆÃ, Àú³Î¸®Áò, °í°´ ¼­ºñ½º µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ LLMÀÇ »ç¿ëÀ» Áõ°¡½Ãų »Ó¸¸ ¾Æ´Ï¶ó, ¸ðµ¨ÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» Çâ»ó½ÃÄÑ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷º°·Î´Â BFSI, IT/ITeS, ¼Ò¸Å/Á¦Á¶, ¹Ìµð¾î/¿£ÅÍÅ×ÀÎ¸ÕÆ®, ±âŸ·Î ±¸ºÐµË´Ï´Ù. ƯÈ÷ BFSI(ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè) ºÎ¹®Àº °í°´ Áö¿ø, »ç±â ½Äº°, ±ÔÁ¤ Áؼö¿¡ NLP°¡ Ȱ¿ëµÇ°í ÀÖ¾î ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ÀÇ ÁÖ¿ä ½ÃÀå Áß ÇϳªÀÔ´Ï´Ù. BFSI Á¶Á÷Àº NLPÀÇ ´É·ÂÀ» Ȱ¿ëÇÏ¿© ¹æ´ëÇÑ ¾çÀÇ ºñÁ¤Çü µ¥ÀÌÅÍ¿¡¼­ ÀλçÀÌÆ®¸¦ ã°í, ÅõÀÚ ¹× ÀúÃà¿¡ ´ëÇÑ ÄÁ¼³ÆÃ ¼­ºñ½º¸¦ Á¦°øÇϰí, ½ÃÀå ½É¸®¸¦ ÅëÇØ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÑ AI Ȱ¿ëÀÇ Áõ°¡´Â »ý»ê¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ºÎ°¡°¡Ä¡°¡ ³ôÀº ¼ÒºñÀÚ °æÇèÀ» °³¹ßÇϰí ÀÌ ºÐ¾ß¿¡¼­ LLM ±â¼úÀÇ Ã¤ÅÃÀ» Áõ°¡½ÃÄÑ ÀÌ ½ÃÀåÀÇ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀÔ´Ï´Ù.

´ë±Ô¸ð ¾ð¾î ¸ðµ¨ÀÇ ½ÃÀå µµÀÔ¿¡ ´ëÇÑ ÀÌÇØ¸¦ µ½±â À§ÇØ ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ±âŸ ºÏ¹Ì), À¯·´(µ¶ÀÏ, ¿µ±¹, ÇÁ¶û½º, ÇÁ¶û½º, ½ºÆäÀÎ, ÀÌÅ»¸®¾Æ, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç) ¹× ±âŸ Áö¿ª ¼¼°è ½ÃÀå ÇöȲÀ» ±âÁØÀ¸·Î ½ÃÀåÀ» ºÐ¼®ÇÕ´Ï´Ù. ±× Áß¿¡¼­µµ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ½ÃÀåÀº E-Commerce, ±ÝÀ¶, ÇコÄɾî, ±³À° ºÐ¾ß µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ÀΰøÁö´ÉÀÇ È°¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ³î¶ó¿î ¼ºÀå·üÀ» º¸À̰í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Áß±¹, Àεµ, ÀϺ»Àº AI R&D, Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î¿¡ ¸¹Àº ÀÚ¿øÀ» ÅõÀÔÇϰí ÀÖÀ¸¸ç, LLM ½ÃÀåÀÇ ¼±±¸ÀÚÀÌÀÚ Âü¿©ÀÚÀ̸ç, LLMÀº ¼ºÀå Ãß¼¼, ƯÁ¤ Áö¿ª ¾ð¾î ¹× ¹æ¾ð¿¡ ÃÊÁ¡À» ¸ÂÃß°í ´Ù±¹¾î ¸ðµ¨·Î Á¦°øµÇ°í ÀÖÀ¸¸ç, AI °³¹ß äÅà ¹× Á¤ºÎ Àå·Á¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. AI ¼ö¸³À» À§ÇÑ Ã¤Åðú Á¤ºÎ Àå·Á¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±â¼ú ºÐ¾ßÀÇ ¼ºÀå, Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÏ´Â µðÁöÅÐ °æÁ¦, ÀÚµ¿È­ÀÇ Çʿ伺, ºñÁî´Ï½ºÀÇ °í°´ Âü¿©´Â ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

ÀÌ ½ÃÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä ±â¾÷À¸·Î´Â NVIDIA Corporation, Alibaba Group Holding Limited, Amazon.com, Inc., Baidu Research, Google LLC, Meta, Microsoft, OpenAI, Tencent, and YANDEX LLC µîÀÌ ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¼Ò°³

  • ½ÃÀå Á¤ÀÇ
  • ÁÖ¿ä ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • Á¦ÇÑ»çÇ×

Á¦2Àå Á¶»ç ¹æ¹ý ¶Ç´Â °¡Á¤

  • Á¶»ç °úÁ¤
  • Á¶»ç ¹æ¹ý
  • ÀÀ´äÀÚ ÇÁ·ÎÆÄÀÏ

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ¾÷°è ¿ä¾à
  • ºÎ¹®º° Àü¸Á
    • ½ÃÀå ¼ºÀåÀÇ °­Á¡
  • Áö¿ª Àü¸Á

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ±âȸ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • µ¿Çâ
  • PESTEL ºÐ¼®
  • ¼ö¿äÃø ºÐ¼®
  • °ø±ÞÃø ºÐ¼®
    • ÀμöÇÕº´
    • Çù¾÷¡¤ÅõÀÚ¿Í ½Ã³ª¸®¿À
    • ¾÷°è ÀλçÀÌÆ® : ÁÖ¿ä ½ºÅ¸Æ®¾÷ ±â¾÷°ú ±× µ¶ÀÚÀûÀÎ Àü·«

Á¦5Àå °¡°Ý ºÐ¼®

  • Áö¿ª °¡°Ý ºÐ¼®
  • °¡°Ý¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎ

Á¦6Àå ¼¼°èÀÇ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ½ÃÀå ¸ÅÃâ(2022-2032³â)

Á¦7Àå ½ÃÀå ÀλçÀÌÆ® : ¸ðµ¨ »çÀÌÁ

  • 10¾ï ÆÄ¶ó¹ÌÅÍ ¹Ì¸¸
  • 10¾ï-100¾ï ÆÄ¶ó¹ÌÅÍ
  • 100¾ï-500¾ï ÆÄ¶ó¹ÌÅÍ
  • 500¾ï-1,000¾ï ÆÄ¶ó¹ÌÅÍ
  • 1,000¾ï-2,000¾ï ÆÄ¶ó¹ÌÅÍ
  • 2,000¾ï-5,000¾ï ÆÄ¶ó¹ÌÅÍ
  • 5,000¾ï ÆÄ¶ó¹ÌÅÍ ÀÌ»ó

Á¦8Àå ½ÃÀå ÀλçÀÌÆ® : ¿ëµµº°

  • °í°´ ¼­ºñ½º
  • ÄÁÅÙÃ÷ »ý¼º
  • °¨¼º ºÐ¼®
  • ÄÚµå »ý¼º
  • ¾ð¾î ¹ø¿ª
  • ±âŸ

Á¦9Àå ½ÃÀå ÀλçÀÌÆ® : ¸ð´Þ¸®Æ¼º°

  • ÅØ½ºÆ®
  • ÄÚµå
  • ¿µ»ó
  • ºñµð¿À

Á¦10Àå ½ÃÀå ÀλçÀÌÆ® : ¾÷°èº°

  • BFSI
  • IT/ITeS
  • ¼Ò¸Å¡¤Á¦Á¶
  • ¹Ìµð¾î¡¤¿À¶ô
  • ±âŸ

Á¦11Àå ½ÃÀå ÀλçÀÌÆ® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ±âŸ ºÏ¹Ì
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¼¼°è ±âŸ Áö¿ª

Á¦12Àå ¹ë·ùüÀÎ ºÐ¼®

  • ÇÑ°è ºÐ¼®
  • ½ÃÀå ÁøÃâ ±â¾÷ ¸®½ºÆ®

Á¦13Àå °æÀï »óȲ

  • °æÀï ´ë½Ãº¸µå
  • °æÀï ½ÃÀå Æ÷Áö¼Å´× ºÐ¼®
  • Porter's Five Forces ºÐ¼®

Á¦14Àå ±â¾÷ °³¿ä

  • NVIDIA Corporation
    • ±â¾÷ °³¿ä
    • ÁÖ¿ä À繫
    • SWOT ºÐ¼®
    • Á¦Ç° Æ÷Æ®Æú¸®¿À
    • ÃÖ±ÙÀÇ ¹ßÀü
  • Alibaba Group Holding Limited
  • Amazon.com, Inc.
  • Baidu Research
  • Google LLC
  • Meta
  • Microsoft
  • OpenAI
  • Tencent
  • YANDEX LLC

Á¦15Àå µÎ¹®ÀÚ¾î¿Í °¡Á¤

Á¦16Àå ºÎ·Ï

ksm 24.11.27

The large language model LLM market is the global industry of Large Language Models being developed, deployed, or used to process and generate natural language text. Currently, pre-trained LLMs like GPT and BERT are applied to several NLP activities, for instance, content creation, customer support, and language translation. The market is growing at a fast pace due to the rising curiosity of AI in numerous fields such as - healthcare, banking & finance, and the electronic business sector. The factors responsible for the growth are the improved algorithms of deep learning, enhanced accessibility of infrastructures of cloud computing, raised investments in AI research, and the necessity of solutions to process the massive amount of data. This expansion is further driven by using advanced communication systems mainly from enterprises in an endeavor to improve customers' engagement and operations.

The large language model market is set to show a growth rate of about 33.8%. This is due to the widespread availability of cloud-based AI services (like AWS, Google Cloud, and Azure AI) enables the scalable deployment and training of LLMs, making them accessible to businesses of all sizes. Also, increasing R&D, investment, product advancements, and collaborations in this industry drive the Large Language Model market. For instance, in December 2023, Microsoft Corporation launched InsightPilot, an automated data exploration system powered by a Large Language Model (LLM). This innovative system is specifically designed to simplify the data exploration process. InsightPilot incorporates a set of meticulously designed analysis actions aimed at simplifying the exploration of data. When presented with a natural language question, InsightPilot integrates with the LLM to execute a sequence of analysis actions, facilitating the exploration of data and the generation of valuable insights.

Based on Model Size, the market is segmented into Below 1 billion Parameters, 1 billion to 10 billion Parameters, 10 billion to 50 billion Parameters, 50 billion to 100 billion Parameters, 100 billion to 200 billion Parameters, 200 billion to 500 billion Parameters, and Above 500 billion Parameters. The Below 1 billion Parameters category is expected to have the largest market share of the Large Language Model market by offering lightweight, efficient models that are more accessible and cost-effective for businesses with limited computational resources. These smaller models provide faster processing times and reduced operational costs, making them ideal for real-time applications, edge computing, and smaller-scale enterprises. Their lower energy consumption and fine-tuning ability for specific tasks allow widespread adoption across industries, particularly where scalability and quick deployment are critical.

Based on the application, the market is segmented into customer service, content generation, sentiment analysis, code generation, language translation, and others. Among these, the customer service segment is a key driver of the large language model market. Due to the dominance of the "Customer Service" category as it helps businesses improve customer relations through intelligent conversational AI solutions like chatbots and virtual assistants. These LLMs solve questions and concerns from customers, fix problems, and offer immediate assistance on different media forms. Chemical supplier firms can streamline required activities, enhance response accuracy, minimize costs, and be available 24/7, therefore, achieving higher customer retention and loyalty. Thus, the demand for LLMs specializing in this field will remain high as more organizations grasp the potential of AI in enhancing customer service.

Based on the modality, the market is segmented into text, code, image, and video. Among these, the text segment is a key driver of the large language model market by enabling diverse applications such as writing, emotional analysis, text summarization, and translation. Activities such as text analysis are steadily being offloaded to LLMs as firms seek to gain efficiencies, improve cognitive interactions, and drive profits which is why advanced text analysis is on an upward trajectory. This increase in applications not only increases the use of LLMs in various industries including marketing, journalism, and customer service but also fuels advancements in model accuracy and efficiency, therefore driving the growth of the market.

Based on the industry vertical, the market is segmented into BFSI, IT/ITeS, retail and manufacturing, media & entertainment, and others. Among these, The BFSI (Banking, Financial Services, and Insurance) sector is also one of the primary markets for the Large Language Model as it uses it in customer support, fraud identification, and compliance. By employing NLP capacities, BFSI organizations can discover insights into huge volumes of unstructured data, offer consultancy services on investiture and saving, and cut risk via sentiments of the market. This rise in the use of AI to solve these problems not only increases the productivity of the power line but also develops value-added consumer experiences, enabling the increased adoption of LLM technologies in this sector to influence the growth of this market.

For a better understanding of the market adoption of the large language model, the market is analyzed based on its worldwide presence in countries such as North America (U.S., Canada, and the Rest of North America), Europe (Germany, U.K., France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. Among these, The Asia-Pacific Large Language Model (LLM) market is growing at an astonishing rate primarily due to the increasing use of artificial intelligence in different industry sectors including e-commerce, finance, healthcare, and education sectors. China, India, and Japan, for example, are earmarking large proportions of their resources for AI research and development, hardware, and software, and as pioneers and partakers in the LLM market. Getting down to the growing trends, specific regional languages, and dialects, LLM has been made available in multilingual models which are helping in the adoption and the government's encouragement towards AI formulations. The growth of the technology sector in the region, the continuously growing digital economy, the need for automation, and customer engagement in businesses are the drivers for market growth.

Some major players running in the market include NVIDIA Corporation; Alibaba Group Holding Limited; Amazon.com, Inc.; Baidu Research; Google LLC; Meta; Microsoft; OpenAI; Tencent; and YANDEX LLC

TABLE OF CONTENTS

1.MARKET INTRODUCTION

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.RESEARCH METHODOLOGY OR ASSUMPTION

  • 2.1. Research Process of the Global Large Language Model Market
  • 2.2. Research Methodology of the Global Large Language Model Market
  • 2.3. Respondent Profile

3.EXECUTIVE SUMMARY

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
    • 3.2.1. Market Growth Intensity
  • 3.3. Regional Outlook

4.MARKET DYNAMICS

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. PESTEL Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Collaboration & Investment and Scenario
    • 4.7.3. Industry Insights: Leading Startups and Their Unique Strategies

5.PRICING ANALYSIS

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.GLOBAL LARGE LANGUAGE MODEL MARKET REVENUE (USD BN), 2022-2032F

7.MARKET INSIGHTS BY MODEL SIZE

  • 7.1. Below 1 billion Parameters
  • 7.2. 1 billion to 10 billion Parameters
  • 7.3. 10 billion to 50 billion Parameters
  • 7.4. 50 billion to 100 billion Parameters
  • 7.5. 100 billion to 200 billion Parameters
  • 7.6. 200 billion to 500 billion Parameters
  • 7.7. Above 500 billion Parameters

8.MARKET INSIGHTS BY APPLICATION

  • 8.1. Customer Service
  • 8.2. Content Generation
  • 8.3. Sentiment Analysis
  • 8.4. Code Generation
  • 8.5. Language Translation
  • 8.6. Others

9.MARKET INSIGHTS BY MODALITY

  • 9.1. Text
  • 9.2. Code
  • 9.3. Image
  • 9.4. Video

10.MARKET INSIGHTS BY INDUSTRY VERTICAL

  • 10.1. BFSI
  • 10.2. IT/ITeS
  • 10.3. Retail and Manufacturing
  • 10.4. Media & Entertainment
  • 10.5. Other

11.MARKET INSIGHTS BY REGION

  • 11.1. North America
    • 11.1.1. U.S.
    • 11.1.2. Canada
    • 11.1.3. Rest of North America
  • 11.2. Europe
    • 11.2.1. Germany
    • 11.2.2. U.K.
    • 11.2.3. France
    • 11.2.4. Italy
    • 11.2.5. Spain
    • 11.2.6. Rest of Europe
  • 11.3. Asia-Pacific
    • 11.3.1. China
    • 11.3.2. Japan
    • 11.3.3. India
    • 11.3.4. Rest of Asia-Pacific
  • 11.4. Rest of World

12.VALUE CHAIN ANALYSIS

  • 12.1. Marginal Analysis
  • 12.2. List of Market Participants

13.COMPETITIVE LANDSCAPE

  • 13.1. Competition Dashboard
  • 13.2. Competitor Market Positioning Analysis
  • 13.3. Porter Five Forces Analysis

14.COMPANY PROFILED

  • 14.1. NVIDIA Corporation
    • 14.1.1. Company Overview
    • 14.1.2. Key Financials
    • 14.1.3. SWOT Analysis
    • 14.1.4. Product Portfolio
    • 14.1.5. Recent Developments
  • 14.2. Alibaba Group Holding Limited
  • 14.3. Amazon.com, Inc.
  • 14.4. Baidu Research
  • 14.5. Google LLC
  • 14.6. Meta
  • 14.7. Microsoft
  • 14.8. OpenAI
  • 14.9. Tencent
  • 14.10. YANDEX LLC

15.ACRONYMS & ASSUMPTION

16.ANNEXURE

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦