½ÃÀ庸°í¼­
»óǰÄÚµå
1615125

¾î´ðƼºê AI ½ÃÀå : ÇöȲ ºÐ¼®°ú ¿¹Ãø(2024-2032³â)

Adaptive AI Market: Current Analysis and Forecast (2024-2032)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: UnivDatos Market Insights Pvt Ltd | ÆäÀÌÁö Á¤º¸: ¿µ¹® 155 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¾î´ðƼºê AI ½ÃÀåÀº ¿¹Ãø ±â°£(2024-2032³â) µ¿¾È 44%ÀÇ ³ôÀº ¿¬Æò±Õ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÐ¾ß´Â ¸Ó½Å·¯´×°ú µ¥ÀÌÅÍ Ã³¸®ÀÇ °³¼±À¸·Î ÀÎÇØ Á¶Á÷¿¡¼­ ÀûÀÀÇü AIÀÇ È°¿ëÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ Á¶Á÷Àº Çǵå¹é ·çÇÁ¿Í Áö¼ÓÀûÀÎ ÇнÀ ÆÐ·¯´ÙÀÓÀ» Ȱ¿ëÇÏ¿© ƯÈ÷ ±ÝÀ¶, ÀÇ·á, E-Commerce µî ½Å¼ÓÇÏ°í °³º°È­µÈ Á¶Ä¡¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷¿¡¼­ AI Ȱ¿ëÀ» Á¶Á¤Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2021³â 11¿ù 18ÀÏ, ÅëÈ­ ¼º´É °ü¸® Ŭ¶ó¿ìµåÀÇ ¼±µÎÁÖÀÚÀÎ Hiya´Â Hiya Protect¿¡ ÀûÀÀÇü AI¸¦ Ãß°¡ÇÏ¿© ¹üÁËÀÚ¸¦ ½Ç½Ã°£À¸·Î ã¾Æ³»¾î Â÷´ÜÇÏ´Â ÃÖÃÊÀÇ ÀÚ°¡ ÇнÀ ½Ã½ºÅÛÀÎ Hiya Protect¸¦ Ãß°¡Çß´Ù°í ¹àÇû½À´Ï´Ù.

ÀÌ ½ÃÀåÀº ÄÄÆ÷³ÍÆ®º°·Î Ç÷§Æû°ú ¼­ºñ½º·Î ±¸ºÐµË´Ï´Ù. Ç÷§ÆûÀº AI °³¹ß ¹× ±¸Çö ÀÚµ¿È­¸¦ Áö¿øÇÏ´Â ÁýÁßÀûÀÎ ¼­ºñ½º¸¦ Á¦°øÇϹǷΠ2023³â ½ÃÀå¿¡¼­ Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº µ¥ÀÌÅÍ Ã³¸®, ¸ðµ¨¸µ, ÀûÀÀÇü AI ¹èÆ÷¸¦ À§ÇÑ ´Ù¾çÇÑ ±â¼úÀ» Á¦°øÇÏ¿© ±â¾÷ÀÌ ÀûÀÀÇü AI ÇÁ·ÎÁ§Æ®¸¦ È¿°úÀûÀ¸·Î °¨µ¶ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¿¹¸¦ µé¾î Profile Software´Â 2024³â 3¿ù 7ÀÏ »õ·Î¿î 'AI.Adaptive' ¼Ö·ç¼ÇÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ ¼Ö·ç¼ÇÀº Generative AI¿Í LLM(Large Language Models)ÀÇ ÀΰøÁö´É ±â¼úÀ» ÅëÇÕÇÏ¿© µ¥ÀÌÅͺ£À̽º ¹× ¿ëµµ°ú ÀÚ¿¬ ¾ð¾î¿¡ ´ëÇÑ »ç¿ëÀÚ »óÈ£ ÀÛ¿ëÀ» °£¼ÒÈ­ÇÏ°í ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ ¼Ö·ç¼ÇÀº LLM¿¡ ±¸¾Ö¹ÞÁö ¾Ê´Â Àü·«À» äÅÃÇÏ¿© ProfileÀÇ Axia Suite, Finuevo Suite, Acumen.plus, Centevo Suite, RiskAvert, RegiStar Ç÷§Æû°ú Á÷Á¢ÀûÀ̰í À¯¿¬ÇÑ »óÈ£ ÀÛ¿ëÀÌ °¡´ÉÇÕ´Ï´Ù. °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

±â¼úº°·Î ½ÃÀåÀº ¸Ó½Å·¯´×(ML), ÀÚ¿¬ ¾ð¾î ó¸®(NLP), ÄÄÇ»ÅÍ ºñÀü, µö·¯´×, °­È­ÇнÀ, ±âŸ·Î ±¸ºÐµË´Ï´Ù. ¸Ó½Å·¯´×Àº ¿¹Ãø ±â°£(2024-2032³â) µ¿¾È ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Çö´ë ±â¾÷ÀÌ »õ·Î¿î µ¥ÀÌÅͷκÎÅÍ ÇнÀÇÒ ¼ö ÀÖ´Â °­È­ ÇнÀ ¸ðµ¨À» µµÀÔÇÏ¿© ¿¹Ãø ¹× ¹ÝÀÀ ½Ã°£À» °³¼±ÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ±â¾÷Àº TensorFlow¿Í PyTorch¸¦ ML ÇÁ·¹ÀÓ¿öÅ©·Î »ç¿ëÇϰí ÀÖÀ¸¸ç, TensorFlow¿Í PyTorch´Â ÁøÈ­ÇÏ´Â ÄÁÅØ½ºÆ®¿¡¼­ ÀÛµ¿ÇÏ´Â ÀûÀÀÇü AIÀÇ Áö¼ÓÀûÀÎ ÇнÀÀ» Áö¿øÇÏ¿© ÀûÀÀ¼ºÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·¹ÀÓ¿öÅ©´Â ÀÇ·á ¹× ±ÝÀ¶À» Æ÷ÇÔÇÑ ¸ðµç ºÐ¾ß¿¡¼­ Áß¿äÇÑ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î Á¦°øÇϰí Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. °í±Þ ¸Ó½Å·¯´× ¸ðµ¨À» Àû¿ëÇÔÀ¸·Î½á Á¶Á÷Àº ´õ ³ªÀº ÀλçÀÌÆ®¿Í ÀÇ»ç°áÁ¤·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

¿ëµµº°·Î ½Ç½Ã°£ ÀûÀÀÇü AI, ¿ÀÇÁ¶óÀÎ ÇнÀ ¹× ÀûÀÀ, »óȲÀÎÁö ÀûÀÀ, ÀÚÀ²Àû ÀÇ»ç°áÁ¤, ±âŸ·Î ±¸ºÐµÇ¸ç, 2023³â ½ÃÀå¿¡¼­´Â ½Ç½Ã°£ ÀûÀÀÇü AI°¡ »ó´çÇÑ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ½Ç½Ã°£ ÀûÀÀÇü AI°¡ Áï°¢ÀûÀÎ µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤À» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ¿¡ Áß¿äÇϹǷΠºü¸£°Ô º¯È­ÇÏ´Â ºÐ¾ß¿¡¼­ ÀûÀÀÇü ¼Ö·ç¼ÇÀ» µµÀÔÇÏ´Â µ¥ ¹ÚÂ÷¸¦ °¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¾ÆÅ°ÅØÃ³´Â ¼ºÀåÀ» À§ÇÑ °ÍÀ¸·Î, ±â¾÷Àº ÇöÀç ½Ç½Ã°£ ¿¡Áö ÄÄÇ»ÆÃ°ú ½ºÆ®¸®¹Ö µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀûÀÀÇü AI´Â À§ÇèÀ» ÁÙÀ̰í, °³º°ÀûÀÎ Á¢±Ù ¹æ½ÄÀ» °³¼±Çϸç, ´õ ³ªÀº °í°´ °æÇèÀ» Á¦°øÇÏ´Â µ¥ µµ¿òÀÌ µÇ¹Ç·Î ÀûÀÀÇü AI¸¦ °®Ãá ±â¼úÀº ÀÚÀ²ÁÖÇà ¹× E-Commerce¿Í °°Àº ¿ëµµ¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

ÃÖÁ¾ ¿ëµµ¿¡ µû¶ó ½ÃÀåÀº BFSI, IT ¹× Åë½Å, ÀÇ·á ¹× »ý¸í°úÇÐ, Á¦Á¶, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ¼Ò¸Å ¹× E-Commerce, ±âŸ·Î ºÐ·ùµÇ¸ç, BFSI´Â ¿¹Ãø ±â°£(2024-2032³â) µ¿¾È ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÁÖ·Î »ç±â ¹× À§Çè °¨Áö, °í°´ ¸ÂÃãÇü ¼­ºñ½º Á¦°ø¿¡ ±âÀÎÇÕ´Ï´Ù. ±ÝÀ¶±â°üµéÀº ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ó¸®Çϰí ÀáÀçÀûÀÎ ºÎÁ¤ÇàÀ§¿Í ÄÄÇöóÀ̾𽺠¹®Á¦¿¡ ´ëÇØ º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÏ°Ô ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ´Â ÀûÀÀÇü AI ¼Ö·ç¼Ç¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀºÇàµéÀº 꺿À» ÅëÇØ °í°´ ¸¸Á·µµ¸¦ ³ôÀÌ°í °í°´ °³°³ÀÎÀÇ ÇÁ·ÎÆÄÀÏ¿¡ ¸Â´Â ¸ÂÃãÇü ±ÝÀ¶ ¼­ºñ½º¸¦ Á¦°øÇϱâ À§ÇØ AI¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀûÀÀÇü AI¿¡ ´ëÇÑ °ü½ÉÀº BFSI Á¶Á÷ÀÌ º¸¾È, »ý»ê¼º ¹× °í°´ °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

ÀûÀÀÇü AI ½ÃÀå µµÀÔ¿¡ ´ëÇÑ ÀÌÇØ¸¦ µ½±â À§ÇØ ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ±âŸ ºÏ¹Ì), À¯·´(µ¶ÀÏ, ÇÁ¶û½º, ¿µ±¹, ½ºÆäÀÎ, ÀÌÅ»¸®¾Æ, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±âŸ Áö¿ª ¼¼°è ½ÃÀå ÇöȲÀ» ±â¹ÝÀ¸·Î ºÐ¼®µÇ¾ú½À´Ï´Ù. Á¸À縦 ±âÁØÀ¸·Î ºÐ¼®µÇ¾ú½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¦Á¶, ±ÝÀ¶, ¼Ò¸Å µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ µðÁöÅÐÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó ¿¹Ãø ±â°£(2024-2032³â) µ¿¾È ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀûÀÀÇü AI´Â ¿¹Áöº¸Àü, °í°´ °æÇè, °ø±Þ¸Á °ü¸®¿¡ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ÀÌ ¼±µÎ¸¦ ´Þ¸®°í ÀÖÀ¸¸ç, ÀûÀÀÇü ȯ°æÀ» À§ÇÑ AI¿¡ ¸¹Àº ÁöÃâÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â 5G ±â¼úÀÌ ºü¸£°Ô ¹Þ¾Æµé¿©Áö°í ÀÖÀ¸¸ç, ÀÌ´Â AIÀÇ ½Ç½Ã°£ ÀûÀÀÇü ¹èÆ÷¸¦ Áö¿øÇÏ¿© ½Å¼ÓÇÑ ´ëÀÀ°ú ³ôÀº È¿À²À» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çù¾÷Àº AI ¿¬±¸¿¡ ÅõÀÚÇÏ´Â Á¶Á÷ÀÌ ´Ã¾î³²¿¡ µû¶ó ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ÀÇ µµÀÔÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀÌ ½ÃÀå¿¡¼­ »ç¾÷À» ¿î¿µÇÏ´Â ÁÖ¿ä ±â¾÷¿¡´Â IBM, Google (Alphabet Inc.), Microsoft, Amazon Web Services, Inc., OpenAI, NVIDIA Corporation, Markovate Inc., Scale AI, Cisco Systems, Inc., Hiya µîÀÌ ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå °³¿ä

  • ½ÃÀåÀÇ Á¤ÀÇ
  • ÁÖ¿ä ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • Á¦ÇÑ »çÇ×

Á¦2Àå ºÐ¼® ¹æ¹ý ¶Ç´Â ÀüÁ¦Á¶°Ç

  • ºÐ¼® ÇÁ·Î¼¼½º
  • ºÐ¼® ¹æ¹ý
  • ÀÀ´äÀÚ °³¿ä

Á¦3Àå °³¿ä

  • ¾÷°è ¿ä¾à
  • ºÎ¹®º° Àü¸Á
    • ½ÃÀå ¼ºÀå °­µµ
  • Áö¿ª Àü¸Á

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ÃËÁø¿äÀÎ
  • ±âȸ
  • ¾ïÁ¦¿äÀÎ
  • µ¿Çâ
  • PESTEL ºÐ¼®
  • ¼ö¿äÃø ºÐ¼®
  • °ø±ÞÃø ºÐ¼®
    • ±â¾÷ÀμöÇÕº´(M&A)
    • ÅõÀÚ ½Ã³ª¸®¿À
    • ¾÷°è ÀλçÀÌÆ® : ÁÖ¿ä ½ºÅ¸Æ®¾÷ ±â¾÷°ú µ¶ÀÚÀûÀÎ Àü·«

Á¦5Àå °¡°Ý ºÐ¼®

  • °¡°Ý ºÐ¼® : Áö¿ªº°
  • °¡°Ý¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎ

Á¦6Àå ¼¼°èÀÇ ¾î´ðƼºê AI ½ÃÀå ¸ÅÃâ(2022-2032³â)

Á¦7Àå ½ÃÀå ºÐ¼® : ÄÄÆ÷³ÍÆ®º°

  • Ç÷§Æû
  • ¼­ºñ½º

Á¦8Àå ½ÃÀå ºÐ¼® : ±â¼úº°

  • ±â°èÇнÀ(ML)
  • ÀÚ¿¬¾ð¾îó¸®(NLP)
  • ÄÄÇ»ÅÍ ºñÀü
  • ½ÉÃþÇнÀ
  • °­È­ ÇнÀ
  • ±âŸ

Á¦9Àå ½ÃÀå ºÐ¼® : ¿ëµµº°

  • ½Ç½Ã°£ ¾î´ðƼºê AI
  • ¿ÀÇÁ¶óÀÎ ÇнÀ¡¤ÀûÀÀ
  • »óȲ ÀÎ½Ä ÀûÀÀ
  • ÀÚÀ²ÀûÀÎ ÀÇ»ç°áÁ¤
  • ±âŸ

Á¦10Àå ½ÃÀå ºÐ¼® : ÃÖÁ¾ À¯Çüº°

  • BFSI
  • IT¡¤Åë½Å
  • ÀǷᡤ»ý¸í°úÇÐ
  • Á¦Á¶¾÷
  • Ç×°ø¿ìÁÖ¡¤¹æÀ§
  • ¹Ìµð¾î¡¤¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å¾÷¡¤E-Commerce
  • ±âŸ

Á¦11Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ±âŸ ºÏ¹Ì Áö¿ª
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´ Áö¿ª
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¼¼°èÀÇ ±âŸ Áö¿ª

Á¦12Àå ¹ë·ùüÀÎ ºÐ¼®

  • ½ÃÀå Âü¿© ±â¾÷ÀÇ ¸®½ºÆ®

Á¦13Àå °æÀï ±¸µµ

  • °æÀï ´ë½Ãº¸µå
  • ±â¾÷ÀÇ ½ÃÀå Æ÷Áö¼Å´× ºÐ¼®
  • Porter's Five Forces ºÐ¼®

Á¦14Àå ±â¾÷ °³¿ä

  • IBM
    • ±â¾÷ °³¿ä
    • ÁÖ¿ä À繫 ÁöÇ¥
    • SWOT ºÐ¼®
    • Á¦Ç° Æ÷Æ®Æú¸®¿À
    • ÃÖ±Ù µ¿Çâ
  • Google(Alphabet Inc.)
  • Microsoft
  • Amazon Web Services, Inc.
  • OpenAI
  • NVIDIA Corporation
  • Markovate Inc.
  • Scale AI
  • Cisco Systems, Inc.
  • Hiya

Á¦15Àå µÎÀÚ¾î¿Í ÀüÁ¦Á¶°Ç

Á¦16Àå ºÎ·Ï

KSA 25.01.06

Adaptive AI is a type of artificial intelligence that constantly learns and modifies itself based on data collected in real-time, changing its underlying parameters and output based on the environment and data received as well as feedback. While conventional AI is based on a set of training models, adaptive AI is a non-invasive technology that learns and evolves on its own. Adding to this, flexibility makes adaptive AI ideal in applications that require quick response and flexibility such as autonomous driving, healthcare, and fraud detection. As a result of making changes to the data and conditions, adaptive AI offers customized answers that can change as the user's requirements and the market change. The adaptive AI market is fostered by the requirement of real-time decision-making that allows companies to offer fast solutions to various industries including finance and healthcare. The market is also driven by the need to offer individualized customer interactions, as adaptive AI can customize the service according to the user's actions.

The Adaptive AI Market is expected to grow with a significant CAGR of 44% during the forecast period (2024-2032). This sector allows improvements in machine learning and data processing to facilitate the use of adaptive AI by organizations. Furthermore, organizations are leveraging feedback loops and the continuous learning paradigm to adjust the use of AI, especially in industries that rely on quick and individualized actions (finance, healthcare, and e-commerce). For instance, on November 18, 2021, Hiya, the leading call performance management cloud, revealed that it has added Adaptive AI to Hiya Protect which is the first self-learning system that seeks out and closes down criminals in real time.

Based on the component, the market is segmented into platforms and services. The platform held a significant share of the market in 2023 Because platforms offer focused services that help in the automation of AI development and its implementation. Such platforms offer different technologies for data handling, modeling, and deployment of adaptive AI that help companies to oversee adaptive AI projects effectively. For instance, on March 7, 2024, Profile Software launched its new "AI.Adaptive" solution, which simplifies user interaction into natural language with databases and applications, enhancing operational efficiency by integrating Generative AI and Large Language Models (LLMs) artificial intelligence technologies. The solution, enhanced by the capabilities of OpenAI, adopts an LLM-agnostic strategy, enabling direct and flexible interaction with Profile's Axia Suite, Finuevo Suite, Acumen.plus, Centevo Suite, RiskAvert and RegiStar platforms.

Based on technology, the market is segmented into machine learning (ML), natural language processing (NLP), computer vision, deep learning, reinforcement learning, and others. Machine learning is expected to grow with a significant CAGR during the forecast period (2024-2032) owing to the modern enterprises are now implementing Reinforcement Learning models that can learn from new data and therefore improve forecasting and reaction time. Companies use TensorFlow and PyTorch as ML frameworks that allow for adaptability because they support continuous learning for adaptive AI that can work in evolving contexts. These frameworks enable real-time providence and tuning of the data which is crucial in all sectors including health and finance. The application of advanced machine learning models helps organizations to gain better insights and decision-making power.

Based on the application, the market is segmented into real-time adaptive AI, offline learning and adaptation, context-aware adaptation, autonomous decision-making, and others. Real-time adaptive AI held a considerable share of the market in 2023. This is because real-time adaptive AI is important for applications that require instantaneous data-driven decision-making thus fueling the uptake of adaptive solutions in fast-paced sectors. Moreover, these architectures are for growth, and companies are now investing in edge computing and streaming data architectures that are real-time. Technologies with adaptive AI are especially important in application areas such as autonomous driving and e-commerce, given that adaptive AI helps reduce risks, improve individual approaches, and provide better customer experience.

Based on end-use, the market is segmented into BFSI, IT & telecommunications, healthcare & life sciences, manufacturing, aerospace & defense, media & entertainment, retail & e-commerce, and others. BFSI is expected to grow with a significant CAGR during the forecast period (2024-2032). This is mainly due to the detection of fraud and risks, as well as to the provision of individual services to customers. Financial organizations are turned to adaptive AI solutions that are capable of processing large data sets and making decisions on potential fraud and compliance issues faster and more accurately. Also, banks are using AI for customer satisfaction through chatbots and individualized financial services to cater to each customer's profile. This emphasis on adaptive AI is allowing BFSI organizations to enhance security, productivity, and customer experience.

For a better understanding of the market adoption of Adaptive AI, the market is analyzed based on its worldwide presence in countries such as North America (U.S., Canada, and the Rest of North America), Europe (Germany, France, U.K., Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. Asia-Pacific is expected to grow with a significant CAGR during the forecast period (2024-2032) due to the increased digitalization across various sectors including manufacturing, finance, and retail. Adaptable AI is being used more and more in this area for predictive maintenance, customer experience, and supply chain management. China, Japan, and South Korea are leading the way, with significant spending on AI for the adaptive environment. The 5G technology is rapidly being embraced in the region and this supports the real-time adaptive deployment of AI which enhances quick response and high efficiency. These collaborations are driving adaptive AI adoption across various sectors even more as more organizations invest in AI research.

Some of the major players operating in the market include IBM, Google (Alphabet Inc.), Microsoft, Amazon Web Services, Inc., OpenAI, NVIDIA Corporation, Markovate Inc., Scale AI, Cisco Systems, Inc., Hiya.

TABLE OF CONTENTS

1.MARKET INTRODUCTION

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.RESEARCH METHODOLOGY OR ASSUMPTION

  • 2.1. Research Process of the Adaptive AI Market
  • 2.2. Research Methodology of the Adaptive AI Market
  • 2.3. Respondent Profile

3.EXECUTIVE SUMMARY

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
    • 3.2.1. Market Growth Intensity
  • 3.3. Regional Outlook

4.MARKET DYNAMICS

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. PESTEL Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Investment Scenario
    • 4.7.3. Industry Insights: Leading Startups and Their Unique Strategies

5.PRICING ANALYSIS

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.GLOBAL ADAPTIVE AI MARKET REVENUE (USD BN), 2022-2032F

7.MARKET INSIGHTS BY COMPONENT

  • 7.1. Platform
  • 7.2. Services

8.MARKET INSIGHTS BY TECHNOLOGY

  • 8.1. Machine Learning (ML)
  • 8.2. Natural Language Processing (NLP)
  • 8.3. Computer Vision
  • 8.4. Deep Learning
  • 8.5. Reinforcement Learning
  • 8.6. Others

9.MARKET INSIGHTS BY APPLICATION

  • 9.1. Real-time Adaptive AI
  • 9.2. Offline Learning and Adaptation
  • 9.3. Context-aware Adaptation
  • 9.4. Autonomous Decision-Making
  • 9.5. Others

10.MARKET INSIGHTS BY END-USE

  • 10.1. BFSI
  • 10.2. IT & Telecommunications
  • 10.3. Healthcare & Life Sciences
  • 10.4. Manufacturing
  • 10.5. Aerospace & Defense
  • 10.6. Media & Entertainment
  • 10.7. Retail & E-commerce
  • 10.8. Others

11.MARKET INSIGHTS BY REGION

  • 11.1. North America
    • 11.1.1. U.S.
    • 11.1.2. Canada
    • 11.1.3. Rest of North America
  • 11.2. Europe
    • 11.2.1. Germany
    • 11.2.2. France
    • 11.2.3. UK
    • 11.2.4. Spain
    • 11.2.5. Italy
    • 11.2.6. Rest of Europe
  • 11.3. Asia-Pacific
    • 11.3.1. China
    • 11.3.2. Japan
    • 11.3.3. India
    • 11.3.4. Rest of APAC
  • 11.4. Rest of the World

12.VALUE CHAIN ANALYSIS

  • 12.1. List of Market Participants

13.COMPETITIVE LANDSCAPE

  • 13.1. Competition Dashboard
  • 13.2. Competitor Market Positioning Analysis
  • 13.3. Porter Five Forces Analysis

14.COMPANY PROFILES

  • 14.1. IBM
    • 14.1.1. Company Overview
    • 14.1.2. Key Financials
    • 14.1.3. SWOT Analysis
    • 14.1.4. Product Portfolio
    • 14.1.5. Recent Developments
  • 14.2. Google (Alphabet Inc.)
  • 14.3. Microsoft
  • 14.4. Amazon Web Services, Inc.
  • 14.5. OpenAI
  • 14.6. NVIDIA Corporation
  • 14.7. Markovate Inc.
  • 14.8. Scale AI
  • 14.9. Cisco Systems, Inc.
  • 14.10. Hiya

15.ACRONYMS & ASSUMPTION

16.ANNEXURE

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦