![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1708075
3D À̹Ì¡ ToF ¼¾¼ ½ÃÀå : ÇöȲ ºÐ¼®°ú ¿¹Ãø(2024-2032³â)3D Imaging TOF Sensor Market: Current Analysis and Forecast (2024-2032) |
3D À̹Ì¡ ToF ¼¾¼´Â µð¹ÙÀ̽º¿¡¼ ¹æÃâµÈ ºûÀÌ ´ë»ó Ç¥¸é¿¡ µµ´ÞÇϱâ±îÁöÀÇ ½Ã°£ ¶Ç´Â ±× ¹Ý´ëÀÇ °æ¿ì¸¦ ÃßÁ¤ÇÏ´Â °í±Þ ±íÀÌ ¼¾¼ÀÔ´Ï´Ù. ºûÀÇ ¼Óµµ¿¡ µû¶ó °Å¸®¸¦ °áÁ¤ÇÏ¿© Á¤¹ÐÇÑ ±íÀÌ ÃøÁ¤À» ¼öÇàÇÕ´Ï´Ù. ÃÊÀü ¼¾¼´Â ÅÍÄ¡½ÄÀ̸ç Àû¿Ü¼±À¸·Î ÀÛµ¿ÇϹǷΠ¾ó±¼ÀνÄ, Áõ°Çö½Ç, ·Îº¿, ÀÚµ¿Â÷ LiDAR µîÀÇ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ToF´Â ½ºÅ×·¹¿À ºñÀüÀ̳ª ±¸Á¶ÈµÈ ±¤ ¹æ½Ä°ú ºñ±³ÇÏ¿© ´õ ÀûÀº 󸮷®À¸·Î ´õ ³ôÀº ÇØ»óµµ¿Í ½Ç½Ã°£ ±íÀÌ ÀνÄÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ToF ¼¾¼´Â Á÷Á¢ ºñÇà½Ã°£(dToF) ¼¾¼¿Í °£Á¢ ºñÇà½Ã°£(iToF) ¼¾¼ÀÇ µÎ °¡Áö ¹üÁÖ·Î ³ª´¹´Ï´Ù. iToF ¼¾¼´Â ¸¹Àº ¼ÒºñÀÚ ÀüÀÚ±â±â¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¼¾¼´Â ½º¸¶Æ®Æù »ç¿ë ¹× °ÔÀÓ »ê¾÷À» Æ÷ÇÔÇÏ¿© Á¦½ºÃ³ Á¦¾î, ¹°Ã¼ °¨Áö, ÀÚÀ² ÀÚµ¿È¿¡¼ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µû¶ó¼ ´Ù¾çÇÑ Á¶¸í Á¶°Ç¿¡¼ ÀÛµ¿ÇÏ´Â ÀÌ·¯ÇÑ À¯ÇüÀÇ ·¹ÀÌÀú¸¦ ÃֽŠ3D À̹Ì¡ ¿ëµµ¿¡ »ç¿ëÇÏ´Â °ÍÀÌ Æí¸®ÇÏ´Ù°í ¿©°ÜÁý´Ï´Ù.
3D À̹Ì¡ ToF ¼¾¼ ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£(2024-2032) µ¿¾È 22.96%ÀÇ ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 3D À̹Ì¡ ToF ¼¾¼´Â 3D À̹Ì¡ Time-of-Flight ¼¾¼¶ó°íµµ ºÒ¸®¸ç, °íÁ¤¹ÐµµÀÇ ±íÀÌ °¨µµ¿Í ½Ç½Ã°£À¸·Î Á¤È®ÇÑ 3D À̹Ì¡ ´É·ÂÀ» Á¦°øÇϱâ À§ÇØ ¿©·¯ ±âÁ¸ »ê¾÷ ¹× ½ÅÈï »ê¾÷¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚ±â±â ºÐ¾ß¿¡¼ ToF ¼¾¼´Â ¾ó±¼ ÀνÄ, Áõ°Çö½Ç(AR), °¡»óÇö½Ç(VR), ½º¸¶Æ®ÆùÀÇ »çÁø ÃÔ¿µÀ» Çâ»ó½ÃÄÑ Â÷¼¼´ë ±â¼ú ±â±â¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ÀÚµ¿Â÷´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ëµµ·Î, ToF ¼¾¼´Â ADAS, ÀÚÀ²ÁÖÇà, LiDAR¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷ ÀÚµ¿È ¹× ·Îº¿ °øÇп¡¼´Â ¹°Ã¼ °¨Áö, Àç°í °ü¸®, Á¦Ç° ǰÁú ¸ð´ÏÅ͸µ¿¡ ToF ¼¾¼°¡ äÅõDZ⠽ÃÀÛÇßÀ¸¸ç, 3D À̹Ì¡ÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖ´Â ´Ù¸¥ »ê¾÷À¸·Î´Â ÇコÄÉ¾î »ê¾÷ÀÇ Áø´Ü ¹× ÀÇ·á¿ë ·Îº¿ÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ½ÃƼ ¼Ö·ç¼Ç Áõ°¡, AI ¿î¿µ ¸ð´ÏÅ͸µÀÇ È®´ë, AI ¹× ¿§Áö ÄÄÇ»ÆÃÀÇ ¹ßÀüÀº ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
¿¹¸¦ µé¾î SICK´Â 2022³â 10¿ù¿¡ PL c(Performance Level c) ToF ¼¾¼¸¦ »ç¿ëÇÏ´Â ÃÖÃÊÀÇ 3D ºñÇà½Ã°£(ToF) Ä«¸Þ¶ó 'safeVisionary2'¸¦ Ãâ½ÃÇß½À´Ï´Ù. ÀÌ Á¦Ç°Àº 3D ÇöÁöÈ ¹× ¹°Ã¼ Àνİú ´õºÒ¾î ¿ÏÀüÇÑ ÀÚÀ²¼ºÀ» Áö¿øÇϱâ À§ÇØ °³¹ßµÇ¾ú½À´Ï´Ù. Á¤È®ÇÑ 3D ÃøÁ¤ µ¥ÀÌÅ͸¦ Á¦°øÇÏ¿© ÀÚÀ²ÀûÀ̰í Áö´ÉÀûÀÎ À̵¿ ·Îº¿ÀÇ Å½»öÀ» °¡´ÉÇÏ°Ô ÇϹǷΠÀÚÀ² À̵¿ ·Îº¿¿¡ »ç¿ëÇϱ⿡ ¸Å¿ì È¿°úÀûÀÔ´Ï´Ù.
Á¦Ç° À¯Çüº°·Î º¸¸é ÇöÀç °¡Àå ³ôÀº ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ´Â °ÍÀº °£Á¢ºñÇà½Ã°£(iToF) ¼¾¼Àε¥, ÀÌ´Â ´õ ³ôÀº Á¤È®µµ¿Í ÀûÀº Àü·Â ¼Òºñ¸¦ Á¦°øÇÏ°í ½º¸¶Æ®Æù, ºÒ¸êÀÇ AR/VR °¡Á¬, ºñµð¿À °ÔÀӱ⠵ Å« ÀÀ¿ëÀÌ °¡´ÉÇϱ⠶§¹®ÀÔ´Ï´Ù. ±×·¯³ª dToF(direct ToF) À¯ÇüÀÇ ¼¾¼´Â ÀÚÀ²ÁÖÇàÂ÷, ·Îº¿°øÇÐ, LiDAR¿¡¼ ¿ä±¸µÇ´Â Àå°Å¸®, °í½Éµµ Á¤È®µµ¶ó´Â Ư¼ºÀ¸·Î ÀÎÇØ ÇâÈÄ ´õ ³ôÀº ºñÀ²·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ç×°ø, ¿ìÁÖ, ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®¿¡¼ äÅõǰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷, AI¸¦ Ȱ¿ëÇÑ º¸¾È, »ê¾÷ ÀÚµ¿È¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ dToF ¼¾¼´Â ÇâÈÄ ¸î³â¾È¿¡ º¸±ÞµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿ëµµº°·Î´Â 3D ½ºÄ³´× ¹× À̹Ì¡ Ŭ·¡½º°¡ 3D À̹Ì¡ ToF ¼¾¼ ½ÃÀå¿¡¼ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡´Â ¾ó±¼ ½Äº° ¹× »ýüÀÎ½Ä º¸¾ÈÀ» À§ÇÑ ½Éµµ ¼¾½Ì, ¼ÒºñÀÚ Á¦Ç°ÀÇ º¸Á¶ ÃÔ¿µ µîÀÌ Æ÷ÇԵ˴ϴÙ. ±×·¯³ª ÀÚµ¿Â÷ ¾ÈÀü ¹× ³»ºñ°ÔÀÌ¼Ç ºÐ¾ß´Â ÇâÈÄ ¼ö³â°£ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö°í ADAS¿Í ÀÚµ¿Â÷ÀÇ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó ½Ç½Ã°£ ±íÀÌ °¨Áö ¹× ¹°Ã¼ °¨Áö ±â´ÉÀÌ ´õ¿í Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ToF ¼¾¼´Â Ãæµ¹ Á¦¾î, Â÷¼± °¨Áö º¸Á¶, ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ¿¡ ±â¿©ÇϹǷΠÀÚÀ²ÁÖÇàÂ÷ ±â¼ú¿¡ ¸Å¿ì Áß¿äÇϸç, ºü¸£°Ô º¸±ÞµÇ°í ÀÖ½À´Ï´Ù.
»ê¾÷º°·Î´Â ÇöÀç ½º¸¶Æ®Æù, ÅÂºí¸´, Áõ°/È¥ÇÕÇö½Ç ±â±â, °ÔÀÓ µî¿¡ Àû¿ëµÇ¸é¼ ¼ÒºñÀÚ ÀüÀÚ±â±â ºÎ¹®ÀÌ 3D À̹Ì¡ ºñÇà½Ã°£(ToF) ¼¾¼ ½ÃÀå¿¡¼ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¾ÖÇÃ, »ï¼º, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®¿Í °°Àº ÁÖ¿ä ÇÏÀÌÅ×Å© ºê·£µå°¡ ¾ó±¼ ÀνÄ, »çÁø ÃÔ¿µ ¸ñÀûÀÇ ´õ ³ªÀº À̹ÌÁö ±íÀÌ, Á¦½ºÃ³ Á¦¾î¸¦ À§ÇØ ToF ¼¾¼¸¦ äÅÃÇϰí ÀÖÀ¸¸ç, °¡ÀüÁ¦Ç°ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÚµ¿Â÷ ºÐ¾ß´Â ADAS, LiDAR ³»ºñ°ÔÀ̼Ç, ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷¿¡ Àû¿ëµÇ¾î ÇâÈÄ ¼ö³â°£ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, LIDAR ¼¾¼´Â Ãæµ¹ °¨Áö, ¿îÀüÀÚ ¸ð´ÏÅ͸µ, ÁÖÂ÷¿¡ Áß¿äÇϸç, Â÷¼¼´ë ÀÚµ¿Â÷¿¡¼ Áß¿äÇÑ À§Ä¡¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß¿äÇÑ À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ÀÚÀ²ÁÖÇà°ú Àü±âÀÚµ¿Â÷(EV)¶ó´Â µÎ °¡Áö Å« µ¿Çâ¿¡ ±âÀÎÇϸç, ÀÌ µÎ °¡Áö ¸ðµÎ 3D À̹Ì¡ ToF ¼¾¼ ½ÃÀåÀ» Å©°Ô °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½ÃÀåÀ» ´õ Àß ÀÌÇØÇϱâ À§ÇØ 3D À̹Ì¡ ToF ¼¾¼ ½ÃÀåÀÇ ¼ºÀåÀº ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ±âŸ), À¯·´(µ¶ÀÏ, ÇÁ¶û½º, ¿µ±¹, ½ºÆäÀÎ, ÀÌÅ»¸®¾Æ, ±âŸ), ¾Æ½Ã¾ÆÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ, ±âŸ), ±âŸ Áö¿ªÀÇ ´Ù¾çÇÑ ºÐ¾ß¿¡¼ÀÇ ¼¼°è äÅÃÀ» ±â¹ÝÀ¸·Î ºÐ¼®µË´Ï´Ù. ±â¹ÝÀ¸·Î ºÐ¼®µË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÇâÈÄ °¡Àå ³ôÀº ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¿øµ¿·ÂÀº CE(Consumer Electronics) ¹× ÀÚµ¿Â÷ ºÐ¾ßÀÇ Å« ½ÃÀå ¼ö¿ä¿Í ÇコÄÉ¾î ºÐ¾ß¿¡¼ÀÇ Àû¿ë È®´ë¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ ÇコÄɾî À̹Ì¡ ¹× üÀÎ ½º¸¶Æ® ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹ÝµµÃ¼ Á¦Á¶¾÷ü¿Í R&D ÅëÇÕ Áõ°¡´Â ¿¹Ãø ±â°£ Áß 3D À̹Ì¡ ToF ¼¾¼ ½ÃÀå °³¹ßÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
ÀÌ ½ÃÀå¿¡¼ »ç¾÷À» ¿î¿µÇÏ´Â ÁÖ¿ä ±â¾÷¿¡´Â STMicroelectronics, Sony Semiconductor Solutions Corporation, Pmdtechnologies AG, Infineon Technologies AG, Melexis, ams-OSRAM AG, Texas Instruments Incorporated, Analog Devices, Inc, Teledyne Vision Solutions(Teledyne Technologies), ifm electronic India Pvt.(ifm Group) µîÀÌ ÀÖ½À´Ï´Ù.
¼¼°èÀÇ 3D À̹Ì¡ ToF ¼¾¼ ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ½ÃÀåÀÇ °³¿ä¿Í Á¦Ç° À¯Çüº°, ¿ëµµº°, ¾÷°èº°, Áö¿ªº° µ¿Çâ ¹× ½ÃÀå¿¡ Âü¿©ÇÏ´Â ±â¾÷ÀÇ °³¿ä µîÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.
A 3D Imaging ToF sensor is a highly sophisticated depth sensor that estimates the amount of time it takes for light emitted by a device to reach the target surface and vice-versa. It makes a high precision in depth measurement through determining distance by the speed of light. Pyroelectric sensors are of the touch type and work with infrared light, making them a good fit for applications like face recognition, augmented reality, robotic applications, and automobile LiDAR applications. Compared to the stereo vision or structured light methods, ToF is able to provide real-time perception of depth at high resolutions with less processing demand. These sensors are further classified into two categories: Direct time-of-flight (dToF) and indirect time-of-flight (iToF) sensors. In most of the consumer electronic gadgets, iToF sensors are used because of their cheaper and better performance. This sensor is very important in Gesture control, object detection, and Autonomous automation, including the smartphone usage and gaming industry. That is why it has been considered convenient to use these types of lasers for modern 3D imaging applications since they function well in different lighting conditions.
The 3D Imaging ToF Sensor Market is expected to grow with a significant CAGR of 22.96% during the forecast period (2024-2032). The 3D Imaging ToF sensor is also referred to as the 3D imaging Time-of-Flight sensor, and it is applied across several existing and emerging industries to provide high precision in depth sensitivity and real-time and accurate 3D imaging proficiency. In the consumer electronics sector, ToF sensors improve facial recognition, augmented reality, virtual reality, and smartphone photography applications, which makes them crucial in the next generation of tech gadgets. Automotive is another important application segment, where ToF sensors have extensive application in ADAS, autonomous navigation, and LiDAR. Also, industrial automation and robotics applications have started to adopt ToF sensors for detecting objects, inventory management, and monitoring product quality. Other industries that stand to benefit from 3D imaging are diagnostics and medical robotics in the healthcare industry. Also, increasing smart city solutions, growing AI-operational surveillance, and developments in AI and edge computing are propelling the demand even further.
For instance, in October 2022, SICK introduced the first 3D time-of-flight (ToF) camera that uses ToF sensors, with Performance Level c (PL c) on the market - the safeVisionary2. It was developed to support customers in becoming fully autonomous in addition to providing 3D localization and object recognition. It is very effective for use on an autonomous mobile robot because it provides precise 3D measurement data that allows for autonomous and intelligent mobile robot navigation.
Based on the product type, currently, the highest market share is held by Indirect Time-of-Flight (iToF) sensors as these offer higher accuracy and lesser power consumption and have huge applications into smartphones, enduring AR/VR gadgets, and video gaming consoles. However, direct ToF (dToF) type of sensors will expand at a higher rate in the future due to its feature of long-range and high-depth accuracy required in autonomous vehicles, robotics and LiDAR applications. The dToF technology is getting adopted in ADAS, aerospace, and smart city projects because of its accurate 3D mapping and environmental sensing. With the rising demand for self-driving cars, AI-powered security, and automation in industries, dToF sensors are expected to gain popularity in the next few years.
Based on the application category, the 3D Scanning & Imaging class holds the largest market share in the market of 3D Imaging ToF sensors, as this type of sensor is actively used in smartphones, security systems, and industry. These areas include depth sensing for facial identification and biometric security, as well as assistive photography in consumer products. However, the Automotive Safety & Navigation segment is projected to witness the highest CAGR in the years to come. With the growing consumer inclination towards self-driven cars and the integration of vehicles with ADAS, real-time depth sensing and object detection feature is gaining significance. These ToF sensors contribute to controlling collision, lane detection assist, and adaptive cruise control, thus, they are crucial for autonomous car technology and are gaining popularity rapidly.
Based on the industry verticals category, currently, the Consumer Electronics segment occupies the largest market share in the 3D Imaging Time-of-Flight (ToF) sensor market due to its applications in smartphones, tablets, augmented/mixed reality devices, and games. Consumer electronics account for the largest market share, with leading tech brands such as Apple, Samsung, and Microsoft employing ToF sensors for facial recognition, better image depth for photographic purposes, and gesture control. However, the Automotive segment is expected to show the highest growth rate in the upcoming years due to its application in ADAS, LiDAR navigation, and self-driving automobiles. LIDAR sensors are critical in detecting collisions, monitoring drivers, and car parking, which gives them significant importance in the new generation of cars. This is due to two major trends- self-driving and electric vehicles (EVs), both of which are expected to boost the 3d imaging ToF sensors market massively.
For a better understanding of the market, the growth of the 3D Imaging ToF Sensor market is analyzed based on their worldwide adoption in different sectors in regions such as North America (U.S., Canada, and the Rest of North America), Europe (Germany, France, U.K., Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. The Asia-Pacific region is expected to have the highest growth in the future. This growth is driven by its large market need in the sectors of consumer electronics and automotive, and the rise in applications in the healthcare sector. Moreover, increasing investment in healthcare imaging and chain smart surveillance is another factor that affects the growth of the market. Semiconductor manufacturers and rising research and development integration across the Asia-Pacific region will further boost the market growth of 3D Imaging ToF sensors in the forecasted period.
Some of the major players operating in the market include STMicroelectronics, Sony Semiconductor Solutions Corporation, Pmdtechnologies AG, Infineon Technologies AG, Melexis, ams-OSRAM AG, Texas Instruments Incorporated, Analog Devices, Inc., Teledyne Vision Solutions (Teledyne Technologies), ifm electronic India Pvt. Ltd. (ifm Group).