½ÃÀ庸°í¼­
»óǰÄÚµå
1747343

¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀå : ÇöȲ ºÐ¼®°ú ¿¹Ãø(2025-2033³â)

Radiation Shielding Glass Market: Current Analysis and Forecast (2025-2033)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: UnivDatos Market Insights Pvt Ltd | ÆäÀÌÁö Á¤º¸: ¿µ¹® 138 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀåÀº ¿¹Ãø ±â°£(2025-2033³â) µ¿¾È 5.91%ÀÇ °ß°íÇÑ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹æ»ç¼± Â÷Æó À¯¸®´Â ¾ÈÀü ¼³°è Àç·áÀÇ ¹ßÀü°ú Çö´ëÈ­¿¡¼­ Å« µµ¾àÀ» ÀÌ·ç¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ±â´ÉÀû ¾ÈÀü ¿ä±¸°¡ ÃÖ¿ì¼± °ü½É»çÀÏ »Ó¸¸ ¾Æ´Ï¶ó °ÇÃàÀû ÅëÇÕ°ú ¹Ì°üµµ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ¿ø·¡ ÀÇ·á ¹× ¿øÀڷ ȯ°æÀ» À§ÇØ °³¹ßµÈ ÀÌ À¯ÇüÀÇ À¯¸®´Â ÇöÀç ¿µ»óÁø´Ü½Ç, ¿øÀÚ·Î, »ê¾÷¿ë ¿¢½º·¹ÀÌ ÃÔ¿µ ÀåÄ¡ µî ¹æ»ç¼±·®ÀÌ ³ôÀº Áö¿ª¿¡¼­ Áö´ÉÇü ¾ÈÀüÀ» ½ÇÇöÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Çö´ëÀÇ ¹æ»ç¼± Â÷Æó À¯¸®´Â °¡½Ã¼º°ú ¹æ»ç¼± °¨¼èÀÇ ±ÕÇüÀ» ¸ÂÃ߸鼭 ±¤ÇÐÀûÀÎ Åõ¸í¼ºÀ» º¸ÀåÇϱâ À§ÇØ ´Ù¾çÇÑ ³³°ú ¹«¿¬ ¹èÇÕÀ» °è·®Çϰí ÀÖ½À´Ï´Ù. ¹Ù·ý, ºñ½º¹«Æ®, ÈñÅä·ù »êÈ­¹°°ú °°Àº ¿ø¼Ò¸¦ Æ÷ÇÔÇÏ´Â ÀÌ·¯ÇÑ À¯¸® ¹èÇÕÀº Åõ¸í¼ºÀ» À¯ÁöÇϸ鼭 X¼±, °¨¸¶¼± ¹× ±âŸ ÀÌ¿ÂÈ­ ¹æ»ç¼±À» °ÅºÎÇϸç, STERIS´Â 2024³â 4¿ù¿¡ X¼± 󸮰¡ °¡´ÉÇÑ Å±¹ÀÇ Chonburi I ½Ã¼³À» È®ÀåÇÒ °ÍÀ̶ó°í ¹ßÇ¥Çß½À´Ï´Ù. À̹ø È®ÀåÀ¸·Î ÇöÀç Ã̺θ® I°ú Ã̺θ® II ½Ã¼³¿¡¼­ Á¦°øÇÏ´Â °¨¸¶¼± Á¶»ç ¼­ºñ½º¸¦ ¾÷±×·¹À̵åÇϰí, X¼± °øÁ¤°ú X¼± Àåºñ¸¦ ¾ÈÀüÇϰí È®½ÇÇÏ°Ô ´Ù·ê ¼ö ÀÖ´Â ´É·ÂÀÌ ÀÌµé ½Ã¼³¿¡¼­ °³¹ßµÇ¾î ¹æ»ç¼± Â÷ÆóÀ¯¸® ¼ö¿ä âÃâÀÌ ±â´ëµË´Ï´Ù.

¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀåÀº À¯Çüº°·Î ³³ À¯¸®¿Í ¹«¿¬ À¯¸®·Î ±¸ºÐµÇ¸ç, 2024³â¿¡´Â ¹«¿¬ À¯¸® ½ÃÀåÀÌ ¿ìÀ§¸¦ Á¡ÇÏ°í ¿¹Ãø ±â°£ µ¿¾È ¼±µÎ¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹«¿¬ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀº °¢±¹ÀÇ È¯°æ ±ÔÁ¦¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ·¯ÇÑ À¯¸®°¡ º¸´Ù ģȯ°æÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ÆÇ¸ÅµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¹«¿¬ ¹æ»ç¼± Â÷Æó À¯¸®¿¡´Â ¹Ù·ý, ºñ½º¹«Æ®, ±âŸ Áß±Ý¼Ó »êÈ­¹° µîÀÌ Æ÷ÇԵǾî ÀÖ¾î µ¿ÀÏÇÑ Â÷Æó È¿°ú¸¦ Á¦°øÇÏÁö¸¸ µ¶¼º ³³ ¿ø¼Ò¸¦ Æ÷ÇÔÇÏÁö ¾Ê½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­¿Í ¿µ»óÁø´Ü, ÇÙÀÇÇÐ, ûÁ¤¿¡³ÊÁö ¿¬±¸ÀÇ ±Þ¼ÓÇÑ È®´ë·Î ÀÎÇØ ¾ÈÀü¼º, ±¤ÇÐ ¼º´É, ¾ÆÅ°ÅØÃ³¸¦ À¶ÇÕÇÑ ´õ ³ôÀº Â÷Æó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸ðµâÈ­µÈ Åõ¸í ÀÇ·á ÀÎÇÁ¶ó¶ó´Â »õ·Î¿î ¼¼°è¿¡¼­ Â÷Æó À¯¸®´Â ±â´É»Ó¸¸ ¾Æ´Ï¶ó µðÀÚÀÎÀûÀ¸·Îµµ Åõ¸íÇÑ Â÷Æó ¼Ö·ç¼ÇÀ¸·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ¹× ¿øÀÚ·Â ºÐ¾ßÀÇ ¾ÈÀü¿¡ ´ëÇÑ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó Á¦Á¶¾÷üµéÀº °¡º±°í »ç¿ëÀÚ Á¤Àǰ¡ °¡´ÉÇÑ Åõ¸íÇϰí Åõ¸íÇÑ Â÷Æó Àç·á¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °üÁ¡¿¡¼­ ¹æ»ç¼± Â÷Æó À¯¸®´Â ¾ÈÀü, Áö¼Ó°¡´É¼º, À¯¿¬ÇÑ µðÀÚÀÎÀ» ±¸ÇöÇÑ º´¿ø, ¿¬±¸¼Ò, Á¦¾î½Ç, »ê¾÷ ½Ã¼³¿¡ ´ëÇÑ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¹æ»ç¼± À¯Çü¿¡ µû¶ó ¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀåÀº X¼± Â÷Æó, °¨¸¶¼± Â÷Æó, Áß¼ºÀÚ Â÷Æó·Î ±¸ºÐµÇ¸ç, X¼± Â÷Æó ºÐ¾ß´Â 2024³â °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È¿¡µµ ºñ½ÁÇÑ Ãß¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ÀÇ·á Áø´Ü, Ä¡°ú ¹× »ê¾÷ °Ë»ç¿¡¼­ X¼± ¿µ»ó ÀÀ¿ë ºÐ¾ß¿¡ ÀÇÇØ ¹ß»ýÇϸç, X¼± º¸È£¿ë ¹æ»ç¼± Â÷Æó À¯¸®´Â ³ôÀº Åõ¸í¼º°ú ±¤ÇÐ Åõ¸í¼º, °­·ÂÇÑ °¨¼è Ư¼ºÀ» °¡Áö°í ÀÖ¾î º´¿ø, ½ÇÇè½Ç ¹× Á¦¾î½ÇÀÇ °üÂû â¹®¿¡ ÀûÇÕÇÑ Àç·áÀÔ´Ï´Ù. ¾ÈÀü ±âÁØÀÌ °­È­µÇ°í Àü ¼¼°èÀûÀ¸·Î ¿µ»ó Áø´ÜÀÇ Çʿ伺ÀÌ °è¼Ó È®´ëµÊ¿¡ µû¶ó Á¦Á¶¾÷ü´Â ³³À» Æ÷ÇÔÇÏÁö ¾Ê´Â ºñ½º¹«½º ¹× ¹Ù·ý ±â¹Ý À¯¸®¿Í °°Àº °í±Þ Àç·á¸¦ ¹æ»ç¼± Â÷Æó¿¡ »ç¿ëÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¸®´Â ¹æ»ç¼± º¸È£ ±â´ÉÀÌ ¶Ù¾î³ª°í ȯ°æ ģȭÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ À¯¸®´Â °¡º±°í Ãæ°Ý¿¡ °­ÇÏ¸ç ¼ºÇüÀÌ ¿ëÀÌÇϱ⠶§¹®¿¡ °¡½Ã¼º, À§»ý, ¸ðµâ¼ºÀ» Áß¿ä½ÃÇÏ´Â Çö´ë ÀÇ·á ½Ã¼³ ¼³°è¿¡ ÀûÇÕÇÕ´Ï´Ù. ÈÞ´ë°¡ °¡´ÉÇÏ°í ¼ÒÇüÈ­µÈ ±â°è°¡ ¸¹ÀÌ »ç¿ëµÊ¿¡ µû¶ó ¿ä±¸ »çÇ׿¡ µû¶ó ¸ÂÃãÇü Â÷Æó À¯¸®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â Å« º¯È­¸¦ °¡Á®¿Ô½À´Ï´Ù. ÇöÀç ÀÌ·¯ÇÑ Àç·áÀÇ ÁøÈ­´Â ´õ ¸¹Àº µðÀÚÀÎ ¿É¼Ç, Áö¼Ó °¡´ÉÇÑ °ÇÃà ±â¼ú µµÀÔ, ¼³Ä¡ÀÇ º¹À⼺ °¨¼Ò¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ¶§¹®¿¡ °ø°ø ¹× ¹Î°£ ÀÇ·á ÀÎÇÁ¶ó¿¡¼­ ÀÌ·¯ÇÑ Á¦Ç°ÀÇ »ç¿ëÀÌ ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù.

¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀåÀº ¿ëµµº°·Î ÀÇ·á, »ê¾÷, ¿øÀÚ·Â ºÐ¾ß·Î ±¸ºÐµÇ¸ç, 2024³â¿¡´Â ÀÇ·á ºÐ¾ß°¡ ½ÃÀåÀ» Áö¹èÇϰí ÀÖÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È¿¡µµ ÁÖµµÀûÀÎ À§Ä¡¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ÁÖ·Î ¿¢½º·¹ÀÌ, CT, Åõ½Ã µî º´¿ø ¹× Áø´Ü¼¾ÅÍ ±â¹Ý ¿µ»ó Áø´Ü ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀü¿¡ ±âÀÎÇÕ´Ï´Ù. ¹æ»ç¼± Â÷Æó À¯¸®´Â ¾ÈÀüÇÑ °üÂûÀ» °¡´ÉÇÏ°Ô ÇÏ°í °£È£»ç¿Í ȯÀÚ¿¡°Ô ÃÖ°í ¼öÁØÀÇ ¹æ»ç¼± º¸È£¸¦ Á¦°øÇÔÀ¸·Î½á ÀÇ·á ÇöÀå¿¡¼­ Ȱ¾àÇϰí ÀÖ½À´Ï´Ù. ¹æ»ç¼± Â÷Æó À¯¸®ÀÇ Çö´ëÀû ¿ëµµ´Â ¹°·Ð ¾ÈÀü¼ºÀ» ÇØÄ¡Áö ¾ÊÀ¸¸é¼­µµ °³¹æÀûÀ̰í Åõ¸íÇÑ ÀÇ·á ½Ã¼³ÀÇ ·¹À̾ƿô¿¡¼­ ¹ÌÀû ¿ä¼Ò¿Í Àû±ØÀûÀÎ °ÇÃàÀû Ư¡ÀÌ µÉ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÇ·á ½Ã½ºÅÛÀÌ Á¤¹Ð Áø´Ü ¹× ÃÖ¼Ò Ä§½ÀÀû ½Ã¼ú·Î ÀüȯÇÔ¿¡ µû¶ó ÃÊÅõ¸í, ¹«¿¬, ¹«¿¬ Â÷Æó À¯¸®¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ÀÓ»ó ÇöÀåÀÇ ¹æ»ç¼± ¾ÈÀü ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó °ø°ø ¹× ¹Î°£ ÀÇ·á ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼³Ä¡°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀº ÀÇ·á ÀÎÇÁ¶ó °³¹ß¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ÃßÁø·Â°ú ÇÔ²² ¸ðµâÇü À̵¿½Ä Áø´Ü Àåºñ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Ãß°¡ÀûÀÎ ÃßÁø·ÂÀ» ¾ò°í ÀÖ½À´Ï´Ù. ¼±Áø±¹°ú ½ÅÈï±¹ »çÀÌ¿¡¼­ ÀÇ·á ¿µ»ó Áø´ÜÀÌ Á¡Á¡ ´õ ¹ßÀüÇÔ¿¡ µû¶ó ¹æ»ç¼± Â÷Æó À¯¸®´Â Áø´Ü ¼¼Æ®ÀÇ Çٽɿ¡ ÀÚ¸® Àâ°í ÀÖÀ¸¸ç, ¾ÈÀüÇÏ°í ±ÔÁ¤À» ÁؼöÇϸç ȯÀÚ Ä£È­Àû ÀÎ Áø´Ü ¼¼Æ®ÀÇ ÇÙ½ÉÀ̵Ǿú½À´Ï´Ù. µðÁöÅÐ À̹Ì¡ ¼Ö·ç¼ÇÀ» Ãâ½ÃÇß½À´Ï´Ù.

¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀåÀ» ´õ ±íÀÌ ÀÌÇØÇϱâ À§ÇØ ½ÃÀåÀº ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ±âŸ ºÏ¹Ì), À¯·´(µ¶ÀÏ, ¿µ±¹, ÇÁ¶û½º, ÀÌÅ»¸®¾Æ, ½ºÆäÀÎ, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ, Çѱ¹, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±âŸ Áö¿ª(Áß±¹, ÀϺ», Àεµ, Çѱ¹, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±âŸ Áö¿ªÀ¸·Î ¼¼ºÐÈ­µË´Ï´Ù. Á¸À縦 ±â¹ÝÀ¸·Î ºÐ¼®µÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì ¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀåÀº 2024³â ¼¼°è ¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀåÀ» Àå¾ÇÇÏ°í ¿¹Ãø ±â°£ µ¿¾È ±× ÁöÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ÀÌ Áö¿ªÀÇ Ã·´Ü ÀÇ·á ÀÎÇÁ¶ó, ´Ù¾çÇÑ ¿µ»ó Áø´Ü ±â¼ú, ¹æ»ç¼± ¾ÈÀü¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦ Áؼö µîÀÌ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¹Ì±¹¿¡¼­´Â º´¿øÀ» ¾÷±×·¹À̵åÇÏ°í ¹æ»ç¼± ¾ÈÀü °ÇÃàÀÚÀ縦 ÅëÇÕÇϱâ À§ÇÑ ÅõÀÚ°¡ Áö¼ÓÀûÀ¸·Î ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, ¹æ»ç¼± Â÷Æó À¯¸®´Â ÀÇ·á ¹× Ä¡°ú ¿µ»ó Áø´Ü½Ç, Á¾¾çÇаú, À̵¿½Ä Áø´Ü ÀåÄ¡ µîÀÇ Ç¥ÁØ ¿É¼ÇÀ¸·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íµµ·Î ¹ß´ÞÇÑ ¿øÀÚ·Â ¹ßÀü¼Ò¿Í °íµµÀÇ ±â¼úÀû ¹æ»ç¼± º¸È£ Àç·á°¡ ÇÊ¿äÇÑ ÀϺΠ¿¬±¸¼¾ÅÍÀÇ Á¸Àç´Â ¿ÀÈ÷·Á ³ôÀº ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ ģȭÀûÀÎ ¹«¿¬ Â÷Æó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼±È£µµ Áõ°¡¿Í ÀÇ·á ¹× ¹æÀ§ ºÐ¾ß¿¡¼­ äÅÃµÈ ¸ðµâ½Ä ±¸Á¶ Á¢±Ù ¹æ½Äµµ ½ÃÀå ¼ºÀåÀ» º¸¿ÏÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ÁÖ¿ä Á¦Á¶¾÷üµéÀÇ Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å°ú °Ç°­ ¹× ¾ÈÀü ÁõÁøÀ» À§ÇÑ Á¤ºÎ Á¤Ã¥À¸·Î ÀÎÇØ ºÏ¹Ì´Â ¹æ»ç¼± Â÷Æó À¯¸®ÀÇ ¼º¼÷Çϰí Áß¿äÇÑ ½ÃÀåÀ¸·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

ÀÌ ½ÃÀå¿¡ ÁøÃâÇÑ ÁÖ¿ä ±â¾÷À¸·Î´Â Corning Incorporated, SCHOTT AG, Nippon Electric Glass Corporation, RAY-BAR ENGINEERING CORP, Nuclear Lead Co.Ltd, Radiation Protection Products, Inc. ., Lead Glass Pro., MAVIG GmbH, Midland Lead, MarShield Custom Radiation Shielding µîÀÌ ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¼­·Ð

  • ½ÃÀåÀÇ Á¤ÀÇ
  • ÁÖ¿ä ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • Á¦ÇÑ »çÇ×

Á¦2Àå Á¶»ç ¹æ¹ý ¶Ç´Â ÀüÁ¦Á¶°Ç

  • Á¶»ç °úÁ¤
  • Á¶»ç ¹æ¹ý
  • ÀÀ´äÀÚ °³¿ä

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ¾÷°è ¿ä¾à
  • ºÎ¹®º° Àü¸Á
    • ½ÃÀå ¼ºÀå °­µµ
  • Áö¿ª Àü¸Á

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ±âȸ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • µ¿Çâ
  • PESTEL ºÐ¼®
  • ¼ö¿äÃø ºÐ¼®
  • °ø±ÞÃø ºÐ¼®
    • ÀμöÇÕº´(M&A)
    • ÅõÀÚ ½Ã³ª¸®¿À
    • ¾÷°è ÀλçÀÌÆ® : ÁÖ¿ä ½ºÅ¸Æ®¾÷ ±â¾÷°ú µ¶ÀÚÀûÀÎ Àü·«

Á¦5Àå °¡°Ý ºÐ¼®

  • Áö¿ª °¡°Ý ºÐ¼®
  • °¡°Ý¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎ

Á¦6Àå ¼¼°èÀÇ ¹æ»ç¼± Â÷Æó À¯¸® ½ÃÀå ¸ÅÃâ,2023-2033³â

Á¦7Àå ½ÃÀå ÀλçÀÌÆ® : À¯Çüº°

  • Lead Glass
  • Lead-Free Glass

Á¦8Àå ½ÃÀå ÀλçÀÌÆ® : ¹æ»ç¼± À¯Çüº°

  • X-Ray Shielding
  • Gamma Ray Shielding
  • Neutron Shielding

Á¦9Àå ½ÃÀå ÀλçÀÌÆ® : ¿ëµµº°

  • ÀÇ·á
  • »ê¾÷
  • ¿øÀÚ·Â

Á¦10Àå ½ÃÀå ÀλçÀÌÆ® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ±âŸ ºÏ¹Ì
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¼¼°è ±âŸ Áö¿ª

Á¦11Àå ¹ë·ùüÀÎ ºÐ¼®

  • ÇѰèºÐ¼®
  • ½ÃÀå ÁøÃâ±â¾÷ ¸®½ºÆ®

Á¦12Àå °æÀï ±¸µµ

  • °æÀï ´ë½Ãº¸µå
  • °æÀï ½ÃÀå Æ÷Áö¼Å´× ºÐ¼®
  • PorterÀÇ Five Forces ºÐ¼®

Á¦13Àå ±â¾÷ °³¿ä

  • Corning Incorporated
  • SCHOTT AG
  • Nippon Electric Glass Co., Ltd.
  • RAY-BAR ENGINEERING CORP
  • Nuclear Lead Co. Inc.
  • Radiation Protection Products, Inc.
  • Lead Glass Pro.
  • MAVIG GmbH
  • Midland Lead
  • MarShield Custom Radiation Shielding

Á¦14Àå µÎÀÚ¾î¿Í ÀüÁ¦Á¶°Ç

Á¦15Àå ºÎ·Ï

LSH

The Radiation Shielding Glass Market is witnessing a robust growth rate of 5.91% within the forecast period (2025- 2033F). Radiation shielding glass was indeed a giant leap in the advancement and modernization of safety-engineered materials. These materials have not only functional security needs as the primary concern, but also architectural integration and aestheticization. Originally developed for medical and nuclear environments, this type of glass has now become an intelligent safety enabler in high-radiation areas such as diagnostic imaging rooms, nuclear reactors, and industrial radiography units. Modern radiation shielding glass weighs various lead and lead-free formulations for optical clarity while balancing visibility vs. radiation attenuation. The concoction of such glasses containing elements like barium, bismuth, and rare earth oxides would reject X-rays, gamma rays, and other ionizing radiation while remaining transparent. STERIS announced an expansion of its Chonburi I facility in Thailand, which is capable of X-ray processing, in April 2024. This expansion will upgrade the gamma irradiation services currently available at the Chonburi I and Chonburi II facilities and is expected to create demand for radiation shielding glass as these facilities develop their capacity for the safe and secure handling of X-ray processes and apparatus.

Based on type, the radiation shielding glass market is segmented into Lead Glass and Lead-Free Glass. In 2024, the lead-free glass market dominated and is expected to maintain its leading position throughout the forecast period. The paradigm shift toward lead-free solutions is due to the growing environmental regulations and sustainability efforts across countries, and such glass is marketed as a greener solution. In this spectrum, lead-free radiation shielding glass includes barium, bismuth, and other heavy metal oxides, which offer comparable shielding but lack the toxic lead element. This transformation and the rapid expansion of diagnostic imaging, nuclear medicine, and clean-energy research have increased the demand for higher shielding solutions that merge safety, optical performance, and architecture. With the new world of modular and transparent healthcare infrastructure, shielding glass is used not just for function but for design-transparent shielding solutions. Furthermore, manufacturers, amid a tightening regulatory environment around safety in medical and nuclear arenas, invest in lighter, customizable, and highly transparent shielding materials. From this perspective, radiation shielding glass is becoming the solution for hospitals, laboratories, control rooms, and industrial facilities, embodying safety, sustainability, and flexible design.

Based on radiation type, the radiation shielding glass market is segmented into X-Ray Shielding, Gamma Ray Shielding, and Neutron Shielding. The X-Ray shielding segment held the largest market share in 2024 and is expected to behave in the same fashion in the forecast period. This dominance is driven by X-ray imaging applications in medical diagnostics, dentistry, and industrial inspections. Radiation shielding glass for X-ray protection has high transparency and optical clarity, apart from a strong attenuation property that makes it an appropriate material for observation windows in hospitals, laboratories, and control rooms. With safety standards becoming stringent and the need for imaging being ever-expanding across the world, manufacturers have started using more sophisticated materials such as lead-free bismuth or barium-based glass for radiation shielding. Such glass provides good radiation protection and is environmentally friendly. These glasses are light, impact-resistant, and can be shaped easily, making them suitable for the design of modern medical facilities where the elements of visibility, hygiene, and modularity are given equal importance. The elevated use of portable and small-sized machines has brought tremendous changes in increasing demand for shielding glass solutions customized to requirements. At present, the evolution of these materials is allowing for more design options, incorporating sustainable building technologies, and reduced complexities in installation. This has further enhanced the use of these products in both public and private healthcare infrastructure.

Based on applications, the radiation shielding glass market is segmented into Medical, Industrial, and Nuclear Energy. In 2024, the medical segment dominated the market and is expected to maintain its leading position throughout the forecast period. This is mainly attributable to the persistent development of the hospital and diagnostic center-based diagnostic imaging technologies such as X-ray, CT, and fluoroscopy. Radiation shielding glass works in medical environments by permitting safe observation and providing the highest level of radiation protection to nurses and patients. Modern purposes of radiation shielding glass can include being an aesthetic element and an active architectural feature in open and transparent medical facility layouts without compromising on safety, of course. With the healthcare system devolving into precision diagnostics and minimally invasive procedures, the demand for super-clear, lead, and lead-free shielding glass has seen tremendous growth; on the other hand, with the rise in radiological safety regulations across clinical settings, installations have witnessed a growing number across both public and private health infrastructures. The market finds additional impetus in the increasing thrust laid on modular, mobile diagnostic units, along with the concurrent global thrust on healthcare infrastructure development. With medical imaging soaring higher and farther between developed and developing economies, radiation shielding glass sits at the core of the diagnostic set-up, making it safe, compliant, and friendly to patients. In December 2023, Carestream Health launched the DRX-Rise Mobile X-Ray System advanced digital imaging solution-imparting a cost-effective pathway for customers to either choose or increase their digital X-ray capabilities.

For a better understanding of the market of the radiation shielding glass market, the market is analyzed based on its worldwide presence in countries such as North America (The US, Canada, and Rest of North America), Europe (Germany, The UK, France, Italy, Spain, Rest of Europe), Asia-Pacific (China, Japan, India, South Korea, Rest of Asia-Pacific), Rest of World. The North America radiation shielding glass market dominated the global radiation shielding glass market in 2024 and is forecasted to remain in this position in the forecast period. This dominance is primarily led by the region's advanced healthcare infrastructure, a large number of diagnostic imaging procedures, and stringent regulatory compliance concerning radiation safety. In the United States, investments have been made consistently to upgrade hospitals, integrate radiation-safe construction materials, wherein the radiation shielding glass has become a standard option across medical and dental imaging rooms, oncology departments, and mobile diagnostic units. Further, the presence of highly developed nuclear power and several research centers that require highly technical radiation protection materials enhances a rather high demand. Growth in the market is further supplemented by increased preference for environmentally friendly lead-free shielding solutions and the modular construction approach adopted in the healthcare and defense sectors. Also, continuous technological innovation undertaken by key manufacturers in the region and health as well and safety-promoting government policies make North America a mature and crucial market for radiation shielding glass.

Some of the major players operating in the market include Corning Incorporated, SCHOTT AG, Nippon Electric Glass Co., Ltd., RAY-BAR ENGINEERING CORP, Nuclear Lead Co. Inc., Radiation Protection Products, Inc., Lead Glass Pro., MAVIG GmbH, Midland Lead, and MarShield Custom Radiation Shielding.

TABLE OF CONTENTS

1.Market Introduction

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.Research Methodology Or Assumption

  • 2.1. Research Process of the Radiation Shielding Glass Market
  • 2.2. Research Methodology of the Radiation Shielding Glass Market
  • 2.3. Respondent Profile

3.Executive Summary

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
    • 3.2.1. Market Growth Intensity
  • 3.3. Regional Outlook

4.Market Dynamics

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. PESTEL Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Investment Scenario
    • 4.7.3. Industry Insights: Leading Startups and Their Unique Strategies

5.Pricing Analysis

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.Global Radiation Shielding Glass Market Revenue (USD Bn), 2023-2033F

7.Market Insights By Type

  • 7.1. Lead Glass
  • 7.2. Lead-Free Glass

8.Market Insights By Radiation Type

  • 8.1. X-Ray Shielding
  • 8.2. Gamma Ray Shielding
  • 8.3. Neutron Shielding

9.Market Insights By Application

  • 9.1. Medical
  • 9.2. Industrial
  • 9.3. Nuclear Energy

10.Market Insights By Region

  • 10.1. North America
    • 10.1.1. The US
    • 10.1.2. Canada
    • 10.1.3. Rest of North America
  • 10.2. Europe
    • 10.2.1. Germany
    • 10.2.2. The UK
    • 10.2.3. France
    • 10.2.4. Italy
    • 10.2.5. Spain
    • 10.2.6. Rest of Europe
  • 10.3. Asia-Pacific
    • 10.3.1. China
    • 10.3.2. Japan
    • 10.3.3. India
    • 10.3.4. South Korea
    • 10.3.5. Rest of Asia-Pacific
  • 10.4. Rest of World

11.Value Chain Analysis

  • 11.1. Marginal Analysis
  • 11.2. List of Market Participants

12.Competitive Landscape

  • 12.1 Competition Dashboard
  • 12.2. Competitor Market Positioning Analysis
  • 12.3. Porter Five Forces Analysis

13.Company Profiles

  • 13.1. Corning Incorporated
    • 13.1.1. Company Overview
    • 13.1.2. Key Financials
    • 13.1.3. SWOT Analysis
    • 13.1.4. Product Portfolio
    • 13.1.5. Recent Developments
  • 13.2. SCHOTT AG
  • 13.3. Nippon Electric Glass Co., Ltd.
  • 13.4. RAY-BAR ENGINEERING CORP
  • 13.5. Nuclear Lead Co. Inc.
  • 13.6. Radiation Protection Products, Inc.
  • 13.7. Lead Glass Pro.
  • 13.8. MAVIG GmbH
  • 13.9. Midland Lead
  • 13.10. MarShield Custom Radiation Shielding

14.Acronyms & Assumption

15.Annexure

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦