½ÃÀ庸°í¼­
»óǰÄÚµå
1615886

¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå ±Ô¸ð : ±¸¼º¿ä¼Òº°, ¿ëµµº°, Á¶Á÷ ±Ô¸ðº°, »ê¾÷º°, Áö¿ªº°, ¿¹Ãøº°, Áö¿ªº° ½ÃÀå ±Ô¸ð

Global In-Memory Analytics Market Size By Components, By Application, By Organization Size, By Industry Vertical, By Geographic Scope And Forecast

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Verified Market Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 202 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Àθ޸𸮠ºÐ¼® ½ÃÀå ±Ô¸ð¿Í Àü¸Á

Àθ޸𸮠ºÐ¼® ½ÃÀå ±Ô¸ð´Â 2023³â 29¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³âºÎÅÍ 2030³â±îÁö ¿¹Ãø ±â°£ µ¿¾È 18.38%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 69¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è Àθ޸𸮠ºÐ¼® ½ÃÀå Ȱ¼ºÈ­ ¿äÀÎ

Àθ޸𸮠ºÐ¼® ½ÃÀå ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº ´Ù¾çÇÑ ¿äÀÎÀÇ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.

ºñÁî´Ï½º ÀÇ»ç°áÁ¤ÀÇ °¡¼ÓÈ­

ºñÁî´Ï½º ÀÇ»ç°áÁ¤ °¡¼ÓÈ­: ±â¾÷µéÀº ºü¸¥ ÅëÂû·Â°ú ÀÇ»ç°áÁ¤À» À§ÇØ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®°¡ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. Àθ޸𸮠ºÐ¼®ÀÇ Ã¤ÅÃÀº ±âÁ¸ µð½ºÅ© ±â¹Ý ¹æ½Äº¸´Ù ´õ ºü¸£°Ô µ¥ÀÌÅ͸¦ ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

ºòµ¥ÀÌÅÍÀÇ ¼ºÀå :

ºòµ¥ÀÌÅͰ¡ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷µéÀº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ º¸´Ù ºü¸£°í È¿°úÀûÀ¸·Î ºÐ¼®ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ã¾Æ¾ß ÇÕ´Ï´Ù. ºòµ¥ÀÌÅÍ °ü¸®¿¡´Â Àθ޸𸮠ºÐ¼®ÀÌ Á¦°øÇÏ´Â ¼Óµµ¿Í È®À强ÀÌ ÇÊ¿äÇÕ´Ï´Ù.

±â¼úÀÇ Áøº¸ :

Àθ޸𸮠ºÐ¼®Àº RAM °¡°ÝÀÇ Ç϶ô°ú °è»ê ¼ÓµµÀÇ Çâ»ó µî ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ º¸´Ù Àú·ÅÇÏ°í ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º(BI) µµ±¸ÀÇ È°¿ë È®´ë:

Á¶Á÷µéÀº Àθ޸𸮠ºÐ¼®À» Ȱ¿ëÇÏ¿© º¸°í, µ¥ÀÌÅÍ ½Ã°¢È­ ¹× ÀÇ»ç°áÁ¤À» °³¼±Çϱâ À§ÇØ BI ÅøÀ» Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëÇϰí ÀÖ½À´Ï´Ù.

Ŭ¶ó¿ìµå µµÀÔ:

Ŭ¶ó¿ìµå Ç÷§ÆûÀº ÇÊ¿äÇÑ ±Ô¸ð¿Í ÀÎÇÁ¶ó¸¦ Á¦°øÇϱ⠶§¹®¿¡ Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀ¸·ÎÀÇ ÀüȯÀ¸·Î Àθ޸𸮠ºÐ¼® ¼Ö·ç¼ÇÀÇ ±¸ÇöÀÌ ½¬¿öÁ³½À´Ï´Ù.

°æÀï¿ìÀ§ :

µ¥ÀÌÅÍ Ã³¸® ¼Óµµ¸¦ Çâ»ó½ÃŰ°í º¸´Ù À¯¿¬Çϰí Áö½ÄÀÌ Ç³ºÎÇÑ ºñÁî´Ï½º Àü·«À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ±â¾÷µéÀº °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ Àθ޸𸮠ºÐ¼®À» µµÀÔÇϰí ÀÖ½À´Ï´Ù.

IoT¿ÍÀÇ ÅëÇÕ :

»ç¹°ÀÎÅͳÝ(IoT)ÀÌ ¼ºÀåÇÔ¿¡ µû¶ó ½Ç½Ã°£À¸·Î ó¸®ÇØ¾ß ÇÏ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅÍ³Ý µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ºÐ¼®Çϱâ À§Çؼ­´Â Àθ޸𸮠ºÐ¼®ÀÌ ÇÊ¿äÇÕ´Ï´Ù.

¿¹Ãø ºÐ¼® °­È­:

¿¹Ãø ºÐ¼®Àº ÆÐÅϰú ÇൿÀ» ¿¹ÃøÇÏ´Â ¼ö´ÜÀ¸·Î Á¡Á¡ ´õ ¸¹Àº ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àθ޸𸮠ºÐ¼®À» »ç¿ëÇÏ¸é µ¥ÀÌÅÍ Ã³¸® ¼Óµµ¸¦ ³ô¿© ¿¹Ãø ¸ðµ¨ÀÇ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¼¼°è Àθ޸𸮠ºÐ¼® ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ

³ôÀº µµÀÔ ºñ¿ë :

Àθ޸𸮠ºÐ¼® ¼Ö·ç¼ÇÀ» µµÀÔÇϱâ À§Çؼ­´Â ¸¹Àº ¼±Çà ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¿©±â¿¡´Â Àü¿ë ¼ÒÇÁÆ®¿þ¾î, ´ë¿ë·® RAMÀÌ Å¾ÀçµÈ Çϵå¿þ¾î, ±×¸®°í ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ÇöÀç IT ÀÎÇÁ¶ó¿Í ÅëÇÕÇÏ´Â µ¥ µå´Â ºñ¿ëÀÌ Æ÷ÇԵ˴ϴÙ. Áß¼Ò±â¾÷(SME)ÀÇ °æ¿ì, ÀÌ·¯ÇÑ ºñ¿ëÀº °¨´çÇÒ ¼ö ¾ø´Â ¼öÁØÀÏ ¼ö ÀÖ½À´Ï´Ù.

ÅëÇÕÀÇ º¹À⼺ :

Àθ޸𸮠ºÐ¼®À» ±âÁ¸ ·¹°Å½Ã ½Ã½ºÅÛ ¹× µ¥ÀÌÅͺ£À̽º¿Í ÅëÇÕÇÏ´Â °ÍÀº ¾î·Æ°í ½Ã°£ÀÌ ¿À·¡ °É¸± ¼ö ÀÖ½À´Ï´Ù. ¿øÈ°ÇÑ ÅëÇÕÀ» À§Çؼ­´Â ƯÁ¤ ±â¼ú°ú °æÇèÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ Á¶Á÷Àº Á¾Á¾ ¾î·Á¿ò¿¡ Á÷¸éÇÏ°Ô µË´Ï´Ù.

µ¥ÀÌÅÍ º¸¾È ¹®Á¦:

µ¥ÀÌÅÍ º¸¾È ¹®Á¦

Àθ޸𸮠¾Ö³Î¸®Æ½½º´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î °ü¸®ÇØ¾ß ÇϹǷÎ, ÀÌ·¯ÇÑ µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾ÈÀ» º¸È£ÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ±â¾÷µéÀº µ¥ÀÌÅÍ À¯Ãâ °¡´É¼º°ú ¾ö°ÝÇÑ º¸¾È ÇÁ·ÎÅäÄÝÀÇ Çʿ伺 ¶§¹®¿¡ ÀÌ·¯ÇÑ ¼Ö·ç¼Ç µµÀÔÀ» ÁÖÀúÇÒ ¼ö ÀÖ½À´Ï´Ù.

È®À强 ¹®Á¦:

È®À强 ¹®Á¦

Àθ޸𸮠ºÐ¼®Àº ºü¸¥ µ¥ÀÌÅÍ Ã³¸®°¡ °¡´ÉÇÏÁö¸¸, ´ë·®ÀÇ µ¥ÀÌÅ͸¦ °ü¸®Çϱâ À§ÇØ ½Ã½ºÅÛÀ» È®ÀåÇÏ´Â °ÍÀº ºñ¿ëÀÌ ¸¹ÀÌ µé°í ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ È®À强Àº RAMÀÇ Çϵå¿þ¾î Á¦¾àÀ¸·Î ÀÎÇØ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.

Çϵå¿þ¾î ÀÇÁ¸¼º

: ƯÈ÷ Àθ޸𸮠ºÐ¼®¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â °í¼º´É Çϵå¿þ¾î¿¡´Â Å« RAM Å©±â°¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÇÁ¸¼ºÀº À¯Áöº¸¼ö ¹× Çϵå¿þ¾î °íÀå ¹®Á¦¸¦ ¾ß±âÇÏ°í ½Ã½ºÅÛ ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

¼÷·Ã°øÀÇ ºÎÀç :

Àθ޸𸮠ºÐ¼®À» µµÀÔÇÏ·Á¸é ±â¼ú°ú ºñÁî´Ï½º »óȲ¿¡ ¸Â°Ô Àû¿ëÇÏ´Â ¹æ¹ýÀ» ÀÌÇØÇÏ´Â Àü¹®°¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àü¹® ÀηÂÀÇ ºÎÁ·Àº ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀÇ µµÀÔ°ú È¿À²ÀûÀΠȰ¿ëÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠°ü·Ã ¿ì·Á »çÇ×:

µ¥ÀÌÅÍ Ã³¸®, ÀúÀå, ÇÁ¶óÀ̹ö½Ã °ü·Ã ±ÔÁ¦´Â ºÐ¾ß¿Í Áö¿ª¿¡ µû¶ó ´Ù¸¨´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â ±Øº¹ÇÏ±â ¾î·Æ°í, ÀϺΠ½ÃÀå¿¡¼­´Â Àθ޸𸮠ºÐ¼® µµ±¸ÀÇ »ç¿ëÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå¿¡ ´ëÇÑ ÀÌÇØ¿Í ÀνÄ:

Àθ޸𸮠ºÐ¼®ÀÇ ÀåÁ¡¿¡µµ ºÒ±¸Çϰí ÀáÀçÀû »ç¿ëÀÚ´Â ¾ÆÁ÷ Àθ޸𸮠ºÐ¼®¿¡ ´ëÇÑ ÀÌÇØ°¡ ºÎÁ·Çϰí ÀÎÁöµµ°¡ ³·½À´Ï´Ù. Àθ޸𸮠ºÐ¼®ÀÇ ºñ¿ë°ú º¹À⼺¿¡ ´ëÇÑ ½ÅÈ­·Î ÀÎÇØ ½ÃÀå È®´ë¿¡ °É¸²µ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

´ë¾È ±â¼ú °æÀï:

µ¥ÀÌÅÍ ºÐ¼® ¾÷°è¿¡´Â Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼®, ¸Ó½Å·¯´× ¼Ö·ç¼Ç, ÀüÅëÀûÀÎ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 µî ´Ù¾çÇÑ ±â¼úµéÀÌ °æÀïÇϰí ÀÖ½À´Ï´Ù. Àθ޸𸮠ºÐ¼®ÀÇ ¼ºÀåÀº ´Ù¾çÇÑ ´ëü ±â¼ú°úÀÇ °æÀïÀ¸·Î ÀÎÇØ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : ¼­·Ð

  • ½ÃÀå °³¿ä
  • Á¶»ç ¹üÀ§
  • ÀüÁ¦Á¶°Ç

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå VERIFIED MARKET RESEARCHÀÇ Á¶»ç ¹æ¹ý

  • µ¥ÀÌÅÍ ¸¶ÀÌ´×
  • °ËÁõ
  • ÇÁ¶óÀ̸Ӹ® ÀÎÅͺä
  • µ¥ÀÌÅÍ ¼Ò½º ¸®½ºÆ®

Á¦4Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå Àü¸Á

  • °³¿ä
  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
  • Porter's Five Forces ¸ðµ¨
  • ¹ë·ùüÀÎ ºÐ¼®

Á¦5Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • °³¿ä
  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦6Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • °³¿ä
  • Áß¼Ò±â¾÷(SMB)
  • ´ë±â¾÷

Á¦7Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : ¾÷°èº°

  • °³¿ä
  • Åë½Å ¹× IT
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¦Á¶/Á¤ºÎ/¹æÀ§
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • ¼Ò¸Å ¹× E-Commerce
  • ¿î¼Û ¹× ¹°·ù
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ±âŸ

Á¦8Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : ¿ëµµº°

  • °³¿ä
  • ¸®½ºÅ© °ü¸® ¹× ºÎÁ¤ °¨Áö
  • ÆÇ¸Å ¹× ¸¶ÄÉÆÃ ÃÖÀûÈ­
  • À繫 °ü¸®
  • °ø±Þ¸Á ÃÖÀûÈ­
  • ¿¹ÃøÀû ÀÚ»ê°ü¸®
  • Á¦Ç° ¹× ÇÁ·Î¼¼½º °ü¸®
  • ±âŸ

Á¦9Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : Áö¿ªº°

  • °³¿ä
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¼¼°è ±âŸ Áö¿ª
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå °æÀï ±¸µµ

  • °³¿ä
  • ±â¾÷ÀÇ ½ÃÀå ¼øÀ§
  • ÁÖ¿ä ¹ßÀü Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • SAP(Germany)
  • Oracle(US)
  • Kognitio(UK)
  • MicroStrategy(US)
  • SAS Institute(US)
  • ActiveViam(UK)
  • IBM(US)
  • Information Builders(US)
  • Hitachi(Japan)
  • Software AG(Germany)

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • Á¦Ç° Ãâ½Ã/°³¹ß
  • ÀμöÇÕº´(M&A)
  • »ç¾÷ È®´ë
  • ÆÄÆ®³Ê½Ê°ú Á¦ÈÞ

Á¦13Àå ºÎ·Ï

  • °ü·Ã Á¶»ç
LSH 25.01.02

In-Memory Analytics Market Size And Forecast

In Memory Analytics Market size was valued at USD 2.98 Billion in 2023 and is projected to reach USD 6.93 Billion by 2030 , growing at a CAGR of 18.38% during the forecast period 2024-2030.

Global In-Memory Analytics Market Drivers

The market drivers for the In-Memory Analytics Market can be influenced by various factors. These may include: Accelerating Business Decisions: Real-time data processing is becoming more and more necessary for businesses in order to obtain fast insights and make choices. Adoption of in-memory analytics is fueled by its ability to analyze data more quickly than with conventional disk-based techniques.

Big Data Growth:

As big data continues to expand exponentially, businesses are under pressure to come up with faster, more effective methods for analyzing vast amounts of data. Big data management requires speed and scalability, which in-memory analytics offers.

Technological Advancements:

In-memory analytics is now more affordable and widely available thanks to improvements in technology, including lower RAM prices and faster computation.

Growing Use of Business Intelligence (BI) Tools:

Organizations are utilizing BI tools more and more, which make use of in-memory analytics to improve reporting, data visualization, and decision-making.

Cloud Adoption:

As cloud platforms offer the required scale and infrastructure, the move to cloud computing has made it easier to implement in-memory analytics solutions.

Competitive Advantage:

By boosting their data processing speeds and enabling more flexible and knowledgeable business strategies, organizations are implementing in-memory analytics to obtain a competitive advantage.

Integration with IoT:

As the Internet of Things (IoT) grows, enormous volumes of data are produced that require processing in real time. Efficient analysis of Internet of Things data requires in-memory analytics.

Enhancing Predictive Analytics:

Predictive analytics is becoming more and more in demand as a means of predicting patterns and behavior. Predictive models perform better when using in-memory analytics since it allows for faster data processing.

Global In-Memory Analytics Market Restraints

High Expenses of Implementation:

Implementing in-memory analytics solutions comes with a hefty upfront investment. This covers the price of specialized software, hardware with lots of RAM, and integrating these systems with the current IT infrastructure. For small and medium-sized businesses (SMEs), these expenses could be unaffordable.

Integration Complexity:

It might be difficult and time-consuming to integrate in-memory analytics with current legacy systems and databases. Organizations frequently face difficulties because seamless integration requires specific skills and experience.

Data Security Issues:

As in-memory analytics requires managing massive amounts of data in real-time, protecting the privacy and security of such data is crucial. Organizations may be discouraged from implementing these solutions by the possibility of data breaches and the requirement for strict security protocols.

Problems with Scalability:

Although in-memory analytics provides fast data processing, scaling these systems to manage large amounts of data can be expensive and difficult. The scalability of these systems may be impacted by the RAM's hardware constraints.

Hardware Dependency

: Large RAM sizes, in particular, are essential for high-performance hardware to be available for in-memory analytics. This dependence may affect the system's dependability by causing problems with maintenance and hardware malfunctions.

Absence of Skilled Workers:

Adoption of in-memory analytics necessitates knowledgeable experts who comprehend the technology as well as how business contexts apply it. The adoption and efficient use of these solutions may be hampered by the lack of such qualified workers.

Concerns about Regulation and Compliance:

Regulations pertaining to data processing, storage, and privacy differ between sectors and geographical areas. It can be difficult to navigate these rules, and doing so may prevent the use of in-memory analytics tools in some markets.

Understanding and Perception of the Market:

Potential users still don't fully comprehend or are aware of in-memory analytics, despite its benefits. Myths regarding its expense and complexity may impede the expansion of the market.

Alternative Technologies' Competition:

Numerous technologies, including cloud-based analytics, machine learning solutions, and traditional data warehousing, are competing in the data analytics industry. The growth of in-memory analytics may be limited by the competition from various alternatives.

Global In-Memory Analytics Market Segmentation Analysis

The Global In-Memory Analytics Market is segmented on the basis of Components, Applications, Organizational Size, Industry Vertical, and Geography.

In-Memory Analytics Market, By Components

  • Softwares
  • Services

Based on Components, the in-memory analytics market is bifurcated into Services and Software. The Software segment is anticipated to dominate the global market during the forecasted period, attributing to the factors such as increased speed, quick data analysis, and achieving real-time intuitions from the stored data. The reduced prices in RAM and technological advancements in computing power will help the Software segment prosper during the forecasted period.

In-Memory Analytics Market, By Organization Size

  • Small and Medium-Sized Businesses (SMBs)
  • Large Enterprises

Based on Organization Size, the in-memory analytics market is bifurcated into Small and Medium-Sized Businesses (SMBs) and Large Enterprises. Small and Medium-Sized Businesses are anticipated to witness the highest CAGR growth during the forecast period. It is due to small enterprises' advancement from outdated analytical tools to advanced in-memory analytical tools. The intense competition among the business further aids the segment growth.

In-Memory Analytics Market, By Industry Vertical

  • Banking, Financial Services, and Insurance (BFSI)
  • Telecommunications and IT
  • Retail and eCommerce
  • Healthcare and Life sciences
  • Manufacturing, Government, and Defense
  • Energy and Utilities
  • Media and Entertainment
  • Transportation and logistics
  • Others

Based on Industry Vertical, The In-Memory Analytics Market is bifurcated into Banking, Financial Services, and Insurance (BFSI), Telecommunications and IT, Retail and eCommerce, Healthcare and Life sciences, Manufacturing, Government, and Defense, Energy and Utilities, Media and Entertainment, Transportation and logistics, and Others. Banking, Financial Services, and Insurance (BFSI) will dominate the market during the forecasted period. It is because BSFI assembles large amounts of data from many sources; in-memory analytics also allows the user to manage fraud detection in real time, easing the user to make quick decisions.

In-Memory Analytics Market, By Applications

  • Risk management and fraud detection
  • Sales and marketing optimization
  • Financial management
  • Supply chain optimization
  • Predictive asset management
  • Product and process management
  • Others

Based on Applications, The In-Memory Analytics Market is bifurcated into Risk management and fraud detection, Sales and marketing optimization, Financial Management, Supply chain optimization, Predictive asset management, Product and process management, and Others. The Risk Management and Fraud Detection segment will lead the market during the forecast period. The domination can be attributed to the rapid risk intelligence capabilities to fight financial and operational risks. The companies use advanced analytical tools to identify, monitor, analyze, address, and quickly recuperate from significant risk events.

In-Memory Analytics Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the world
  • On the basis of Geography, The Global In-Memory Analytics Market is classified into North America, Europe, Asia Pacific, and the Rest of the world. North America is anticipated to lead the global market for in-memory analytics, owing to the massive number of in-memory analytics vendors in the region. The early adoption of new technologies and the increased focus on data analytics by several leading organizations further aid the market growth in the given area.

Key Players

  • The major players in the In-Memory Analytics Market are:
  • Oracle
  • SAP
  • MicroStrategy
  • ActiveViam
  • Information Builders
  • Hitachi
  • International Business Machines
  • Software
  • SAS Institute

TABLE OF CONTENTS

1 INTRODUCTION TO THE GLOBAL IN-MEMORY ANALYTICS MARKET

  • 1.1 Overview of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Data Mining
  • 3.2 Validation
  • 3.3 Primary Interviews
  • 3.4 List of Data Sources

4 GLOBAL IN-MEMORY ANALYTICS MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porter's Five Force Model
  • 4.4 Value Chain Analysis

5 GLOBAL IN-MEMORY ANALYTICS MARKET, BY COMPONENTS

  • 5.1 Overview
  • 5.2 Services
  • 5.3 Softwares

6 GLOBAL IN-MEMORY ANALYTICS MARKET, BY ORGANIZATION SIZE

  • 6.1 Overview
  • 6.2 Small and Medium-Sized Businesses (SMBs)
  • 6.3 Large Enterprises

7 GLOBAL IN-MEMORY ANALYTICS MARKET, BY INDUSTRY VERTICAL

  • 7.1 Overview
  • 7.2 Telecommunications and IT
  • 7.3 Banking, Financial Services, and Insurance (BFSI)
  • 7.4 Healthcare and Life sciences
  • 7.5 Manufacturing, Government, and Defense
  • 7.6 Energy and Utilities
  • 7.7 Retail and eCommerce
  • 7.8 Transportation and logistics
  • 7.9 Media and Entertainment
  • 7.10 Others

8 GLOBAL IN-MEMORY ANALYTICS MARKET, BY APPLICATION

  • 8.1 Overview
  • 8.2 Risk management and fraud detection
  • 8.3 Sales and marketing optimization
  • 8.4 Financial management
  • 8.5 Supply chain optimization
  • 8.6 Predictive asset management
  • 8.7 Product and process management
  • 8.8 Others

9 GLOBAL IN-MEMORY ANALYTICS MARKET, BY GEOGRAPHY

  • 9.1 Overview
  • 9.2 North America
    • 9.2.1 The US.
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 The UK.
    • 9.3.3 France
    • 9.3.4 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 Japan
    • 9.4.3 India
    • 9.4.4 Rest of Asia Pacific
  • 9.5 Rest of the World
    • 9.5.1 Latin America
    • 9.5.2 The Middle East and Africa

10 GLOBAL IN-MEMORY ANALYTICS MARKET COMPETITIVE LANDSCAPE

  • 10.1 Overview
  • 10.2 Company Market Ranking
  • 10.3 Key Development Strategies

11 COMPANY PROFILES

  • 11.1 SAP (Germany)
    • 11.1.1 Overview
    • 11.1.2 Financial Performance
    • 11.1.3 Product Outlook
    • 11.1.4 Key Developments
  • 11.2 Oracle (US)
    • 11.2.1 Overview
    • 11.2.2 Financial Performance
    • 11.2.3 Product Outlook
    • 11.2.4 Key Developments
  • 11.3 Kognitio (UK)
    • 11.3.1 Overview
    • 11.3.2 Financial Performance
    • 11.3.3 Product Outlook
    • 11.3.4 Key Developments
  • 11.4 MicroStrategy (US)
    • 11.4.1 Overview
    • 11.4.2 Financial Performance
    • 11.4.3 Product Outlook
    • 11.4.4 Key Developments
  • 11.5 SAS Institute (US)
    • 11.5.1 Overview
    • 11.5.2 Financial Performance
    • 11.5.3 Product Outlook
    • 11.5.4 Key Developments
  • 11.6 ActiveViam (UK)
    • 11.6.1 Overview
    • 11.6.2 Financial Performance
    • 11.6.3 Product Outlook
    • 11.6.4 Key Development
  • 11.7 IBM (US)
    • 11.7.1 Overview
    • 11.7.2 Financial Performance
    • 11.7.3 Product Outlook
    • 11.7.4 Key Developments
  • 11.8 Information Builders (US)
    • 11.8.1 Overview
    • 11.8.2 Financial Performance
    • 11.8.3 Product Outlook
    • 11.8.4 Key Developments
  • 11.9 Hitachi (Japan)
    • 11.9.1 Overview
    • 11.9.2 Financial Performance
    • 11.9.3 Product Outlook
    • 11.9.4 Key Development
  • 11.10 Software AG (Germany)
    • 11.10.1 Overview
    • 11.10.2 Financial Performance
    • 11.10.3 Product Outlook
    • 11.10.4 Key Development

12 KEY DEVELOPMENTS

  • 12.1 Product Launches/Developments
  • 12.2 Mergers and Acquisitions
  • 12.3 Business Expansions
  • 12.4 Partnerships and Collaborations

13 Appendix

  • 13.1 Related Research
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦