|
시장보고서
상품코드
1623197
디지털 트윈 테크놀러지 시장 규모 : 유형, 용도, 최종사용자 산업, 지역별(2024-2031년)Digital Twin Technology Market Size By Type, Application, End-User Industry, & Region for 2024-2031 |
||||||
디지털 트윈 테크놀러지 시장은 인더스트리 4.0의 채택, IoT의 진보, 다양한 산업에서 예측 정비 및 제품 최적화의 수요에 의해 수요가 확대하고 있습니다. Verified Market Research의 애널리스트에 따르면 이 시장은 2024년에 543억 7,000만 달러의 매출을 밑돌며, 예측 기간 중 1,355억 8,000만 달러의 평가액에 달할 것으로 추산되고 있습니다.
빠르게 진화하는 이 시장에서 우위를 점하기 위해서는 지속적인 기술 혁신이 핵심입니다. 이러한 수요 증가로 인해 시장은 2024-2031년 연평균 12.10%의 성장률을 보일 것으로 예상됩니다.
디지털 트윈 기술의 정의/개요
디지털 트윈 기술은 기본적으로 물리적 물체나 시스템의 가상 복제본을 만드는 것입니다. 이 가상 모델은 지속적으로 데이터를 제공하는 센서를 통해 현실 세계와 연결됩니다.
디지털 트윈은 물리적 실체의 디지털 대응물 역할을 하며, 물리적 실체의 행동과 특성을 반영합니다. 이는 단순한 기계에서 도시 전체에 이르기까지 모든 것이 될 수 있습니다. 디지털 트윈은 기존 시뮬레이션과 달리 실시간 데이터로 지속적으로 업데이트됩니다.
기업은 디지털 트윈을 사용하여 제품이나 프로세스가 다른 조건에서 어떻게 작동할지 예측할 수 있습니다. 이를 통해 설계를 최적화하고 현실 세계에서 발생하기 전에 잠재적인 문제를 미리 파악할 수 있습니다.
사물인터넷(IoT)과 빅데이터 분석은 디지털 트윈의 기본입니다. 물리적 물체에 내장된 IoT 센서가 눈과 귀가 되어 성능, 작동 상태, 환경 요인에 대한 실시간 데이터를 지속적으로 수집합니다. 이 데이터 스트림은 업무의 두뇌인 빅데이터 분석 플랫폼으로 유입됩니다. 여기서 정교한 알고리즘이 데이터를 처리하여 귀중한 인사이트을 추출하고 패턴을 식별합니다. 이러한 인사이트는 디지털 트윈을 업데이트하고 개선하는 데 사용되어 물리적 대응물의 정확한 가상 표현이 될 수 있도록 보장합니다.
또한 기업은 항상 프로세스를 간소화하고, 비효율을 식별하고, 유지보수 필요성을 예측할 수 있는 방법을 찾고 있습니다. 디지털 트윈은 이를 가능하게 합니다. 가상으로 시나리오를 시뮬레이션함으로써 주요 기업은 실제 도입 전에 프로세스를 테스트하고 개선할 수 있으며, 상당한 비용 절감과 효율성 향상으로 이어질 수 있습니다.
제품을 시장에 빠르게 출시하기 위한 경쟁은 큰 원동력이 되고 있습니다. 디지털 트윈을 통해 기업은 물리적 모델을 구축하기 전에 가상으로 신제품을 프로토타입으로 제작하고 테스트할 수 있습니다. 이를 통해 개발 기간을 단축할 수 있을 뿐만 아니라 설계 결함을 조기에 발견하고 수정할 수 있으며, 시장 출시 시간을 단축할 수 있습니다.
디지털 트윈을 구현하고 유지하는 것은 복잡하고 비용이 많이 듭니다. 이러한 가상 모델을 구축하고 실행하려면 데이터 과학, IoT, 디지털 엔지니어링 등의 분야에서 상당한 전문 지식이 필요합니다. 기업은 데이터 수집 및 모델링에서 시뮬레이션 및 분석에 이르기까지 디지털 트윈의 전체 수명주기을 개발 및 관리하기 위해 숙련된 전문가를 고용해야 합니다.
서로 다른 디지털 트윈 솔루션은 서로 호환되지 않을 수 있으며, 이는 데이터 교환을 방해하고 기술의 전반적인 유용성을 제한할 수 있습니다. 표준화를 위한 노력이 진행되고 있지만, 플랫폼 간의 원활한 상호운용성을 보장하는 것은 여전히 어려운 과제입니다.
또한 디지털 트윈의 잠재적 이점은 분명하지만 ROI를 정량화하기는 어렵습니다. 이러한 불확실성으로 인해 기업은 특히 단기적으로 기술에 대한 투자를 주저하게 됩니다.
The Digital Twin Technology Market is growing in demand due to Industry 4.0 adoption, IoT advancements, and demand for predictive maintenance and product optimization in various industries. According to the analyst from Verified Market Research, the market is estimated to reach a valuation of 135.58USD Billion over the forecast by subjugating the revenue of 54.37 USD Billion in 2024.
Continuous innovation is key to staying ahead in this rapidly evolving market. This surge in demand enables the market to grow at aCAGR of 12.10 % from 2024 to 2031.
Digital Twin Technology Definition/ Overview
Digital twin technology is essentially creating a virtual replica of a physical object or system. This virtual model is linked to the real world through sensors that constantly feed its data.
digital twin acts as a digital counterpart to a physical entity, mirroring its behavior and characteristics. This can be anything from a simple machine to an entire city. Digital twins are distinct from traditional simulations in that they are constantly updated with real-time data, whereas simulations typically use static data sets.
Businesses can use digital twins to predict how a product or process will behave under different conditions. This helps in optimizing designs and identifying potential problems before they occur in the real world.
Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.
The Internet of Things (IoT) and big data analytics are the cornerstones of digital twins. IoT sensors embedded in physical objects act as the eyes and ears, constantly collecting real-time data on performance, operating conditions, and environmental factors. This data stream flows into big data analytics platforms, the brains of the operation. Here, sophisticated algorithms churn through the data, extracting valuable insights and identifying patterns. These insights are then used to update and refine the digital twin, ensuring it remains an accurate virtual representation of its physical counterpart.
Furthermore, Businesses are constantly seeking ways to streamline processes, identify inefficiencies, and predict maintenance needs. Digital twins empower them to do just that. By simulating scenarios virtually, companies can test and refine processes before real-world implementation, leading to significant cost savings and improved efficiency.
The race to bring products to market quickly is a major driver. Digital twins allow companies to virtually prototype and test new products before building physical models. This not only reduces development time but also allows for early identification and correction of design flaws, ultimately accelerating time to market.
Implementing and maintaining digital twins can be complex and expensive. Building and running these virtual models requires significant expertise in areas like data science, IoT, and digital engineering. Companies need to hire skilled professionals to develop and manage the digital twin throughout its lifecycle, from data collection and modeling to simulation and analysis.
Different digital twin solutions may not be compatible with each other, hindering data exchange and limiting the overall usefulness of the technology. Standardization efforts are underway, but ensuring seamless interoperability across platforms remains a challenge.
Moreover, While the potential benefits of digital twins are clear, quantifying the ROI can be challenging. This uncertainty can make businesses hesitant to invest in the technology, especially in the short term.
According to VMR analysis, Product Digital Twins are estimated to hold the largest market share during the forecast period. It focuses on optimizing performance and predicting the maintenance needs of individual products.
These are dominant in industries where individual products have high value and complexity, such as aerospace (think airplanes with millions of parts) or high-tech manufacturing (think advanced machinery with intricate control systems). By creating a digital replica of each product, incorporating data from sensors and historical performance, companies can achieve a level of precision in monitoring and simulation that would be impossible with physical prototypes alone. This allows them to predict maintenance needs well in advance, preventing costly downtime and potential safety hazards. Additionally, product digital twins can be used to optimize performance throughout the product's lifecycle.
According to VMR analysis, Manufacturing Vehicles are estimated to hold the largest market share during the forecast period.
Manufacturing often deals with products that boast intricate designs, incorporate expensive components, and are subject to stringent safety regulations (think airplanes or high-tech machinery). Digital twins excel at creating virtual replicas of these products, allowing for precise performance monitoring, predictive maintenance that can prevent costly downtime and potential safety hazards, and design optimization that can reduce manufacturing costs or improve product functionality.
Digital twins allow manufacturers to virtually prototype and test these machines, ensuring they meet safety standards and perform as expected before they are built in the real world. This not only reduces development costs but also helps to identify and rectify design flaws early in the process.
Digital Twin Technology
Report Methodology
According to VMR analysts, North America is estimated to dominate the Digital Twin Technology market during the forecast period. North America is home to a large number of leading technology companies that are at the forefront of developing and deploying digital twin solutions. These companies include Microsoft, PTC, Siemens, Ansys, and Dassault Systemes. These giants of the tech industry are not only investing heavily in the research and development of digital twin technologies but also actively implementing these solutions in various sectors.
The presence of established manufacturing industries in sectors like aerospace, automotive, and consumer products creates a strong demand for digital twins to optimize processes and product development.
Furthermore, Government initiatives and funding programs in North America are specifically designed to accelerate the adoption of digital twin technology across various industries. For example, the U.S. Department of Energy has launched programs that provide funding for research and development projects focused on using digital twins to improve energy efficiency in buildings and industrial facilities. Additionally, several states have enacted legislation that promotes the use of digital twins in manufacturing and other sectors.
Europe boasts a robust manufacturing sector and a growing focus on Industry 4.0 initiatives. Additionally, a skilled workforce and government support for digitalization are propelling the European digital twin market forward.
From aerospace and automotive giants like Airbus and BMW to leaders in industrial machinery like Siemens and Bosch, European companies are at the forefront of manufacturing innovation. This strong industrial base creates a significant demand for digital twins to optimize production lines, streamline supply chains, and improve product quality.
Europe is a hub of research and development in digital technologies. Government funding and initiatives are propelling advancements in artificial intelligence, big data analytics, and the Internet of Things (IoT), all of which are foundational elements of digital twin technology. A skilled workforce with expertise in engineering, data science, and software development further strengthens Europe's position in the digital twin market.
Furthermore, governments across Europe are actively promoting digitalization initiatives, including Industry 4.0, which relies heavily on digital twins. For example, Germany's Industry 4.0 strategy aims to create a digital transformation of manufacturing and digital twins are seen as a key technology for achieving this goal.
The digital twin technology market is a dynamic and competitive space teeming with established industry leaders, innovative startups, and a growing number of tech giants vying for a significant share of the market.
Some of the prominent players operating in the Digital Twin Technology
ABB
ANSYS
Autodesk
AVEVA
AWS (Amazon Web Services)
Dassault Systemes
GE Digital
General Electric
Hexagon
IBM
Microsoft
PTC
In February 2024, Ansys partnered with Dassault Systemes to integrate their respective simulation and 3DEXPERIENCE platform for a more holistic digital twin experience.
In July 2024, Dassault Systemes: Partnered with Ansys to integrate simulation tools with their 3DEXPERIENCE platform for a more comprehensive digital twin solution
In April 2024, Hexagon: Acquired PAS Global, a company specializing in asset lifecycle information management, which can be valuable for building and maintaining digital twins