|
시장보고서
상품코드
1624395
In Situ 하이브리다이제이션 시장 : 기술, 용도, 최종사용자, 지역별(2024-2031년)In Situ Hybridization Market By Technique (Fluorescent In Situ Hybridization, Chromogenic In Situ Hybridization, Radioactive In Situ Hybridization ), Application, End-User, & Region for 2024-2031 |
||||||
ISH(In Situ Hybridization)는 과학자와 의료진이 조직 조각에서 특정 핵산 서열을 식별할 수 있는 첨단 기술로서, 암을 포함한 수많은 질병의 진단 및 연구에 있으며, 그 중요성이 부각되고 있습니다. 이 기술은 자연 조직 내에서 유전자 이상, 감염성 물질, 특정 유전자의 발현을 감지하는 데 필수적입니다. 암 및 기타 유전성 질환의 발생률이 증가함에 따라 ISH와 같은 정밀하고 신뢰할 수 있는 진단 방법의 필요성이 증가함에 따라 시장은 2024년 18억 1,000만 달러의 매출을 돌파하고 2031년에는 약 33억 8,000만 달러의 가치에 도달할 것으로 예상됩니다.
ISH와 면역조직화학 및 차세대 염기서열 분석과 같은 다른 최신 진단 기술을 결합하면 질병의 병태생리에 대한 보다 종합적인 인사이트을 얻을 수 있습니다. 이러한 종합적인 방법은 환자 개개인의 맞춤 치료를 위해 광범위한 분자 프로파일링이 필수적인 맞춤의료에 특히 유용합니다. 그 결과, 임상 진단, 중개 연구, 신약 개발에서 ISH 조사의 용도가 확대되면서 헬스케어 및 생명공학 산업에서 수요가 증가하고 있으며, 2024-2031년 사이 8.97%의 연평균 복합 성장률(CAGR)로 성장할 것으로 예상됩니다.
In Situ hybridization(ISH)은 조직 부문나 세포와 같은 시료에서 DNA 또는 RNA의 특정 서열을 검출하는 효과적인 과학 기술입니다. 유전자 요소의 특정 위치를 정확히 찾아낼 수 있습니다. 기본적으로 ISH를 통해 연구자들은 특정 유전자 및 그 활성(RNA 형태)이 조직 세포의 어디에 있는지 확인할 수 있으며, 유전자 발현 패턴 및 세포 기능에 대한 중요한 인사이트을 얻을 수 있습니다.
In situ hybridization은 공간적 정보와 분자적 정보를 모두 제공할 수 있으므로 연구 및 의료 진단에 자주 활용되고 있습니다. 그 주요 용도 중 하나는 발생생물학 분야로, 생물의 성장과 발생을 통해 유전자가 어떻게 조절되고 발현되는지 이해하는 데 도움을 주고 있습니다.
ISH의 향후 응용은 의료 진단 및 연구를 포함한 다양한 분야에 변화를 가져올 것으로 예상됩니다. 가장 흥미로운 미래 용도 중 하나는 맞춤형 의료입니다. 헬스케어 분야가 보다 개인화된 치료 전략으로 전환하는 가운데, ISH는 암을 포함한 다양한 질병과 관련된 특정 유전자 마커를 발견하는 데 중요한 역할을 할 수 있습니다.
유전성 질환과 암 발생률 증가는 In Situ Hybridization(ISH) 비즈니스의 주요 촉진요인입니다. 세계보건기구(WHO)에 따르면 암은 2020년까지 약 1,000만 명이 사망할 것으로 예상되는 세계 2위의 사망 원인입니다. 전 세계에서 암 발병률이 증가함에 따라 신뢰할 수 있는 종양 검출 및 특성화를 위해 ISH와 같은 최신 진단 기술의 사용이 요구되고 있습니다. 미국 국립암연구소는 남녀의 39.5%가 일생 중 어느 시점에 암 진단을 받을 것으로 추정하고 있습니다. 이러한 높은 평생 위험도는 ISH와 같은 정밀진단 기술의 필요성이 증가하고 있음을 강조하고 있습니다.
또한 개인 맞춤형 치료와 표적치료제에 대한 관심이 높아진 것도 ISH 시장 확대에 기여하고 있습니다. 미국 국립보건원(NIH)에 따르면 유전 의학의 발달로 암을 포함한 다양한 질병에 대해 300개 이상의 맞춤형 의약품이 개발되고 있으며, ISH 기술은 치료법을 결정하고 환자의 결과를 예측하기 위한 유전자 마커와 바이오마커를 찾는 데 필수적입니다. 또한 유전질환과 암에 걸리기 쉬운 노인 인구의 확대가 ISH 기술에 대한 수요를 높이고 있습니다. UN은 2050년까지 전 세계 인구 6명 중 1명이 65세 이상이 될 것으로 예측하고 있으며, 이는 2019년 11명 중 1명에서 증가할 것으로 예상하고 있습니다.
유능한 전문가의 부족은 In Situ Hybridization(ISH) 시장에 영향을 미칠 수 있습니다. 그러나 여러 요인들이 이러한 우려를 상쇄하는 데 도움이 될 것으로 보입니다. 첫째, 정밀의료와 맞춤형 의료에 대한 관심이 높아지면서 ISH와 같은 분자진단 툴에 대한 수요가 증가하고 있습니다. 미국 국립보건원에 따르면 정밀의학 구상은 개인 맞춤형 치료의 필요성을 강조하는 전국 규모의 연구 코호트에 100만 명 이상의 자원자를 등록할 계획이라고 합니다. 이러한 추세는 더 많은 전문가들이 관련 직종으로 전문화되는 것을 확실히 촉진할 것으로 보입니다. 또한 자동화된 장비와 간소화된 프로토콜의 개발 등 ISH 기술의 발전으로 인해 더 많은 검사실 직원들이 이 접근법을 더 쉽게 이용할 수 있게 되었습니다.
또한 교육 기관과 업계 단체들도 적극적으로 기술 격차를 해소하기 위해 노력하고 있습니다. 미국 임상병리학회(ASCP)는 2013-2018년 인증 프로그램을 이수한 검사실 전문가의 수가 7.1% 증가했다고 보고했습니다. 또한 미국 노동 통계국은 2019년에서 2029년 사이에 의료 실험실 기술자 및 임상 실험실 기술자의 일자리가 전체 평균보다 빠르게 7% 증가할 것으로 예측했습니다. 이러한 증가는 ISH 기술을 전문으로 하는 잠재적인 전문가 풀이 확대되고 있음을 보여줍니다. 또한 교차 교육 프로그램 및 평생 교육 기회가 보편화되어 현재 검사실 직원들이 다양한 기술을 습득할 수 있는 기회가 많아지고 있습니다.
The growing need for In Situ Hybridization (ISH) is motivated by its importance in detecting and researching numerous diseases including cancer. ISH is a sophisticated technology that enables scientists and medical practitioners to identify specific nucleic acid sequences within tissue slices. This skill is critical for detecting genetic anomalies, infectious agents, and the expression of certain genes in their natural tissue context. As the incidence of cancer and other genetic illnesses rises, the necessity for precise and dependable diagnostic methods like ISH grows by enabling the market to surpass a revenue of USD 1.81 Billion valued in 2024 and reach a valuation of around USD 3.38 Billion by 2031.
The combination of ISH and other modern diagnostic techniques such as immunohistochemistry and next-generation sequencing is yielding more comprehensive insights into disease pathophysiology. This comprehensive method is especially useful in personalized medicine where extensive molecular profiling is essential for personalizing treatments to individual patients. As a result, ISH's rising applications in clinical diagnostics, translational research, and drug discovery are driving up demand in the healthcare and biotechnology industries by enabling the market to grow at aCAGR of 8.97% from 2024 to 2031.
In situ hybridization (ISH) is an effective scientific technique for detecting specific sequences of DNA or RNA within a sample such as a tissue segment or a cell. The phrase "in situ" means "in place," implying that this technology enables scientists to pinpoint the specific location of these genetic elements inside the biological milieu. Essentially, ISH allows researchers to see where certain genes or their activity (in the form of RNA) are situated in a tissue's cells providing vital insights into gene expression patterns and cellular function.
In situ hybridization is frequently utilized in research and medical diagnostics because of its ability to offer both spatial and molecular information. One of its key applications is in the field of developmental biology where it assists scientists in understanding how genes are regulated and expressed throughout organismal growth and development.
The future application of ISH is expected to transform a variety of disciplines including medical diagnostics and research. One of the most intriguing future uses is personalized medicine. As the healthcare sector shifts toward more personalized treatment strategies, ISH can play an important role in discovering specific genetic markers linked to various diseases including cancer.
Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.
The increasing incidence of genetic diseases and cancer is a major driver of the in situ hybridization (ISH) business. According to the World Health Organization (WHO), cancer is the world's second biggest cause of death accounting for roughly 10 million deaths by 2020. The rising global cancer incidence needs the use of modern diagnostic techniques such as ISH for reliable tumor detection and characterization. The National Cancer Institute estimates that 39.5% of men and women will be diagnosed with cancer at some point in their lives. This high lifetime risk highlights the increasing need for precise diagnostic techniques like ISH.
The growing emphasis on individualized treatment and targeted medicines also helps to expand the ISH market. The National Institutes of Health (NIH) says that developments in genetic medicine have resulted in the development of over 300 tailored drugs for a variety of disorders including cancer. ISH techniques are critical for finding genetic markers and biomarkers that inform therapy decisions and predict patient outcomes. Furthermore, the expanding older population which is more vulnerable to genetic illnesses and cancer increases the demand for ISH technology. The United Nations projects that by 2050, one in every six persons worldwide will be beyond the age of 65, up from one in every eleven in 2019.
A shortage of competent specialists could influence the in situ hybridization (ISH) market; however, numerous factors may help to offset this concern. First, the growing emphasis on precision medicine and individualized healthcare is increasing demand for molecular diagnostic tools such as ISH. According to the National Institutes of Health, the Precision Medicine Initiative intends to enroll 1 million or more volunteers in a national study cohort emphasizing the need for personalized treatment procedures. This tendency will certainly encourage more professionals to specialize in related professions. Furthermore, advances in ISH technology such as the creation of automated equipment and streamlined protocols are making the approach more accessible to a wider spectrum of laboratory personnel.
Additionally, educational institutions and industry associations are actively attempting to close the skills gap. The American Society for Clinical Pathology (ASCP) reported a 7.1% rise in the number of laboratory professionals who completed certification programs between 2013 and 2018. Furthermore, the U.S. Bureau of Labor Statistics predicts that medical and clinical laboratory technologist and technician jobs will expand by 7% between 2019 and 2029 faster than the overall average. This increase indicates an expanding pool of potential specialists who could specialize in ISH procedures. Furthermore, cross-training programs and continuing education opportunities are becoming more common allowing current laboratory employees to broaden their skill sets.
Fluorescent chromogenic in situ hybridization (CISH) is also an important technique, however it is less prevalent than FISH. CISH employs chromogenic substrates to provide a visible color reaction that is persistent and easy to interpret using a conventional light microscope. This method is especially useful in pathology laboratories for tissue-based analysis where persistent staining is required for long-term storage and examination of samples. While CISH has advantages in terms of visibility and ease of use, it does not match FISH's multiplexing capability and sensitivity.
In Situ, Hybridization (FISH) is currently the most common technique. FISH's extensive adoption and supremacy can be due to its great sensitivity, adaptability, and ability to perform multiplexing. This technology uses fluorescently labeled probes that bind to specific nucleic acid sequences within cells or tissues allowing researchers and physicians to observe and evaluate several targets at the same time using sophisticated fluorescence microscopy. FISH is especially useful in cytogenetics, where it is used to detect chromosomal abnormalities, and in cancer research to find genetic alterations and gene amplifications. Its ability to produce precise and consistent results makes it a popular choice in both clinical diagnosis and research contexts.
The demand for in situ hybridization for cancer diagnosis and research is one of the primary applications. This dominance stems from ISH's crucial role in detecting and defining specific genetic changes linked to distinct malignancies. Cancer research and diagnosis greatly benefit from ISH's capacity to detect gene amplifications, translocations, and biomarker expression levels in tissue samples. For example, ISH techniques are critical for identifying malignancies such as breast cancer as they can detect HER2 gene amplifications and guide therapy options. The rising global prevalence of cancer combined with a growing emphasis on individualized care fuels the demand for precise and dependable diagnostic techniques such as ISH. Furthermore, advances in ISH technology have improved its potential to deliver deep molecular insights which are critical for creating targeted medicines and improving patient outcomes.
Neuroscience is another important application, however not as prevalent as cancer diagnosis. ISH is used in neuroscience to analyze gene expression patterns in the brain and nervous system which is critical for understanding neurological illnesses and brain development. Researchers utilize ISH to map gene expression in different brain regions revealing information about illnesses including Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. The detailed spatial resolution of ISH enables scientists to explore how specific genes influence brain function and pathology, hence contributing to the creation of new treatments. While neurology is a rising and essential sector for ISH applications, cancer diagnosis remains the principal market driver owing to the urgent and high-impact clinical demand for precise and actionable cancer-related genetic information.
The in situ hybridization (ISH) market in North America is expected to grow significantly owing mostly to technical advancements in infrastructure. The region's rising cancer prevalence is a significant driver. The American Cancer Society estimates that in 2023, there will be 1.9 million new cancer cases diagnosed and 609,360 cancer deaths in the United States alone. Given the high incidence rate, improved diagnostic approaches such as ISH are required for reliable detection and treatment planning. Furthermore, the expanding use of personalized medicine approaches is increasing the demand for ISH procedures. According to the National Institutes of Health, precision medicine programs have garnered more than USD 200 Million in funding since 2015, demonstrating the value of personalized therapy tactics.
Another key contributor is North America's strong research and development infrastructure. The United States leads the world in biomedical research funding with the National Institutes of Health budget reaching USD 45 Billion by 2021. This significant investment encourages advancements in ISH technologies and applications. Furthermore, the presence of large pharmaceutical and biotechnology companies in the region helps to drive market expansion. According to the Pharmaceutical Research and Manufacturers of America (PhRMA), the US biopharmaceutical sector will invest an estimated USD 102.3 Billion in R&D in 2021, with a large amount of that going toward developing and implementing advanced diagnostic technologies such as ISH. The region's supremacy in the ISH market is also due to its well-developed healthcare infrastructure and high healthcare spending.
The Asia Pacific region is poised for significant growth in the in situ hybridization (ISH) market. According to the World Health Organization, new cancer cases in Asia are expected to increase from 8.8 million in 2018 to 11.5 million by 2025. This dangerous trend has spurred manufacturers and governments to make significant investments in advanced diagnostic technologies such as ISH. For example, the Japanese government has set aside approximately 46 billion yen (approximately USD 415 Million) on cancer research and development in its 2021 budget.
Another important driver is the rapid expansion of healthcare infrastructure and rising healthcare spending in emerging economies. The Indian government, for example, has stated plans to expand healthcare spending to 2.5% of GDP by 2025, up from 1.5% today. This increase in spending is anticipated to drive up the use of advanced diagnostic procedures such as ISH. Additionally, the increased emphasis on customized medicine and tailored therapies is driving up demand for ISH approaches. According to a report by the Asia Pacific Personalized Medicine Coalition, the region's personalized medicine market is predicted to develop at a CAGR of 15.6% from 2021-2026.
The in situ hybridization market is a dynamic and competitive space, characterized by a diverse range of players vying for market share. These players are on the run for solidifying their presence through the adoption of strategic plans such as collaborations, mergers, acquisitions, and political support. The organizations are focusing on innovating their product line to serve the vast population in diverse regions.
Some of the prominent players operating in the in situ hybridization market include:
Thermo Fisher Scientific, Inc.
Abbott
PerkinElmer, Inc.
BioView
Agilent Technologies, Inc.
Merck KGaA
Bio-Rad Laboratories, Inc.
In January 2023, Ikonisys SA teamed with Integrated Gulf Biosystems Group (IGB) to distribute the Ikoniscope20 Digital Fluorescence Microscope Solution in the Middle East, including Saudi Arabia, the UAE, Kuwait, Bahrain, and South Asian regions. This agreement intends to increase the reach of Ikonisys' oncology testing products.
In February 2023, Molecular Instruments, a spin-off of the California Institute of Technology introduced HCR RNA-CISH kits to improve automated chromogenic ISH procedures using RNAscope. These kits enable a double turnaround time at half the cost.