½ÃÀ庸°í¼­
»óǰÄÚµå
1342970

¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå Á¶»ç º¸°í¼­ : »ê¾÷ ºÐ¼®, ±Ô¸ð, Á¡À¯À², ¼ºÀå, µ¿Çâ, ¿¹Ãø(2023-2030³â)

Global Data Mining Tools Market Research Report - Industry Analysis, Size, Share, Growth, Trends and Forecast 2023 to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Value Market Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 395 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀÇ ¼¼°è ¼ö¿ä´Â 2022³â 38¾ï 1,000¸¸ ´Þ·¯¿¡¼­ 2030³â¿¡´Â 124¾ï 1,000¸¸ ´Þ·¯ °¡±î¿î ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, Á¶»ç ±â°£ÀÎ 2023-2030³â CAGRÀº 14.02%ÀÔ´Ï´Ù.

µ¥ÀÌÅÍ ¸¶ÀÌ´×Àº ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ Á¤¸®ÇÏ¿© µ¥ÀÌÅÍ ºÐ¼® ¹× ºñÁî´Ï½º ¹®Á¦ ÇØ°á¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ÆÐÅϰú °ü°è¸¦ ã¾Æ³»´Â ±â¼úÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¸¶ÀÌ´× ÇÁ·Î¼¼½º¿Í ÅøÀº ±â¾÷ÀÌ ¹Ì·¡ Ãß¼¼¸¦ ¿¹ÃøÇϰí Á¤º¸¿¡ ÀÔ°¢ÇÑ ºñÁî´Ï½º ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. µ¥ÀÌÅÍ ¸¶ÀÌ´×Àº Á¶Á÷ÀÇ ¿ì¼öÇÑ ºÐ¼® ÇÁ·Î±×·¥¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¸¶ÀÌ´×Àº µ¥ÀÌÅÍ ºÐ¼®ÀÇ Çʼö ¿ä¼ÒÀÌÀÚ µ¥ÀÌÅÍ °úÇÐÀÇ ±âº» Á¢±Ù ¹æ½Ä Áß Çϳª·Î, ÃÖ÷´Ü ºÐ¼® ±â¹ýÀ» »ç¿ëÇÏ¿© µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ °¡Ä¡ ÀÖ°í Àû¿ë °¡´ÉÇÑ Á¤º¸¸¦ ÃßÃâÇÏ´Â °ÍÀÔ´Ï´Ù. ¼º°øÀûÀÎ µ¥ÀÌÅÍ ¸¶ÀÌ´×Àº ¿î¿µ ¹× ºñÁî´Ï½º Àü·«À» °ü¸®ÇÏ´Â µ¥ ¿©·¯ °¡Áö Ãø¸é¿¡¼­ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ :

µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀÇ °ß°íÇÑ ¼ºÀåÀ» À̲ô´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ÀΰøÁö´É ¹× »ç¹°ÀÎÅͳÝ(IoT)°ú °°Àº ÷´Ü ±â¼úÀÇ ºÎ»ó, ƯÈ÷ ½ÅÈï °æÁ¦±¹¿¡¼­ ¿øÈ°ÇÑ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º¿¡ ´ëÇÑ °ø°ø ¹× ¹Î°£ ÅõÀÚ È®´ë, °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇÑ ÀÓº£µðµå ÀÎÅÚ¸®Àü½º ¼ö¿ä Áõ°¡ µîÀÌ ÀÖ½À´Ï´Ù. Áß¼Ò±â¾÷ Áõ°¡, Á¶Á÷ÀÇ µ¥ÀÌÅÍ ¾ç Áõ°¡, ±â¾÷ÀÇ µ¥ÀÌÅÍ ÀÚ»ê Ȱ¿ë¿¡ ´ëÇÑ ÀνÄ, °æÁ¦ÀÇ µðÁöÅÐÈ­, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ÃâÇöÀº µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ¼ºÀå¿¡ ´õ¿í ±â¿©ÇÒ °ÍÀÔ´Ï´Ù.

ÀÌ Á¶»ç º¸°í¼­´Â Porter's Five Forces ¸ðµ¨, ½ÃÀå ¸Å·Âµµ ºÐ¼® ¹× ¹ë·ùüÀÎ ºÐ¼®À» ´Ù·ì´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀº ¾÷°èÀÇ ±¸Á¶¸¦ ¸íÈ®ÇÏ°Ô ÆÄ¾ÇÇÏ°í ¼¼°è ¼öÁØ¿¡¼­ °æÀïÀÇ ¸Å·ÂÀ» Æò°¡ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ÅøÀº ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå¿¡¼­ °¢ ºÎ¹®À» Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø »ê¾÷ÀÇ ¼ºÀå°ú µ¿ÇâÀº ÀÌ ¿¬±¸¿¡ ´ëÇÑ ÀüüÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÕ´Ï´Ù.

Áö¿ªº° ºÐ¼® :

ÀÌ ¼½¼Ç¿¡¼­´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀÇ ÇöÀç ¹× ¹Ì·¡ ¼ö¿ä¸¦ °­Á¶ÇÏ´Â Áö¿ª Àü¸ÁÀ» ´Ù·ì´Ï´Ù. ¶ÇÇÑ ÀÌ º¸°í¼­´Â ¸ðµç ÁÖ¿ä Áö¿ªÀÇ °³º° ¿ëµµ ºÎ¹® ¼ö¿ä, ÃßÁ¤ ¹× ¿¹Ãø¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù.

¸ÂÃãÇü ¿ä±¸»çÇ×ÀÌ ÀÖ´Â °æ¿ì, ¹®ÀÇÇØÁֽñ⠹ٶø´Ï´Ù. ¸®¼­Ä¡ÆÀÀÌ °í°´ÀÇ ¿ä±¸¿¡ µû¶ó ¸ÂÃãÇü º¸°í¼­¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå ÁÖ¿ä ¿ä¾à

  • ½ÃÀå ÇÏÀ̶óÀÌÆ®
  • ¼¼°è ½ÃÀå ½º³À¼ô

Á¦3Àå µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø - »ê¾÷ ºÐ¼®

  • ¼­·Ð : ½ÃÀå ¿ªÇÐ
  • ½ÃÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • ¾÷°è µ¿Çâ
  • Porter's Five Forces ºÐ¼®
  • ½ÃÀåÀÇ ¸Å·Â ºÐ¼®

Á¦4Àå ¹ë·ùüÀÎ ºÐ¼®

  • ¹ë·ùüÀÎ ºÐ¼®
  • ¿øÀç·á ºÐ¼®
    • ¿øÀç·á ¸®½ºÆ®
    • ¿øÀç·á Á¦Á¶¾÷ü ¸®½ºÆ®
    • ÁÖ¿ä ¿øÀç·áÀÇ °¡°Ý µ¿Çâ
  • ÀáÀçÀû ¹ÙÀÌ¾î ¸®½ºÆ®
  • ¸¶ÄÉÆÃ Ã¤³Î
    • ´ÙÀÌ·ºÆ® ¸¶ÄÉÆÃ
    • ÀδÙÀÌ·ºÆ® ¸¶ÄÉÆÃ
    • ¸¶ÄÉÆÃ Ã¤³Î ¹ßÀü µ¿Çâ

Á¦5Àå COVID-19 ¹ß»ýÀÇ ¿µÇ⠺м®

Á¦6Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ºÐ¼® : ÄÄÆ÷³ÍÆ®º°

  • ÄÄÆ÷³ÍÆ®º° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • ÄÄÆ÷³ÍÆ®º° ºÐ¼®
  • Åø
  • ¼­ºñ½º

Á¦7Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ºÐ¼® : ¼­ºñ½ºº°

  • ¼­ºñ½ºº° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • ¼­ºñ½ºº° ºÐ¼®
  • ¸Å´ÏÁöµå ¼­ºñ½º
  • ÄÁ¼³ÆÃ°ú ½ÇÀå
  • ±âŸ(Áö¿ø¡¤Á¤ºñ, Æ®·¹À̴ס¤±³À°)

Á¦8Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ºÐ¼® : ºÎ¼­º°

  • ºÎ¼­º° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • ºÎ¼­º° ºÐ¼®
  • ¸¶ÄÉÆÃ
  • ÆÄÀ̳½½Ì
  • °ø±Þ¸Á°ú ¹°·ù
  • ¿ÀÆÛ·¹À̼Ç

Á¦9Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ºÐ¼® : ¾÷°èº°

  • ¾÷°èº° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • ¾÷°èº° ºÐ¼®
  • ¼Ò¸Å
  • ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè(BFSI)
  • ÇコÄɾî¿Í »ý¸í°úÇÐ
  • Åë½Å¡¤IT
  • Á¤ºÎ¡¤¹æÀ§
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • Á¦Á¶¾÷
  • ±âŸ(±³À°, ¹Ìµð¾î, ¿£ÅÍÅ×ÀÎ¸ÕÆ®)

Á¦10Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ºÐ¼® : µµÀÔ À¯Çüº°

  • µµÀÔ À¯Çüº° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • µµÀÔ À¯Çüº° ºÐ¼®
  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå

Á¦11Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ºÐ¼® : Á¶Á÷ ±Ô¸ðº°

  • Á¶Á÷ ±Ô¸ðº° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • Á¶Á÷ ±Ô¸ðº° ºÐ¼®
  • ´ë±â¾÷
  • Áß¼Ò±â¾÷(SMEs)

Á¦12Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ÆÇ¸Å°í ºÐ¼® : Áö¿ªº°

  • Áö¿ªº° Àü¸Á
  • ¼­·Ð
  • ºÏ¹Ì ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • ºÏ¹Ì : ºÎ¹®º°
    • ºÏ¹Ì : ±¹°¡º°
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´ ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • À¯·´ : ºÎ¹®º°
    • À¯·´ : ±¹°¡º°
    • ¿µ±¹
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ·¯½Ã¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • ¾Æ½Ã¾ÆÅÂÆò¾ç : ºÎ¹®º°
    • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º°
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä« ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • ¶óƾ¾Æ¸Þ¸®Ä« : ºÎ¹®º°
    • ¶óƾ¾Æ¸Þ¸®Ä« : ±¹°¡º°
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • Æä·ç
    • Ä¥·¹
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ºÎ¹®º°
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º°
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • À̽º¶ó¿¤
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦13Àå µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ±â¾÷ÀÇ °æÀï ±¸µµ

  • µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀÇ °æÀï
  • Á¦ÈÞ¡¤Çù·Â¡¤ÇÕÀÇ
  • ÇÕº´¡¤Àμö
  • ½ÅÁ¦Ç° ¹ßÇ¥
  • ±âŸ °³¹ß

Á¦14Àå ±â¾÷ °³¿ä

  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • ½ÃÀå ÁýÁßµµ
  • IBM(¹Ì±¹)
  • Microsoft(¹Ì±¹)
  • SAS Institute(¹Ì±¹)
  • Oracle(¹Ì±¹)
  • Intel(¹Ì±¹)
  • SAP SE(µ¶ÀÏ)
  • RapidMiner(¹Ì±¹)
  • KNIME(½ºÀ§½º)
  • Teradata(¹Ì±¹)
  • MathWorks(¹Ì±¹)
  • H2O.ai(¹Ì±¹)
  • Alteryx(¹Ì±¹)
  • FICO(¹Ì±¹)
  • Angoss(ij³ª´Ù)
  • Salford Systems(¹Ì±¹)
  • BlueGranite(¹Ì±¹)
  • Megaputer(¹Ì±¹)
  • Biomax Informatics(µ¶ÀÏ)
  • Frontline Systems(¹Ì±¹)
  • Dataiku(ÇÁ¶û½º)
  • Wolfram(¹Ì±¹)
  • Reltio(¹Ì±¹)
  • SenticNet(½Ì°¡Æ÷¸£)
  • Business Insight(º§±â¿¡)
  • SunTec India(µ¨¸®)
KSA 23.10.13

The global demand for Data Mining Tools Market is presumed to reach the market size of nearly USD 12.41 BN by 2030 from USD 3.81 BN in 2022 with a CAGR of 14.02% under the study period 2023 - 2030.

Data mining is the technique of sorting out large data sets to find patterns & relationships that can be used for data analysis and to solve business problems. Data mining processes and tools help enterprises to estimate future trends & make well-informed business decisions. Data mining is a vital component of outstanding analytics programs in organizations. It is an essential part of data analytics & is one of the fundamental approaches in data science, which use cutting-edge analytics methods to extract valuable & applicable information from data sets. Successful data mining helps in several aspects of managing operations and business strategies.

MARKET DYNAMICS:

The major drivers leading to the robust growth of the data mining tools market include the rise in advanced technologies like artificial intelligence & the internet of things (IoT), as well as growing public and private investments in software & services that enable seamless data processing, particularly in developing economies, and the rise in demand for embedded intelligence to gain a competitive advantage. The rise in small and medium-scale enterprises, the growing volume of organizational data, the awareness among businesses to use the data assets at their disposal, the digitalization of economies, and the emergence of cloud computing will further contribute to the market growth of data mining tools.

The research report covers Porter's Five Forces Model, Market Attractiveness Analysis, and Value Chain analysis. These tools help to get a clear picture of the industry's structure and evaluate the competition attractiveness at a global level. Additionally, these tools also give an inclusive assessment of each segment in the global market of data mining tools. The growth and trends of data mining tools industry provide a holistic approach to this study.

MARKET SEGMENTATION:

This section of the data mining tools market report provides detailed data on the segments at country and regional level, thereby assisting the strategist in identifying the target demographics for the respective product or services with the upcoming opportunities.

By Component

  • Tools
  • Services

By Service

  • Managed Services
  • Consulting And Implementation
  • Others (Support And Maintenance, Training And Education)

By Business Function

  • Marketing
  • Finance
  • Supply Chain And Logistics
  • Operations

By Industry Vertical

  • Retail
  • Banking, Financial Services, And Insurance (Bfsi)
  • Healthcare And Life Sciences
  • Telecom And IT
  • Government And Defense
  • Energy And Utilities
  • Manufacturing
  • Others (Education, And Media And Entertainment)

By Deployment Type

  • On-Premises
  • Cloud

By Organization Size

  • Large Enterprises
  • Small And Medium-Sized Enterprises (SMEs)

REGIONAL ANALYSIS:

This section covers the regional outlook, which accentuates current and future demand for the Data Mining Tools market across North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa. Further, the report focuses on demand, estimation, and forecast for individual application segments across all the prominent regions.

The research report also covers the comprehensive profiles of the key players in the market and an in-depth view of the competitive landscape worldwide. The major players in the data mining tools market include IBM (US), Microsoft (US), SAS Institute (US), Oracle (US), Intel (US), SAP SE (Germany), RapidMiner (US), KNIME (Switzerland), Teradata (US), MathWorks (US), H2O.ai (US), Alteryx (US), FICO (US), Angoss (Canada), Salford Systems (US), BlueGranite (US), Megaputer (US), Biomax Informatics (Germany), Frontline Systems (US), Dataiku (France), Wolfram (US), Reltio (US), SenticNet (Singapore), Business Insight (Belgium), and SunTec India (Delhi). This section consists of a holistic view of the competitive landscape that includes various strategic developments such as key mergers & acquisitions, future capacities, partnerships, financial overviews, collaborations, new product developments, new product launches, and other developments.

In case you have any custom requirements, do write to us. Our research team can offer a customized report as per your need.

TABLE OF CONTENTS

1 . PREFACE

  • 1.1. Report Description
    • 1.1.1. Objective
    • 1.1.2. Target Audience
    • 1.1.3. Unique Selling Proposition (USP) & offerings
  • 1.2. Research Scope
  • 1.3. Research Methodology
    • 1.3.1. Market Research Process
    • 1.3.2. Market Research Methodology

2 . EXECUTIVE SUMMARY

  • 2.1. Highlights of Market
  • 2.2. Global Market Snapshot

3 . DATA MINING TOOLS - INDUSTRY ANALYSIS

  • 3.1. Introduction - Market Dynamics
  • 3.2. Market Drivers
  • 3.3. Market Restraints
  • 3.4. Opportunities
  • 3.5. Industry Trends
  • 3.6. Porter's Five Force Analysis
  • 3.7. Market Attractiveness Analysis
    • 3.7.1 Market Attractiveness Analysis By Component
    • 3.7.2 Market Attractiveness Analysis By Service
    • 3.7.3 Market Attractiveness Analysis By Business Function
    • 3.7.4 Market Attractiveness Analysis By Industry Vertical
    • 3.7.5 Market Attractiveness Analysis By Deployment Type
    • 3.7.6 Market Attractiveness Analysis By Organization Size
    • 3.7.7 Market Attractiveness Analysis By Region

4 . VALUE CHAIN ANALYSIS

  • 4.1. Value Chain Analysis
  • 4.2. Raw Material Analysis
    • 4.2.1. List of Raw Materials
    • 4.2.2. Raw Material Manufactures List
    • 4.2.3. Price Trend of Key Raw Materials
  • 4.3. List of Potential Buyers
  • 4.4. Marketing Channel
    • 4.4.1. Direct Marketing
    • 4.4.2. Indirect Marketing
    • 4.4.3. Marketing Channel Development Trend

5 . IMPACT ANALYSIS OF COVID-19 OUTBREAK

6 . GLOBAL DATA MINING TOOLS MARKET ANALYSIS BY COMPONENT

  • 6.1 Overview by Component
  • 6.2 Historical and Forecast Data
  • 6.3 Analysis by Component
  • 6.4 Tools Historic and Forecast Sales by Regions
  • 6.5 Services Historic and Forecast Sales by Regions

7 . GLOBAL DATA MINING TOOLS MARKET ANALYSIS BY SERVICE

  • 7.1 Overview by Service
  • 7.2 Historical and Forecast Data
  • 7.3 Analysis by Service
  • 7.4 Managed Services Historic and Forecast Sales by Regions
  • 7.5 Consulting And Implementation Historic and Forecast Sales by Regions
  • 7.6 Others (Support And Maintenance, Training And Education) Historic and Forecast Sales by Regions

8 . GLOBAL DATA MINING TOOLS MARKET ANALYSIS BY BUSINESS FUNCTION

  • 8.1 Overview by Business Function
  • 8.2 Historical and Forecast Data
  • 8.3 Analysis by Business Function
  • 8.4 Marketing Historic and Forecast Sales by Regions
  • 8.5 Finance Historic and Forecast Sales by Regions
  • 8.6 Supply Chain And Logistics Historic and Forecast Sales by Regions
  • 8.7 Operations Historic and Forecast Sales by Regions

9 . GLOBAL DATA MINING TOOLS MARKET ANALYSIS BY INDUSTRY VERTICAL

  • 9.1 Overview by Industry Vertical
  • 9.2 Historical and Forecast Data
  • 9.3 Analysis by Industry Vertical
  • 9.4 Retail Historic and Forecast Sales by Regions
  • 9.5 Banking, Financial Services, And Insurance (BFSI) Historic and Forecast Sales by Regions
  • 9.6 Healthcare And life sciences Historic and Forecast Sales by Regions
  • 9.7 Telecom And IT Historic and Forecast Sales by Regions
  • 9.8 Government And defense Historic and Forecast Sales by Regions
  • 9.9 Energy And Utilities Historic and Forecast Sales by Regions
  • 9.10. Manufacturing Historic and Forecast Sales by Regions
  • 9.11 Others (Education, And Media And Entertainment) Historic and Forecast Sales by Regions

10 . GLOBAL DATA MINING TOOLS MARKET ANALYSIS BY DEPLOYMENT TYPE

  • 10.1 Overview by Deployment Type
  • 10.2 Historical and Forecast Data
  • 10.3 Analysis by Deployment Type
  • 10.4 On-premises Historic and Forecast Sales by Regions
  • 10.5 Cloud Historic and Forecast Sales by Regions

11 . GLOBAL DATA MINING TOOLS MARKET ANALYSIS BY ORGANIZATION SIZE

  • 11.1 Overview by Organization Size
  • 11.2 Historical and Forecast Data
  • 11.3 Analysis by Organization Size
  • 11.4 Large Enterprises Historic and Forecast Sales by Regions
  • 11.5 Small And Medium-sized Enterprises (SMEs) Historic and Forecast Sales by Regions

12 . GLOBAL DATA MINING TOOLS MARKET SALES ANALYSIS BY GEOGRAPHY

  • 12.1. Regional Outlook
  • 12.2. Introduction
  • 12.3. North America Sales Analysis
    • 12.3.1. Overview, Historic and Forecast Sales Analysis
    • 12.3.2. North America By Segment Sales Analysis
    • 12.3.3. North America By Country Sales Analysis
    • 12.3.4. United State Sales Analysis
    • 12.3.5. Canada Sales Analysis
    • 12.3.6. Mexico Sales Analysis
  • 12.4. Europe Sales Analysis
    • 12.4.1. Overview, Historic and Forecast Sales Analysis
    • 12.4.2. Europe by Segment Sales Analysis
    • 12.4.3. Europe by Country Sales Analysis
    • 12.4.4. United Kingdom Sales Analysis
    • 12.4.5. France Sales Analysis
    • 12.4.6. Germany Sales Analysis
    • 12.4.7. Italy Sales Analysis
    • 12.4.8. Russia Sales Analysis
    • 12.4.9. Rest Of Europe Sales Analysis
  • 12.5. Asia Pacific Sales Analysis
    • 12.5.1. Overview, Historic and Forecast Sales Analysis
    • 12.5.2. Asia Pacific by Segment Sales Analysis
    • 12.5.3. Asia Pacific by Country Sales Analysis
    • 12.5.4. China Sales Analysis
    • 12.5.5. India Sales Analysis
    • 12.5.6. Japan Sales Analysis
    • 12.5.7. South Korea Sales Analysis
    • 12.5.8. Australia Sales Analysis
    • 12.5.9. Rest Of Asia Pacific Sales Analysis
  • 12.6. Latin America Sales Analysis
    • 12.6.1. Overview, Historic and Forecast Sales Analysis
    • 12.6.2. Latin America by Segment Sales Analysis
    • 12.6.3. Latin America by Country Sales Analysis
    • 12.6.4. Brazil Sales Analysis
    • 12.6.5. Argentina Sales Analysis
    • 12.6.6. Peru Sales Analysis
    • 12.6.7. Chile Sales Analysis
    • 12.6.8. Rest of Latin America Sales Analysis
  • 12.7. Middle East & Africa Sales Analysis
    • 12.7.1. Overview, Historic and Forecast Sales Analysis
    • 12.7.2. Middle East & Africa by Segment Sales Analysis
    • 12.7.3. Middle East & Africa by Country Sales Analysis
    • 12.7.4. Saudi Arabia Sales Analysis
    • 12.7.5. UAE Sales Analysis
    • 12.7.6. Israel Sales Analysis
    • 12.7.7. South Africa Sales Analysis
    • 12.7.8. Rest Of Middle East And Africa Sales Analysis

13 . COMPETITIVE LANDSCAPE OF THE DATA MINING TOOLS COMPANIES

  • 13.1. Data Mining Tools Market Competition
  • 13.2. Partnership/Collaboration/Agreement
  • 13.3. Merger And Acquisitions
  • 13.4. New Product Launch
  • 13.5. Other Developments

14 . COMPANY PROFILES OF DATA MINING TOOLS INDUSTRY

  • 14.1. Top Company Share Analysis
  • 14.2. Market Concentration Rate
  • 14.3. IBM (US)
    • 14.3.1. Company Overview
    • 14.3.2. Company Revenue
    • 14.3.3. Products
    • 14.3.4. Recent Developments
  • 14.4. Microsoft (US)
    • 14.4.1. Company Overview
    • 14.4.2. Company Revenue
    • 14.4.3. Products
    • 14.4.4. Recent Developments
  • 14.5. SAS Institute (US)
    • 14.5.1. Company Overview
    • 14.5.2. Company Revenue
    • 14.5.3. Products
    • 14.5.4. Recent Developments
  • 14.6. Oracle (US)
    • 14.6.1. Company Overview
    • 14.6.2. Company Revenue
    • 14.6.3. Products
    • 14.6.4. Recent Developments
  • 14.7. Intel (US)
    • 14.7.1. Company Overview
    • 14.7.2. Company Revenue
    • 14.7.3. Products
    • 14.7.4. Recent Developments
  • 14.8. SAP SE (Germany)
    • 14.8.1. Company Overview
    • 14.8.2. Company Revenue
    • 14.8.3. Products
    • 14.8.4. Recent Developments
  • 14.9. RapidMiner (US)
    • 14.9.1. Company Overview
    • 14.9.2. Company Revenue
    • 14.9.3. Products
    • 14.9.4. Recent Developments
  • 14.10. KNIME (SwitzerlAnd)
    • 14.10.1. Company Overview
    • 14.10.2. Company Revenue
    • 14.10.3. Products
    • 14.10.4. Recent Developments
  • 14.11. Teradata (US)
    • 14.11.1. Company Overview
    • 14.11.2. Company Revenue
    • 14.11.3. Products
    • 14.11.4. Recent Developments
  • 14.12. MathWorks (US)
    • 14.12.1. Company Overview
    • 14.12.2. Company Revenue
    • 14.12.3. Products
    • 14.12.4. Recent Developments
  • 14.13. H2O.ai (US)
    • 14.13.1. Company Overview
    • 14.13.2. Company Revenue
    • 14.13.3. Products
    • 14.13.4. Recent Developments
  • 14.14. Alteryx (US)
    • 14.14.1. Company Overview
    • 14.14.2. Company Revenue
    • 14.14.3. Products
    • 14.14.4. Recent Developments
  • 14.15. FICO (US)
    • 14.15.1. Company Overview
    • 14.15.2. Company Revenue
    • 14.15.3. Products
    • 14.15.4. Recent Developments
  • 14.16. Angoss (Canada)
    • 14.16.1. Company Overview
    • 14.16.2. Company Revenue
    • 14.16.3. Products
    • 14.16.4. Recent Developments
  • 14.17. Salford Systems (US)
    • 14.17.1. Company Overview
    • 14.17.2. Company Revenue
    • 14.17.3. Products
    • 14.17.4. Recent Developments
  • 14.18. BlueGranite (US)
    • 14.18.1. Company Overview
    • 14.18.2. Company Revenue
    • 14.18.3. Products
    • 14.18.4. Recent Developments
  • 14.19. Megaputer (US)
    • 14.19.1. Company Overview
    • 14.19.2. Company Revenue
    • 14.19.3. Products
    • 14.19.4. Recent Developments
  • 14.20. Biomax Informatics (Germany)
    • 14.20.1. Company Overview
    • 14.20.2. Company Revenue
    • 14.20.3. Products
    • 14.20.4. Recent Developments
  • 14.21. Frontline Systems (US)
    • 14.21.1. Company Overview
    • 14.21.2. Company Revenue
    • 14.21.3. Products
    • 14.21.4. Recent Developments
  • 14.22. Dataiku (France)
    • 14.22.1. Company Overview
    • 14.22.2. Company Revenue
    • 14.22.3. Products
    • 14.22.4. Recent Developments
  • 14.23. Wolfram (US)
    • 14.23.1. Company Overview
    • 14.23.2. Company Revenue
    • 14.23.3. Products
    • 14.23.4. Recent Developments
  • 14.24. Reltio (US)
    • 14.24.1. Company Overview
    • 14.24.2. Company Revenue
    • 14.24.3. Products
    • 14.24.4. Recent Developments
  • 14.25. SenticNet (Singapore)
    • 14.25.1. Company Overview
    • 14.25.2. Company Revenue
    • 14.25.3. Products
    • 14.25.4. Recent Developments
  • 14.26. Business Insight (Belgium)
    • 14.26.1. Company Overview
    • 14.26.2. Company Revenue
    • 14.26.3. Products
    • 14.26.4. Recent Developments
  • 14.27. SunTec India (Delhi)
    • 14.27.1. Company Overview
    • 14.27.2. Company Revenue
    • 14.27.3. Products
    • 14.27.4. Recent Developments

Note - in company profiling, financial details and recent development are subject to availability or might not be covered in case of private companies

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦