![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1547732
¼¼°èÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå Á¶»ç º¸°í¼ : »ê¾÷ ºÐ¼®, ±Ô¸ð, Á¡À¯À², ¼ºÀå, µ¿Çâ, ¿¹Ãø(2024-2032³â)Global Graph Database Market Research Report - Industry Analysis, Size, Share, Growth, Trends and Forecast 2024 to 2032 |
±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼¼°è ¼ö¿ä´Â 2023³â 37¾ï 9,000¸¸ ´Þ·¯¿¡¼ 2032³â¿¡´Â ¾à 232¾ï 4,000¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, Á¶»ç ±â°£ÀÎ 2024-2032³â CAGRÀº 22.33%ÀÔ´Ï´Ù.
±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º´Â µ¥ÀÌÅͰ£ °ü°è¸¦ ´Ù·ç´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÏ´Â µ¥ÀÌÅͺ£À̽ºÀÔ´Ï´Ù. ³ëµå, ¿¡Áö, ¼Ó¼ºÀ» ÀÌ¿ëÇÑ ½Ã¸Çƽ Äõ¸®¿¡ ±×·¡ÇÁ ±¸Á¶¸¦ »ç¿ëÇÏ¿© µ¥ÀÌÅ͸¦ Ư¼ºÈÇϰí ÀúÀåÇÕ´Ï´Ù. ¹Ì¸® Á¤ÀÇµÈ ¸ðµ¨·Î ¾ÐÃàÇÏÁö ¾Ê°í µ¥ÀÌÅ͸¦ º¸°üÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÕ´Ï´Ù. ±âÁ¸ °ü°èÇü µ¥ÀÌÅͺ£À̽º¿¡¼ ÀúÀåÇϱ⠾î·Á¿î º¹ÀâÇÑ µ¥ÀÌÅÍ ±¸Á¶¸¦ ÀúÀåÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù. ±×·¡ÇÁ ¾È¿¡ ´Ù¾çÇÑ °´Ã¼¿Í ´Ù¾çÇÑ À¯ÇüÀÇ °ü°è¸¦ Æ÷ÇÔÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º´Â ¿£Æ¼Æ¼ °£ÀÇ »óÈ£ ÀÇÁ¸¼ºÀ» ´Ù·ç´Â ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽ºÀÇ ¿¹·Î´Â OrientDB, Neo4j, Amazon Neptune, ArangoDB, FlockDB, DataStax µîÀÌ ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù.
±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀº Ä¿³ØÆ¼µå µ¥ÀÌÅ͸¦ »ç¿ëÇÏ´Â ºñÁî´Ï½º ¿ëµµ Áõ°¡¿Í ³·Àº ´ë±â ½Ã°£À¸·Î Äõ¸®¸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ±â¾÷ µ¥ÀÌÅÍ ¾ç Áõ°¡¿Í ±âÁ¸ µ¥ÀÌÅÍ¿¡¼ ÀλçÀÌÆ®¸¦ µµÃâÇÏ´Â °ÍÀÇ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ¼öÀÍÈ ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ¸¶½ºÅÍ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ôÀº °Íµµ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºòµ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ °¡»óÈÀÇ ±Þ¼ÓÇÑ È°¿ë°ú ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ±â¼úÀÇ ±â¼ú ¹ßÀüÀº ÇâÈÄ ¼ö³â°£ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷¿¡°Ô ¼öÀͼº ÀÖ´Â ¼ºÀå ±âȸ¸¦ Á¦°øÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
Á¶»ç ¸®Æ÷Æ®´Â Porter's Five Forces ¸ðµ¨, ½ÃÀåÀÇ ¸Å·Â ºÐ¼®, ¹ë·ùüÀÎ ºÐ¼®À» ´Ù·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀº ¾÷°èÀÇ ±¸Á¶¸¦ ¸íÈ®ÇÏ°Ô ÆÄ¾ÇÇϰí, ¼¼°è ·¹º§¿¡¼ÀÇ °æÀï ¸Å·ÂÀ» Æò°¡Çϴµ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ÅøÀº ¼¼°èÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå °¢ ºÎ¹®À» Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º »ê¾÷ÀÇ ¼ºÀå°ú µ¿ÇâÀº ÀÌ Á¶»ç¿¡ ÀüüÀûÀÎ ¾îÇÁ·ÎÄ¡¸¦ ±âÀçÇϰí ÀÖ½À´Ï´Ù.
±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå º¸°í¼ÀÇ ÀÌ ¼½¼Ç¿¡¼´Â ±¹°¡¿Í Áö¿ª ·¹º§ ºÎ¹®¿¡ °üÇÑ »ó¼¼ÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇϰí, ÀÌ¿¡ µû¶ó Àü·«°¡°¡ ÇâÈÄ ºñÁî´Ï½º ±âȸ¿Í °¢°¢ÀÇ Á¦Ç° ¶Ç´Â ¼ºñ½º ´ë»óÃþÀ» ½Äº°Çϴµ¥ µµ¿òÀÌ µË´Ï´Ù.
ÀÌ ¼½¼Ç¿¡¼´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ÇöÀç¿Í ÇâÈÄ ¼ö¿ä¸¦ °Á¶ÇÏ´Â Áö¿ª Àü¸ÁÀ» ´Ù·ç°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸ðµç ÁÖ¿ä Áö¿ªÀÇ °³º° ¿ëµµ ºÎ¹®ÀÇ ¼ö¿ä¡¤ÃßÁ¤¡¤¿¹Ãø¿¡µµ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù.
Ä¿½ºÅÒ ¿ä°ÇÀÌ ÀÖ´Â °æ¿ì, ¹®ÀÇÇØÁֽñ⠹ٶø´Ï´Ù. ´ç»çÀÇ Á¶»ç ÆÀÀº °í°´ÀÇ ¿ä±¸¿¡ µû¸¥ ¸ÂÃãÇü ¸®Æ÷Æ®¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
The global demand for Graph Database Market is presumed to reach the market size of nearly USD 23.24 Billion by 2032 from USD 3.79 Billion in 2023 with a CAGR of 22.33% under the study period 2024-2032.
A graph database is a database intended to treat the relationships between data. It uses graph structures for semantic queries with nodes, edges, and properties to characterize and store data. It is intended to hold data without compressing it to a pre-defined model. It is best for storing complex data structures that would be infeasible to store in a traditional relational database. It allows including diverse kinds of objects and different kinds of relationships in the graph. Graph databases are suited for applications that deal with the interdependencies between entities. Some of the known graph database examples are OrientDB, Neo4j, Amazon Neptune, ArangoDB, FlockDB, DataStax, etc.
The growing business applications with connected data and increasing demand for systems capable of processing low latency queries worldwide are the primary factors driving the graph database market. The expanding enterprise data volumes coupled with emergent significance to create insight from existing data, contributing to the graph database market's growth. Also, the rising focus on data monetization solutions and high demand for master data management solutions are positively impacting the growth of the graph database market. Moreover, the rapid use of virtualization for big data analytics and technological advancements in graph database technology is likely to provide profitable growth opportunities for key players of the graph database market in the coming years.
The research report covers Porter's Five Forces Model, Market Attractiveness Analysis, and Value Chain analysis. These tools help to get a clear picture of the industry's structure and evaluate the competition attractiveness at a global level. Additionally, these tools also give an inclusive assessment of each segment in the global market of Graph Database. The growth and trends of Graph Database industry provide a holistic approach to this study.
This section of the Graph Database market report provides detailed data on the segments at country and regional level, thereby assisting the strategist in identifying the target demographics for the respective product or services with the upcoming opportunities.
This section covers the regional outlook, which accentuates current and future demand for the Graph Database market across North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa. Further, the report focuses on demand, estimation, and forecast for individual application segments across all the prominent regions.
The research report also covers the comprehensive profiles of the key players in the market and an in-depth view of the competitive landscape worldwide. The major players in the Graph Database market include Oracle Corporation, IBM, Neo4j Inc., Stardog, Amazon Web Services Inc., Microsoft, ArangoDB Inc., TigerGraph, Progress Software Corporation (MarkLogic), DataStax. This section consists of a holistic view of the competitive landscape that includes various strategic developments such as key mergers & acquisitions, future capacities, partnerships, financial overviews, collaborations, new product developments, new product launches, and other developments.
In case you have any custom requirements, do write to us. Our research team can offer a customized report as per your need.