½ÃÀ庸°í¼­
»óǰÄÚµå
1547732

¼¼°èÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå Á¶»ç º¸°í¼­ : »ê¾÷ ºÐ¼®, ±Ô¸ð, Á¡À¯À², ¼ºÀå, µ¿Çâ, ¿¹Ãø(2024-2032³â)

Global Graph Database Market Research Report - Industry Analysis, Size, Share, Growth, Trends and Forecast 2024 to 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Value Market Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 170 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼¼°è ¼ö¿ä´Â 2023³â 37¾ï 9,000¸¸ ´Þ·¯¿¡¼­ 2032³â¿¡´Â ¾à 232¾ï 4,000¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, Á¶»ç ±â°£ÀÎ 2024-2032³â CAGRÀº 22.33%ÀÔ´Ï´Ù.

±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º´Â µ¥ÀÌÅͰ£ °ü°è¸¦ ´Ù·ç´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÏ´Â µ¥ÀÌÅͺ£À̽ºÀÔ´Ï´Ù. ³ëµå, ¿¡Áö, ¼Ó¼ºÀ» ÀÌ¿ëÇÑ ½Ã¸Çƽ Äõ¸®¿¡ ±×·¡ÇÁ ±¸Á¶¸¦ »ç¿ëÇÏ¿© µ¥ÀÌÅ͸¦ Ư¼ºÈ­Çϰí ÀúÀåÇÕ´Ï´Ù. ¹Ì¸® Á¤ÀÇµÈ ¸ðµ¨·Î ¾ÐÃàÇÏÁö ¾Ê°í µ¥ÀÌÅ͸¦ º¸°üÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÕ´Ï´Ù. ±âÁ¸ °ü°èÇü µ¥ÀÌÅͺ£À̽º¿¡¼­ ÀúÀåÇϱ⠾î·Á¿î º¹ÀâÇÑ µ¥ÀÌÅÍ ±¸Á¶¸¦ ÀúÀåÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù. ±×·¡ÇÁ ¾È¿¡ ´Ù¾çÇÑ °´Ã¼¿Í ´Ù¾çÇÑ À¯ÇüÀÇ °ü°è¸¦ Æ÷ÇÔÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º´Â ¿£Æ¼Æ¼ °£ÀÇ »óÈ£ ÀÇÁ¸¼ºÀ» ´Ù·ç´Â ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽ºÀÇ ¿¹·Î´Â OrientDB, Neo4j, Amazon Neptune, ArangoDB, FlockDB, DataStax µîÀÌ ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ

±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀº Ä¿³ØÆ¼µå µ¥ÀÌÅ͸¦ »ç¿ëÇÏ´Â ºñÁî´Ï½º ¿ëµµ Áõ°¡¿Í ³·Àº ´ë±â ½Ã°£À¸·Î Äõ¸®¸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ±â¾÷ µ¥ÀÌÅÍ ¾ç Áõ°¡¿Í ±âÁ¸ µ¥ÀÌÅÍ¿¡¼­ ÀλçÀÌÆ®¸¦ µµÃâÇÏ´Â °ÍÀÇ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼­ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ¼öÀÍÈ­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ¸¶½ºÅÍ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ôÀº °Íµµ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºòµ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ °¡»óÈ­ÀÇ ±Þ¼ÓÇÑ È°¿ë°ú ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ±â¼úÀÇ ±â¼ú ¹ßÀüÀº ÇâÈÄ ¼ö³â°£ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷¿¡°Ô ¼öÀͼº ÀÖ´Â ¼ºÀå ±âȸ¸¦ Á¦°øÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.

Á¶»ç ¸®Æ÷Æ®´Â Porter's Five Forces ¸ðµ¨, ½ÃÀåÀÇ ¸Å·Â ºÐ¼®, ¹ë·ùüÀÎ ºÐ¼®À» ´Ù·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀº ¾÷°èÀÇ ±¸Á¶¸¦ ¸íÈ®ÇÏ°Ô ÆÄ¾ÇÇϰí, ¼¼°è ·¹º§¿¡¼­ÀÇ °æÀï ¸Å·ÂÀ» Æò°¡Çϴµ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ÅøÀº ¼¼°èÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå °¢ ºÎ¹®À» Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º »ê¾÷ÀÇ ¼ºÀå°ú µ¿ÇâÀº ÀÌ Á¶»ç¿¡ ÀüüÀûÀÎ ¾îÇÁ·ÎÄ¡¸¦ ±âÀçÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­

±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå º¸°í¼­ÀÇ ÀÌ ¼½¼Ç¿¡¼­´Â ±¹°¡¿Í Áö¿ª ·¹º§ ºÎ¹®¿¡ °üÇÑ »ó¼¼ÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇϰí, ÀÌ¿¡ µû¶ó Àü·«°¡°¡ ÇâÈÄ ºñÁî´Ï½º ±âȸ¿Í °¢°¢ÀÇ Á¦Ç° ¶Ç´Â ¼­ºñ½º ´ë»óÃþÀ» ½Äº°Çϴµ¥ µµ¿òÀÌ µË´Ï´Ù.

Áö¿ªº° ºÐ¼®

ÀÌ ¼½¼Ç¿¡¼­´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ÇöÀç¿Í ÇâÈÄ ¼ö¿ä¸¦ °­Á¶ÇÏ´Â Áö¿ª Àü¸ÁÀ» ´Ù·ç°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸ðµç ÁÖ¿ä Áö¿ªÀÇ °³º° ¿ëµµ ºÎ¹®ÀÇ ¼ö¿ä¡¤ÃßÁ¤¡¤¿¹Ãø¿¡µµ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù.

Ä¿½ºÅÒ ¿ä°ÇÀÌ ÀÖ´Â °æ¿ì, ¹®ÀÇÇØÁֽñ⠹ٶø´Ï´Ù. ´ç»çÀÇ Á¶»ç ÆÀÀº °í°´ÀÇ ¿ä±¸¿¡ µû¸¥ ¸ÂÃãÇü ¸®Æ÷Æ®¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå °³¿ä

  • ½ÃÀåÀÇ ÇÏÀ̶óÀÌÆ®
  • ¼¼°è ½ÃÀå ½º³À¼ô

Á¦3Àå ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º - »ê¾÷ ºÐ¼®

  • ¼­·Ð : ½ÃÀå ¿ªÇÐ
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • ¾÷°è µ¿Çâ
  • Porter's Five Forces ºÐ¼®
  • ½ÃÀåÀÇ ¸Å·Â ºÐ¼®

Á¦4Àå ¹ë·ùüÀÎ ºÐ¼®

  • ¹ë·ùüÀÎ ºÐ¼®
  • ¿øÀç·á ºÐ¼®
    • ¿øÀç·á ¸®½ºÆ®
    • ¿øÀç·á Á¦Á¶¾÷ü ¸®½ºÆ®
    • ÁÖ¿ä ¿øÀç·áÀÇ °¡°Ý µ¿Çâ
  • ÀáÀçÀû ¹ÙÀÌ¾î ¸®½ºÆ®
  • ¸¶ÄÉÆÃ Ã¤³Î
    • Á÷Á¢ ¸¶ÄÉÆÃ
    • °£Á¢ ¸¶ÄÉÆÃ
    • ¸¶ÄÉÆÃ Ã¤³Î ¹ßÀü µ¿Çâ

Á¦5Àå ¼¼°èÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå ºÐ¼® : ÄÄÆ÷³ÍÆ®º°

  • ÄÄÆ÷³ÍÆ®º° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • ÄÄÆ÷³ÍÆ®º° ºÐ¼®
  • ¼Ö·ç¼Ç
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå ºÐ¼® : À¯Çüº°

  • À¯Çüº° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • À¯Çüº° ºÐ¼®
  • SQL
  • ºñSQL

Á¦7Àå ¼¼°èÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå ºÐ¼® : ÃÖÁ¾»ç¿ëÀÚº°

  • ÃÖÁ¾»ç¿ëÀÚº° °³¿ä
  • ½ÇÀû µ¥ÀÌÅÍ¿Í ¿¹Ãø µ¥ÀÌÅÍ
  • ÃÖÁ¾»ç¿ëÀÚº° ºÐ¼®
  • BFSI
  • ¼Ò¸Å¡¤E-Commerce

Á¦8Àå ¼¼°èÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀå ºÐ¼® : Áö¿ªº°

  • Áö¿ªº° Àü¸Á
  • ¼­·Ð
  • ºÏ¹Ì ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • ºÏ¹Ì : ºÎ¹®º°
    • ºÏ¹Ì : ±¹°¡º°
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´ ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • À¯·´ : ºÎ¹®º°
    • À¯·´ : ±¹°¡º°
    • ¿µ±¹
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ·¯½Ã¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • ¾Æ½Ã¾ÆÅÂÆò¾ç : ºÎ¹®º°
    • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º°
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ
    • µ¿³²¾Æ½Ã¾Æ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä« ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • ¶óƾ¾Æ¸Þ¸®Ä« : ºÎ¹®º°
    • ¶óƾ¾Æ¸Þ¸®Ä« : ±¹°¡º°
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • Æä·ç
    • Ä¥·¹
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ÆÇ¸Å ºÐ¼®
    • °³¿ä, ½ÇÀû°ú ¿¹Ãø
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ºÎ¹®º°
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º° ¸®½ºÆ®
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • À̽º¶ó¿¤
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ±â¾÷ÀÇ °æÀï ±¸µµ

  • ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ °æÀï
  • Á¦ÈÞ¡¤Çù·Â¡¤°è¾à
  • ÇÕº´¡¤Àμö
  • ½ÅÁ¦Ç°ÀÇ ¹ß¸Å
  • ±âŸ °³¹ß

Á¦10Àå ±â¾÷ °³¿ä

  • »óÀ§ ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®
  • ½ÃÀå ÁýÁßµµ
  • Oracle Corporation
  • IBM
  • Neo4j Inc.
  • Stardog
  • Amazon Web Services Inc.
  • Microsoft
  • ArangoDB Inc.
  • TigerGraph
  • Progress Software Corporation(MarkLogic)
  • DataStax
KSA 24.09.26

The global demand for Graph Database Market is presumed to reach the market size of nearly USD 23.24 Billion by 2032 from USD 3.79 Billion in 2023 with a CAGR of 22.33% under the study period 2024-2032.

A graph database is a database intended to treat the relationships between data. It uses graph structures for semantic queries with nodes, edges, and properties to characterize and store data. It is intended to hold data without compressing it to a pre-defined model. It is best for storing complex data structures that would be infeasible to store in a traditional relational database. It allows including diverse kinds of objects and different kinds of relationships in the graph. Graph databases are suited for applications that deal with the interdependencies between entities. Some of the known graph database examples are OrientDB, Neo4j, Amazon Neptune, ArangoDB, FlockDB, DataStax, etc.

MARKET DYNAMICS

The growing business applications with connected data and increasing demand for systems capable of processing low latency queries worldwide are the primary factors driving the graph database market. The expanding enterprise data volumes coupled with emergent significance to create insight from existing data, contributing to the graph database market's growth. Also, the rising focus on data monetization solutions and high demand for master data management solutions are positively impacting the growth of the graph database market. Moreover, the rapid use of virtualization for big data analytics and technological advancements in graph database technology is likely to provide profitable growth opportunities for key players of the graph database market in the coming years.

The research report covers Porter's Five Forces Model, Market Attractiveness Analysis, and Value Chain analysis. These tools help to get a clear picture of the industry's structure and evaluate the competition attractiveness at a global level. Additionally, these tools also give an inclusive assessment of each segment in the global market of Graph Database. The growth and trends of Graph Database industry provide a holistic approach to this study.

MARKET SEGMENTATION

This section of the Graph Database market report provides detailed data on the segments at country and regional level, thereby assisting the strategist in identifying the target demographics for the respective product or services with the upcoming opportunities.

By Component

  • Solution
  • Service

By Type

  • SQL
  • Non-SQL

By End-Use

  • BFSI
  • Retail & E-commerce

REGIONAL ANALYSIS

This section covers the regional outlook, which accentuates current and future demand for the Graph Database market across North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa. Further, the report focuses on demand, estimation, and forecast for individual application segments across all the prominent regions.

The research report also covers the comprehensive profiles of the key players in the market and an in-depth view of the competitive landscape worldwide. The major players in the Graph Database market include Oracle Corporation, IBM, Neo4j Inc., Stardog, Amazon Web Services Inc., Microsoft, ArangoDB Inc., TigerGraph, Progress Software Corporation (MarkLogic), DataStax. This section consists of a holistic view of the competitive landscape that includes various strategic developments such as key mergers & acquisitions, future capacities, partnerships, financial overviews, collaborations, new product developments, new product launches, and other developments.

In case you have any custom requirements, do write to us. Our research team can offer a customized report as per your need.

TABLE OF CONTENTS

1. PREFACE

  • 1.1. Report Description
    • 1.1.1 Objective
    • 1.1.2 Target Audience
    • 1.1.3 Unique Selling Proposition (USP) & offerings
  • 1.2. Research Scope
  • 1.3. Research Methodology
    • 1.3.1 Market Research Process
    • 1.3.2 Market Research Methodology

2. EXECUTIVE SUMMARY

  • 2.1. Highlights of Market
  • 2.2. Global Market Snapshot

3. GRAPH DATABASE - INDUSTRY ANALYSIS

  • 3.1. Introduction - Market Dynamics
  • 3.2. Market Drivers
  • 3.3. Market Restraints
  • 3.4. Opportunities
  • 3.5. Industry Trends
  • 3.6. Porter's Five Force Analysis
  • 3.7. Market Attractiveness Analysis
    • 3.7.1 Market Attractiveness Analysis By Component
    • 3.7.2 Market Attractiveness Analysis By Type
    • 3.7.3 Market Attractiveness Analysis By End-Use
    • 3.7.4 Market Attractiveness Analysis By Region

4. VALUE CHAIN ANALYSIS

  • 4.1. Value Chain Analysis
  • 4.2. Raw Material Analysis
    • 4.2.1 List of Raw Materials
    • 4.2.2 Raw Material Manufactures List
    • 4.2.3 Price Trend of Key Raw Materials
  • 4.3. List of Potential Buyers
  • 4.4. Marketing Channel
    • 4.4.1 Direct Marketing
    • 4.4.2 Indirect Marketing
    • 4.4.3 Marketing Channel Development Trend

5. GLOBAL GRAPH DATABASE MARKET ANALYSIS BY COMPONENT

  • 5.1. Overview By Component
  • 5.2. Historical and Forecast Data
  • 5.3. Analysis By Component
  • 5.4. Solution Historic and Forecast Sales By Regions
  • 5.5. Service Historic and Forecast Sales By Regions

6. GLOBAL GRAPH DATABASE MARKET ANALYSIS BY TYPE

  • 6.1. Overview By Type
  • 6.2. Historical and Forecast Data
  • 6.3. Analysis By Type
  • 6.4. SQL Historic and Forecast Sales By Regions
  • 6.5. Non-SQL Historic and Forecast Sales By Regions

7. GLOBAL GRAPH DATABASE MARKET ANALYSIS BY END-USE

  • 7.1. Overview By End-Use
  • 7.2. Historical and Forecast Data
  • 7.3. Analysis By End-Use
  • 7.4. BFSI Historic and Forecast Sales By Regions
  • 7.5. Retail & E-commerce Historic and Forecast Sales By Regions

8. GLOBAL GRAPH DATABASE MARKET ANALYSIS BY GEOGRAPHY

  • 8.1. Regional Outlook
  • 8.2. Introduction
  • 8.3. North America Sales Analysis
    • 8.3.1 Overview, Historic and Forecast Data Sales Analysis
    • 8.3.2 North America By Segment Sales Analysis
    • 8.3.3 North America By Country Sales Analysis
    • 8.3.4 United States Sales Analysis
    • 8.3.5 Canada Sales Analysis
    • 8.3.6 Mexico Sales Analysis
  • 8.4. Europe Sales Analysis
    • 8.4.1 Overview, Historic and Forecast Data Sales Analysis
    • 8.4.2 Europe By Segment Sales Analysis
    • 8.4.3 Europe By Country Sales Analysis
    • 8.4.4 United Kingdom Sales Analysis
    • 8.4.5 France Sales Analysis
    • 8.4.6 Germany Sales Analysis
    • 8.4.7 Italy Sales Analysis
    • 8.4.8 Russia Sales Analysis
    • 8.4.9 Rest Of Europe Sales Analysis
  • 8.5. Asia Pacific Sales Analysis
    • 8.5.1 Overview, Historic and Forecast Data Sales Analysis
    • 8.5.2 Asia Pacific By Segment Sales Analysis
    • 8.5.3 Asia Pacific By Country Sales Analysis
    • 8.5.4 China Sales Analysis
    • 8.5.5 India Sales Analysis
    • 8.5.6 Japan Sales Analysis
    • 8.5.7 South Korea Sales Analysis
    • 8.5.8 Australia Sales Analysis
    • 8.5.9 South East Asia Sales Analysis
    • 8.5.10 Rest Of Asia Pacific Sales Analysis
  • 8.6. Latin America Sales Analysis
    • 8.6.1 Overview, Historic and Forecast Data Sales Analysis
    • 8.6.2 Latin America By Segment Sales Analysis
    • 8.6.3 Latin America By Country Sales Analysis
    • 8.6.4 Brazil Sales Analysis
    • 8.6.5 Argentina Sales Analysis
    • 8.6.6 Peru Sales Analysis
    • 8.6.7 Chile Sales Analysis
    • 8.6.8 Rest of Latin America Sales Analysis
  • 8.7. Middle East & Africa Sales Analysis
    • 8.7.1 Overview, Historic and Forecast Data Sales Analysis
    • 8.7.2 Middle East & Africa By Segment Sales Analysis
    • 8.7.3 Middle East & Africa By Country Sales Analysis
    • 8.7.4 Saudi Arabia Sales Analysis
    • 8.7.5 UAE Sales Analysis
    • 8.7.6 Israel Sales Analysis
    • 8.7.7 South Africa Sales Analysis
    • 8.7.8 Rest Of Middle East And Africa Sales Analysis

9. COMPETITIVE LANDSCAPE OF THE GRAPH DATABASE COMPANIES

  • 9.1. Graph Database Market Competition
  • 9.2. Partnership/Collaboration/Agreement
  • 9.3. Merger And Acquisitions
  • 9.4. New Product Launch
  • 9.5. Other Developments

10. COMPANY PROFILES OF GRAPH DATABASE INDUSTRY

  • 10.1. Top Companies Market Share Analysis
  • 10.2. Market Concentration Rate
  • 10.3. Oracle Corporation
    • 10.3.1 Company Overview
    • 10.3.2 Company Revenue
    • 10.3.3 Products
    • 10.3.4 Recent Developments
  • 10.4. IBM
    • 10.4.1 Company Overview
    • 10.4.2 Company Revenue
    • 10.4.3 Products
    • 10.4.4 Recent Developments
  • 10.5. Neo4j Inc.
    • 10.5.1 Company Overview
    • 10.5.2 Company Revenue
    • 10.5.3 Products
    • 10.5.4 Recent Developments
  • 10.6. Stardog
    • 10.6.1 Company Overview
    • 10.6.2 Company Revenue
    • 10.6.3 Products
    • 10.6.4 Recent Developments
  • 10.7. Amazon Web Services Inc.
    • 10.7.1 Company Overview
    • 10.7.2 Company Revenue
    • 10.7.3 Products
    • 10.7.4 Recent Developments
  • 10.8. Microsoft
    • 10.8.1 Company Overview
    • 10.8.2 Company Revenue
    • 10.8.3 Products
    • 10.8.4 Recent Developments
  • 10.9. ArangoDB Inc.
    • 10.9.1 Company Overview
    • 10.9.2 Company Revenue
    • 10.9.3 Products
    • 10.9.4 Recent Developments
  • 10.10. TigerGraph
    • 10.10.1 Company Overview
    • 10.10.2 Company Revenue
    • 10.10.3 Products
    • 10.10.4 Recent Developments
  • 10.11. Progress Software Corporation (MarkLogic)
    • 10.11.1 Company Overview
    • 10.11.2 Company Revenue
    • 10.11.3 Products
    • 10.11.4 Recent Developments
  • 10.12. DataStax
    • 10.12.1 Company Overview
    • 10.12.2 Company Revenue
    • 10.12.3 Products
    • 10.12.4 Recent Developments

Note - In company profiling, financial details and recent developments are subject to availability or might not be covered in the case of private companies

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦