Global Information
회사소개 | 문의 | 위시리스트

SSD 시장과 애플리케이션(2017년)

Solid State Drives (SSD) Markets and Applications 2017

리서치사 WebFeet Research, Inc.
발행일 2017년 08월 상품 코드 357667
페이지 정보 영문 198 Pages
가격
US $ 5,995 ₩ 7,235,000 PDF by E-mail (Site License)
US $ 8,993 ₩ 10,854,000 PDF by E-mail (Corporate License)


SSD 시장과 애플리케이션(2017년) Solid State Drives (SSD) Markets and Applications 2017
발행일 : 2017년 08월 페이지 정보 : 영문 198 Pages

클라이언트, 커머셜 및 엔터프라이즈 애플리케이션의 SSD 도입은 2015년에 출하량 및 매출이 각각 1억 1,110만 대, 177억 달러를 기록했습니다. 2021년 말에는 매출이 444억 달러에 달할 것으로 예측됩니다.

세계의 SSD(Solid State Drives) 시장에 대해 조사했으며, SSD 아키텍처, 부문별 시장 기회, 수요, 기술, 총소유비용(TCO), 스토리지 시스템 인터페이스 및 관련 업계 단체 등의 정보를 전해드립니다.

목차

도표

제1장 주요 요약

제2장 조사 방법/구성/데이터 메모

제3장 SSD의 정의와 애플리케이션

  • SSD에 의한 플랫폼
  • PC 스토리지 애플리케이션의 SSD
  • 엔터프라이즈 스토리지 애플리케이션의 SSD
  • SSD의 분류
  • 스토리지 클래스 메모리 : 비휘발성 메모리

제4장 시스템 아키텍처

제5장 SSD 아키텍처

  • SSD 아키텍처
  • 워킹 메모리 및 핫 스토리지 머지

제6장 SSD 시장 기회

  • SSD 애플리케이션

제7장 전체적인 SSD 애플리케이션 수요와 매출

제8장 엔터프라이즈 시장 부문의 SSD 기회

  • 엔터프라이즈 시장 개요
  • 엔터프라이즈 플랫폼의 스토리지 계층
  • 엔터프라이즈 액셀러레이션 옵션
  • 엔터프라이즈 SSD 시장 개요
  • 메모리 채널의 SSS
    • 서버
    • 서버 : 메모리 채널 스토리지
  • 서버 사이드 구성에서의 SSD
  • DAS 구성에서의 SSD
  • NAS 및 SAN 구성에서의 SSD
  • HDD RAID 구성에서의 SSD
  • 블레이드 서버 구성에서의 SSD
  • 엔터프라이즈 SSD 인터페이스 예측

제9장 클라이언트 컴퓨팅의 SSD

  • 기존 노트북 PC
  • 울트라북
  • 넷북
  • 태블릿 PC/태블릿
  • 크롬북
  • 넷톱 PC
  • 데스크톱 PC
  • 클라이언트 플랫폼 SSD 시장 예측 : 태블릿, 넷북, 넷톱
  • 포터블 컴퓨터 시장 부문의 SSD 예측
  • 데스크톱의 SSD

제10장 소비자 부문의 SSD 기회

제11장 커머셜 부문의 SSD 기회

  • 산업/임베디드 애플리케이션용 SSD
  • 의료 애플리케이션용 SSD
  • 항공우주/아비오닉스 애플리케이션용 SSD
  • 군 애플리케이션용 SSD

제12장 스토리지 및 메모리에 대한 분석

  • NVMe : XPoint DIMM의 선구자

제13장 플래시 기술

  • 낸드 플래시(NAND Flash) 블록의 구조
  • MLC 및 SLC 기술의 차이
  • 성능
  • 내구성
  • 신뢰성
  • 에러율
  • MLC/TLC/SLC 비교 메트릭스
  • 반도체 메모리 컴포넌트 밀도

제14장 SSD 컨트롤러

  • SSD 컨트롤러

제15장 SSD 메트릭스

  • SSD 평균 용량
  • 반도체 메모리 칩 가격
  • SSD 미디어 전송 속도
  • 시스템 인터페이스 전송 속도
  • SSD 내구성
  • SSD 내구성/내충격성
  • SSD 평균 고장 간격(MTBF)
  • SSD 환경 특성

제16장 총소유비용(TCO)

  • 엔터프라이즈의 TCO
  • TOC 엔터프라이즈 모델
  • 성능 요건
  • 전력 소비
  • 에너지 비용
  • 인수 비용
  • 시스템 신뢰성

제17장 스토리지 시스템 인터페이스

  • Universal Serial Bus(USB )
  • Fire Wire(IEEE 1394)
  • Advanced Technology Attachment(ATA) / Serial ATA(SATA)
  • SATA Universal Storage Module(USM)
  • Universal Flash Storage Association(UFSA)
  • eSATA
  • Small Computer System Interface(SCSI); Serial Attached SCSI(SAS)
  • iSCSI
  • Serial Storage Architecture(SSA)
  • Fibre Channel-Arbitrated Loop(FC-AL)
  • Peripheral Component Interface Express(PCIe)
  • Enterprise Interface Transition

제18장 스토리지 서브시스템

  • Redundant Array of Independent Disks(RAID)
  • Storage System Architectures
  • Direct Attached Storage(DAS)
  • Storage Area Network(SAN)
  • Network Attached Storage(NAS)

제19장 SSD 업계 단체

  • JEDEC - Joint Electronic Device Engineering Council's
  • SSSI - Solid State Storage Initiative
  • ONFI - Open NAND Flash Interface
  • IDEMA - International Disk Drive Equipment and Materials Association
  • SSDA - Solid State Drive Alliance
  • NVM Express

제20장 SSD 공급업체의 기업 개요

제21장 부록 A

KSM 17.09.11

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

Executive Summary

As the SSD market tracks through 2017, the long anticipated rollout of All Flash Arrays featuring NVMe is finally finding traction at the high end of the enterprise market. Making the transition from SATA and SAS to PCIe and NVMe has been fraught with delays in standardizing the NVMe protocols and developing an encompassing Ethernet-type fabric like the NVMf (fabric). Overall, the SSD market has grown significantly in all three markets: enterprise, client and commercial.

Adoption of new faster technologies like NVMe and the Memory Channel, along with the introduction of 3D NAND and ReRAM/XPoint is facilitating a storage to memory transformation. Traditional storage models are now transitioning to a period of radical change to accommodate the exponential rise in data volume. In a broader sense, not only is the technology element used for storage in a state of change, but also the architecture for the control plane and data plane fabrics.

Historically, the storage industry has tried to balance the two trends of performance and capacity. Having enough high performance memory/storage to process the active data set governs the performance layer and storing all the data in the highest capacity at the lowest cost determines the capacity layer. In the last decade, SSDs in client, enterprise, and commercial applications continue to mature. Flash-based SSDs are now accepted as the better performance storage option over HDDs in enterprise and client segments. On the capacity layer, SSDs are becoming affordable and vying to take over the storage function from HDDs on Tier 1and part of Tier 2. SSD suppliers and controller companies continue to make significant improvements in both lowering costs and boosting overall performance and reliability through improved controllers. These controller advancements are utilizing signal processing and algorithms for managing NAND cells for improved utilization and performance, while the host interface is also evolving on a system level.

Early SSDs utilized SATA interfaces patterned from the HDD protocols - many are still in use today. However, there was a migration to the faster SAS interfaces from the enterprise SSDs. In the older RAID-systems Tier 1 used mission critical enterprise HDDs with SAS interfaces. Displacing enterprise HDDs with SAS SSDs helped to improve performance and interoperability by easing the HDD to SSD transition.

On a system level, the first Hybrid storage system utilized fast SATA SSDs for the performance layer and dense HDDs for capacity. As the data sets got bigger and the workloads demanded faster performance a Flash-Hybrid Array was developed with faster SAS SSDs used for performance and for some of the capacity layer along with HDDs. To further increase speed, PCIe SSDs began to gain traction in enterprise by putting storage closer to memory via the PCIe bus. These early proprietary PCIe SSDs vastly improved interface performance and reduced bottlenecks in a server, but with its lack of interoperable protocols, it was not able to scale up in capacity or scale out. Consequently, the PCIe NVMe (Non Volatile Memory- Express) interface was developed to standardize and accelerate the adoption of the NVMe interface. The NVMf (fabric) allows multiple NVMe drives to connect (scale) and run at the higher NVMe transfer speeds thereby enabling the Data Center to improve overall system performance and reduce latency. Through implementation into All Flash Arrays, the NVMe protocol not only operates at a much higher throughput and connects multiple storage drives but it further closes the gap between the control layer and the capacity layer, which is comprised of 3D NAND SSDs.

Adoption of SSDs in client, commercial and enterprise applications gained momentum in 2015 with shipments and revenue totaling 111.1M units and $17.7B respectively. The results for 2016 show the TOC and TAC for SSDs is better than HDDs for both enterprise and client. For the end of 2021 WFR projects $44.4B in revenue.

SSDs, All Flash Arrays and Memory Channel DIMMs will replace the older technologies like HDDs and offset some DRAM for the performance side of storage. As SSD adoption accelerates, the high capacities afforded by HDDs for their lower unit costs coupled with the power savings makes HDD archive systems viable for the next 10 years.

This comprehensive 192 page report sizes the SSD, NVMe and NVDIMM markets and applications to 2021.

Table of Contents

List of Figures

List of Tables

1. Executive Summary

2. Methodology / Formula / Data Notes

3. Definition of SSDs and Applications

  • 3.1. Platforms with SSDs
  • 3.2. SSDs in PC Storage Applications
  • 3.3. SSDs in Enterprise Storage Applications
  • 3.1. SSD Classification
  • 3.2. Storage Class Memories - Persistent Memories

4. Systems Architecture

5. SSD Architecture

  • 5.1. SSD Architecture
  • 5.2. Working Memory and Hot Storage Merge

6. SSD Market Opportunities

  • 6.1. SSD Applications

7. Total SSD Application Demand and Rev

8. SSD Opportunities in the Enterprise Market Segment

  • 8.1. Enterprise Market Overview
  • 8.2. Storage Hierarchy of Enterprise Platforms
  • 8.3. Enterprise Acceleration Options
  • 8.4. Enterprise SSD Market Overview
  • 8.5. SSSs in Memory Channel
    • 8.5.1. Servers
    • 8.5.2. Servers - Memory Channel Storage
  • 8.6. SSDs in Server-Side Configurations
  • 8.7. SSDs in DAS Configurations
  • 8.8. SSDs in NAS and SAN Configurations
  • 8.9. SSDs in HDD RAID Configurations
  • 8.10. SSDs in Blade Server Configurations
  • 8.11. Enterprise SSD Interface Forecast

9. SSDs in Client Computing

  • 9.1. Traditional Notebook PCs
  • 9.2. UltraBooks
  • 9.3. Netbooks
  • 9.4. Tablet PCs / Tablets
  • 9.5. Chromebook
  • 9.6. Nettop PCs
  • 9.7. Desktop PCs
  • 9.8. Client Platform SSD Market Forecast: Tablet Netbook Nettop
  • 9.9. Portable Computer Market Segment SSD Forecasts
  • 9.10. SSDs in Desktops

10. SSD Opportunities in the Consumer Segment

11. SSD Opportunities in the Commercial Segment

  • 11.1. SSDs for Industrial/Embedded Applications
  • 11.2. SSDs for Medical Applications
  • 11.3. SSDs for Aerospace/Avionics Applications
  • 11.4. SSDs for Military Applications

12. Musing on Storage and Memory

  • 12.1. NVMe - Precursor to XPoint DIMM?

13. Flash Technology

  • 13.1. NAND Flash Block Structure
  • 13.2. MLC and SLC Technology Differences
  • 13.3. Performance
  • 13.4. Endurance
  • 13.5. Reliability
  • 13.6. Error Rates
  • 13.7. MLC / TLC / SLC Comparison Metrics
  • 13.8. Semiconductor Memory Component Density

14. SSD Controllers

  • 14.1. SSD Controllers

15. SSD Metrics

  • 15.1. SSD Average Capacity
  • 15.2. Semiconductor Memory Chip Price
  • 15.3. SSD Media Transfer Rate
  • 15.4. System Interface Transfer Rate
  • 15.5. SSD Endurance
  • 15.6. SSD Ruggedness / Shock Resistance
  • 15.7. SSD Mean Time Before Failure (MTBF)
  • 15.8. SSD Environmental Characteristics

16. Total Cost of Ownership

  • 16.1. TCO in the Enterprise
  • 16.2. TOC Enterprise Model
  • 16.3. Performance Requirements
  • 16.4. Power Consumption
  • 16.5. Energy Cost
  • 16.6. Acquistion Cost
  • 16.7. System Reliability

17. Storage System Interfaces

  • 17.1. Universal Serial Bus (USB )
  • 17.2. Fire Wire (IEEE 1394)
  • 17.3. Advanced Technology Attachment (ATA) / Serial ATA (SATA)
  • 17.4. SATA Universal Storage Module™ (USM)
  • 17.5. Universal Flash Storage Association (UFSA)
  • 17.6. eSATA
  • 17.7. Small Computer System Interface (SCSI); Serial Attached SCSI (SAS)
  • 17.8. iSCSI
  • 17.9. Serial Storage Architecture (SSA)
  • 17.10. Fibre Channel-Arbitrated Loop (FC-AL)
  • 17.11. Peripheral Component Interface Express (PCIe)
  • 17.12. Enterprise Interface Transition

18. Storage Subsystems

  • 18.1. Redundant Array of Independent Disks (RAID)
  • 18.2. Storage System Architectures
  • 18.3. Direct Attached Storage (DAS)
  • 18.4. Storage Area Network (SAN)
  • 18.5. Network Attached Storage (NAS)

19. Industry Associations for SSDs

  • 19.1. JEDEC - Joint Electronic Device Engineering Council's
  • 19.2. SSSI - Solid State Storage Initiative
  • 19.3. ONFI - Open NAND Flash Interface
  • 19.4. IDEMA - International Disk Drive Equipment and Materials Association
  • 19.5. SSDA - Solid State Drive Alliance
  • 19.6. NVM Express

20. SSD Supplier Company Profiles

21. Appendix A: Biography

  • Pages 192
  • Figures 125
  • Tables 94
Back to Top
전화 문의
F A Q