½ÃÀ庸°í¼­
»óǰÄÚµå
1604123

µ¥ÀÌÅÍ ÆÐºê¸¯ : ±â¾÷ µµÀÔÀÇ °úÁ¦ ±Øº¹

Overcoming Challenges in Bringing Data Fabrics to Industrial Enterprises

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: ABI Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 11 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀÌ º¸°í¼­´Â µ¥ÀÌÅÍ ÆÐºê¸¯ÀÇ ±â¾÷ µµÀÔ µ¿ÇâÀ» Á¶»çÇϰí, »ê¾÷º° µ¥ÀÌÅÍ »ý¼º·®ÀÇ µ¥ÀÌÅÍ ¼Ò½ºº° ÃßÀÌ ¹× ¿¹Ãø, µ¥ÀÌÅÍ ÆÐºê¸¯ ±â¾÷ µµÀÔ ½Ã º¥´õ°¡ Á÷¸éÇÑ °úÁ¦, °úÁ¦ ±Øº¹À» À§ÇÑ Á¦¾ð, ÁÖ¿ä ±â¾÷ ¹× »ýÅÂ°è µîÀ» Á¤¸®Çß½À´Ï´Ù.

½Ç¿ëÀûÀÎ ÀåÁ¡:

  • µ¥ÀÌÅÍ ÆÐºê¸¯ÀÇ ±â¼ú, µ¥ÀÌÅÍ °Å¹ö³Í½º, °ü¸®, ±â¾÷ µµÀÔ ½Ã º¥´õ°¡ Á÷¸éÇÏ´Â Á¶Á÷Àû, »ó¾÷Àû °úÁ¦¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ ÀÌÇØ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü°¡ ±â¼úÀû ¹®Á¦¸¦ ¿ÏÈ­Çϱâ À§ÇØ Á¦Ç° Á¦°øÀ» Á¶Á¤ÇÏ´Â ¹æ¹ý¿¡ ´ëÇÑ ½ÇÇà °¡´ÉÇÑ ±ÇÀå »çÇ×À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • »ýÅÂ°è ÆÄÆ®³Ê½ÊÀ» ÅëÇØ °ø±Þ¾÷ü°¡ ¿î¿µ/°ü¸® ¹× Á¶Á÷Àû ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖµµ·Ï »ó¼¼ÇÑ °¡À̵带 Á¦°ø¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.

Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯:

  • µ¥ÀÌÅÍ ÅëÇÕ ¾÷ü/Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü´Â µ¥ÀÌÅÍ ÆÐºê¸¯À» ±â¾÷¿¡ µµÀÔÇÒ ¶§ ¾î¶² ¹®Á¦¿¡ Á÷¸éÇϰí Àִ°¡?
  • °ø±Þ¾÷ü´Â ±â¼úÀû ¹®Á¦¸¦ ¿ÏÈ­Çϱâ À§ÇØ ¾î¶»°Ô ¼­ºñ½º¸¦ Á¶Á¤ÇÒ ¼ö Àִ°¡?
  • µ¥ÀÌÅÍ °Å¹ö³Í½º ü°è¿Í ÄÄÇöóÀ̾𽺠ü°è¸¦ ÃÖ´ëÇÑ ÁؼöÇϱâ À§ÇØ ¾î¶² ÀýÂ÷°¡ ÇÊ¿äÇѰ¡?
  • µ¥ÀÌÅÍ ÆÐºê¸¯ °ø±Þ¾÷ü´Â ¾î¶»°Ô ±â¾÷ÀÇ ¿î¿µ °ü¸® ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖÀ»±î?
  • ±â¾÷ È®Àå¿¡ µû¸¥ »ó¾÷Àû °úÁ¦´Â ¹«¾ùÀϱî? º¥´õ´Â ÀÌ·¯ÇÑ ¹®Á¦¸¦ ¾î¶»°Ô ¿ÏÈ­ÇÒ ¼ö Àִ°¡?

Á¶»ç ÇÏÀ̶óÀÌÆ®:

  • 2030³â±îÁö »ê¾÷º° µ¥ÀÌÅÍ »ý¼º·®, µ¥ÀÌÅÍ ¼Ò½ºº° »ó¼¼ ºÐ·ù
  • Á¦Á¶¾÷ÀÇ ¿¬°á µ¿Çâ¿¡ ´ëÇÑ ½ÉÃþ ºÐ¼® : À¯¼±°ú ¹«¼± ¿¬°áÀÇ µ¿ÇâÀ» ±¤¹üÀ§ÇÏ°Ô °ËÅäÇϰí, À¯¼± ¿¬°áÀÇ Áö¹èÀûÀÎ ¿ªÇÒÀ» °³°ýÀûÀ¸·Î ¼³¸íÇÕ´Ï´Ù.
  • ±â¾÷¿¡ µ¥ÀÌÅÍ ÆÐºê¸¯À» µµÀÔÇϱâ À§ÇÑ º¥´õÀÇ °úÁ¦¸¦ ±¤¹üÀ§ÇÏ°Ô ¸ÅÇÎ
  • ±â¼ú ¹ßÀü°ú »ýÅÂ°è ÆÄÆ®³Ê½ÊÀ» ÅëÇØ º¥´õ°¡ ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ¹æ¾È Á¦½Ã

¸ñÂ÷

Á¦1Àå ÁÖ¿ä Á¶»ç °á°ú

Á¦2Àå ÁÖ¿ä ¿¹Ãø

Á¦3Àå ÁÖ¿ä ±â¾÷°ú »ýŰè

  • AMAZON WEB SERVICES
  • DATABRICKS
  • DENODO
  • IBM
  • INFORMATICA
  • ORACLE
  • MICROSOFT
  • QLIK
  • SNOWFLAKE

Á¦4Àå ±â¾÷¿¡ µ¥ÀÌÅÍ ÆÐºê¸¯À» µµÀÔÇÒ ¶§ °úÁ¦

Á¦5Àå µ¥ÀÌÅÍ ÆÐºê¸¯ÀÇ µµÀÔÀ» ÃËÁøÇϱâ À§ÇÑ °úÁ¦ ±Øº¹

Á¦6Àå °á·Ð

ksm 24.12.19

Actionable Benefits:

  • Detailed understanding of technology, data governance, management, and organizational and commercial challenges that vendors face in bringing the data fabric concept to enterprises.
  • Actionable recommendations for cloud service providers on how to adjust their product offerings to mitigate technology challenges.
  • Detailed guidance on how ecosystem partnerships can help suppliers address operational/management and organizational challenges.

Critical Questions Answered:

  • What challenges do data integration vendors/cloud service providers face in bringing data fabric deployments to enterprises?
  • How can vendors adjust their offering to mitigate technology challenges?
  • What steps are necessary to implement maximum adherence to data governance regimes and compliance arrangements?
  • How can data fabric suppliers help enterprises solve operational and management challenges?
  • What are the commercial challenges that targeted enterprise deployments entail? And how can vendors mitigate these challenges?

Research Highlights:

  • Detailed breakdown of industrial data generation through 2030, broken down by different sources of data.
  • In-depth analysis of connectivity trends in manufacturing: extensive review of fixed-line versus wireless connectivity trends, outlining the dominant role of fixed-line.
  • Extensive map of challenges for vendors to bring data fabric deployments to enterprises.
  • Recommendations for vendors to address these challenges with technology advancements and ecosystem partnerships.

Who Should Read This?

  • Product development managers charged with overcoming technical hurdles and designing products that balance flexibility with scalability.
  • Sales and business development executives facing the challenge of positioning and selling complex data fabric solutions in an evolving industrial market.
  • Chief Technology Officers (CTOs) needing to align product roadmaps with market demands while navigating the complex interoperability, security, and customization requirements of large-scale manufacturing and industrial clients.

TABLE OF CONTENTS

1 KEY FINDINGS

2 KEY FORECASTS

3 KEY COMPANIES AND ECOSYSTEMS

  • 3.1 AMAZON WEB SERVICES
  • 3.2 DATABRICKS
  • 3.3 DENODO
  • 3.4 IBM
  • 3.5 INFORMATICA
  • 3.6 ORACLE
  • 3.7 MICROSOFT
  • 3.8 QLIK
  • 3.9 SNOWFLAKE

4 CHALLENGES IN BRINGING DATA FABRICS TO ENTERPRISES

5 OVERCOMING CHALLENGES TO FOSTER DATA FABRIC DEPLOYMENTS

6 CLOSING REMARKS

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦