½ÃÀ庸°í¼
»óÇ°ÄÚµå
1517845
ü¿Ü Æó ¸ðµ¨ ½ÃÀå : ¼ºÀå, ÇâÈÄ Àü¸Á, °æÀï ºÐ¼®(2024-2032³â)In Vitro Lung Model Market - Growth, Future Prospects and Competitive Analysis, 2024 - 2032 |
ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀº ÀÇ·á ¿¬±¸ ¹× »ý¸í°øÇÐÀ̶ó´Â ±¤¹üÀ§ÇÑ ºÐ¾ß Áß¿¡¼µµ Ư¼öÇÑ ºÐ¾ßÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀº Àΰ£ ÆóÀÇ ±¸Á¶¿Í ±â´ÉÀ» ½Ã¹Ä·¹À̼ÇÇϴ ü¿Ü ¸ðµ¨ÀÇ °³¹ß, »ý»ê ¹× È°¿ë¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀº 2024³âºÎÅÍ 2032³â±îÁö 17.2%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, ü¿Ü Æó ¸ðµ¨Àº Àΰ£ ÆóÀÇ »ý¹°ÇÐÀû Ư¼ºÀ» ¸ð¹æÇÑ ½ÇÇè½Ç ¸ðµ¨ÀÔ´Ï´Ù. ¼¼Æ÷ ¹è¾ç, Àå±â ¿ÂĨ ±â¼ú, 3D ¹ÙÀÌ¿ÀÇÁ¸°Æà µî ´Ù¾çÇÑ ±â¼úÀ» »ç¿ëÇÏ¿© °³¹ßµË´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº ÆóÀÇ ¼¼Æ÷ ȯ°æ, ±¸Á¶Àû Ư¡ ¹× »ý¸®Àû ¹ÝÀÀÀ» ÀçÇöÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϸç, ±âÁ¸ÀÇ µ¿¹° ½ÇÇè¿¡ ´ëÇÑ º¸´Ù Á¤È®ÇÏ°í À±¸®ÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù.
ÃËÁø¿äÀÎ: °í±Þ È£Èí±â Áúȯ ¿¬±¸ ¼ö¿ä Áõ°¡
ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀº °í±Þ È£Èí±â Áúȯ ¿¬±¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä´Â ¸¸¼ºÆó¼â¼ºÆóÁúȯ(COPD), õ½Ä, Æó¾Ï µî È£Èí±â ÁúȯÀÇ Àü ¼¼°è À¯º´·ü Áõ°¡¿¡ µû¸¥ °ÍÀÔ´Ï´Ù. ¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é COPD´Â Àü ¼¼°è »ç¸Á ¿øÀÎ Áß 3À§¸¦ Â÷ÁöÇÏ°í ÀÖÀ¸¸ç, õ½ÄÀº Àü ¼¼°èÀûÀ¸·Î ¼ö¹é¸¸ ¸íÀÌ ¾Î°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È£Èí±â ÁúȯÀÇ ºÎ´ãÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÁúȯÀÇ ¸ÞÄ¿´ÏÁòÀ» ÀÌÇØÇÏ°í, »õ·Î¿î Ä¡·á¹ýÀ» °³¹ßÇϸç, ȯÀÚÀÇ ¿¹Èĸ¦ °³¼±Çϱâ À§ÇÑ º¸´Ù È¿°úÀûÀÎ ¿¬±¸ µµ±¸°¡ ÇÊ¿äÇϸç, ü¿Ü Æó ¸ðµ¨Àº µ¿¹° ½ÇÇèÀ» ´ëüÇÒ ¼ö ÀÖ´Â º¸´Ù Á¤È®ÇÏ°í À±¸®ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÏ°í, Æó ÁúȯÀÇ ¼¼Æ÷/ºÐÀÚ COVID-19 ÆÒµ¥¹ÍÀº Àü ¼¼°è °úÇÐÀÚµéÀÌ Æó Á¶Á÷¿¡ ´ëÇÑ ¹ÙÀÌ·¯½ºÀÇ ¿µÇâÀ» ¿¬±¸ÇÏ°í ÀáÀçÀû Ä¡·á¹ýÀ» °ËÁõÇϱâ À§ÇØ Ã¼¿Ü Æó ¸ðµ¨À» »ç¿ëÇÏ¸é¼ Æó ¿¬±¸ÀÇ Á߿伺À» ´õ¿í ºÎ°¢½ÃÄ×½À´Ï´Ù. ´õ¿í ºÎ°¢µÇ¾ú½À´Ï´Ù. À̴ ȣÈí±â Áúȯ ¿¬±¸ ¹× ¾à¹° °³¹ß¿¡¼ ÀÌ·¯ÇÑ ¸ðµ¨ÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °Á¶ÇÏ°í ½ÃÀåÀÇ °ý¸ñÇÒ¸¸ÇÑ ¼ºÀåÀ» ÃËÁøÇß½À´Ï´Ù.
±âȸ: Æó ¸ðµ¨ÀÇ ±â¼úÀû Áøº¸
ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀº Æó ¸ðµ¨ °³¹ßÀÇ ±â¼ú ¹ßÀüÀ¸·Î Å« ±âȸ¸¦ ¸ÂÀÌÇÏ°í ÀÖÀ¸¸ç, 3D ¹ÙÀÌ¿ÀÇÁ¸°Æà ¹× Àå±â ¿ÂĨ ±â¼ú°ú °°Àº Çõ½ÅÀº ÀÌ ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ º¸´Ù º¹ÀâÇÏ°í »ý¸®ÇÐÀûÀ¸·Î ÀûÇÕÇÑ Æó ¸ðµ¨ Á¦ÀÛÀ» °¡´ÉÇÏ°Ô ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¾à¹°ÀÇ È¿´É°ú µ¶¼º Å×½ºÆ®ÀÇ Á¤È®¼ºÀ» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ »õ·Î¿î ±æÀ» ¿¾îÁÖ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ƯÁ¤ ȯÀÚ¿¡¼ äÃëÇÑ ¼¼Æ÷·Î Æó ¸ðµ¨À» °³¹ßÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó º¸´Ù °³ÀÎÈµÈ ¾à¹° ¹ÝÀÀ ½ÃÇè°ú ¸ÂÃãÇü Ä¡·á¹ý °³¹ßÀÌ °¡´ÉÇØÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀº °³ÀÎ ¸ÂÃãÇü ÀÇ·á ¹× Á¤¹ÐÀÇ·áÀÇ Áõ°¡ Ãß¼¼¿Í ¸Â¹°·Á ½ÃÀå ¼ºÀå¿¡ À¯¸®ÇÑ ±âȸ·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ °è¼Ó ¹ßÀüÇÏ°í È°¿ëµµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ü¿Ü Æó¸ðµ¨ÀÇ ¿ëµµ¿Í ±â´ÉÀÌ Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾ïÁ¦¿äÀÎ: ³ôÀº ºñ¿ë°ú ±â¼úÀû º¹À⼺
ü¿Ü Æó ¸ðµ¨ÀÇ ÀáÀç·Â¿¡µµ ºÒ±¸ÇÏ°í, ½ÃÀåÀº ³ôÀº ºñ¿ë°ú ±â¼úÀû º¹À⼺À̶ó´Â Å« Á¦¾à ¿äÀο¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. Á¤±³ÇÑ Æó ¸ðµ¨, ƯÈ÷ ¿À°¡³ëÀ̵å(organ-on-a-chip)¿Í °°Àº ÷´Ü ±â¼úÀ» ÀÌ¿ëÇÑ Æó ¸ðµ¨À» °³¹ßÇÏ°í À¯ÁöÇϱâ À§Çؼ´Â ¸¹Àº ÀçÁ¤Àû ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú°ú °ü·ÃµÈ ³ôÀº ºñ¿ëÀº Çмú ±â°ü ¹× ¼Ò±Ô¸ð ¿¬±¸ ±â°ü¿¡ À庮ÀÌ µÇ¾î °í±Þ Æó ¸ðµ¨ÀÇ º¸±ÞÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ¸ðµ¨À» ¸¸µé°í »ç¿ëÇÏ´Â µ¥ µû¸£´Â ±â¼úÀû º¹À⼺Àº Àü¹®ÀûÀÎ Àü¹® Áö½Ä°ú ¸®¼Ò½º¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ´Â ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °ÍÀº ¹°·Ð, ¿¬±¸ ¸ñÀûÀ¸·Î ÀÌ·¯ÇÑ ¸ðµ¨À» È¿°úÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ´Â ¼÷·ÃµÈ Àü¹®°¡ÀÇ °¡¿ë¼ºÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ °í±Þ ü¿Ü Æó ¸ðµ¨ÀÇ ³ôÀº ºñ¿ë°ú ±â¼úÀû º¹À⼺Àº ¿©ÀüÈ÷ ½ÃÀå¿¡¼ Å« µµÀüÀ¸·Î ³²¾Æ ÀÖÀ¸¸ç, ÀÌ´Â ±¤¹üÀ§ÇÑ Ã¤Åðú Çõ½ÅÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
°úÁ¦: Àΰ£ ÆóÀÇ º¹À⼺À» ÀçÇöÇÏ´Â °Í
ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀÇ °¡Àå Å« °úÁ¦ Áß Çϳª´Â Àΰ£ ÆóÀÇ º¹ÀâÇÑ ±¸Á¶¸¦ ÀçÇöÇÏ´Â °ÍÀÔ´Ï´Ù. Æó´Â µ¶Æ¯ÇÑ ±¸Á¶¿Í ´Ù¾çÇÑ ¼¼Æ÷ À¯ÇüÀ» °¡Áø ¸Å¿ì º¹ÀâÇÑ ±â°üÀ¸·Î ½ÇÇè½Ç¿¡¼ Á¤È®ÇÏ°Ô ¸ð¹æÇϱⰡ ¾î·Æ½À´Ï´Ù. ÃÖ±Ù ±â¼ú ¹ßÀüÀ¸·Î ÀÌ ºÐ¾ß¿¡¼ »ó´çÇÑ ÁøÀüÀÌ ÀÖ¾úÁö¸¸, ÇöÀç ü¿Ü ¸ðµ¨ÀÇ ´É·Â°ú ½ÇÁ¦ Àΰ£ ÆóÀÇ º¹À⼺ »çÀÌ¿¡´Â ¿©ÀüÈ÷ °ÝÂ÷°¡ ÀÖ½À´Ï´Ù. ¿¬±¸ ¹× ÀǾàÇ° °³¹ß¿¡¼ Æó ¸ðµ¨ÀÇ È¿´ÉÀº Àΰ£ ÆóÀÇ »ý¸®¿Í º´¸®¸¦ ¾ó¸¶³ª Á¤È®ÇÏ°Ô ÀçÇöÇÒ ¼ö ÀÖ´ÂÁö¿¡ µû¶ó Å©°Ô Á¿ìµÇ±â ¶§¹®¿¡ ÀÌ ¹®Á¦´Â ¸Å¿ì Áß¿äÇÕ´Ï´Ù. À̸¦ ±Øº¹Çϱâ À§Çؼ´Â Àΰ£ ÆóÀÇ º¹ÀâÇÑ ±¸Á¶, ¼¼Æ÷ÀÇ ´Ù¾ç¼º, ¿ªµ¿ÀûÀÎ »ý¸®Àû ¹ÝÀÀÀ» Ãæ½ÇÇÏ°Ô ¸ð¹æÇÒ ¼ö ÀÖ´Â º¸´Ù Á¤±³ÇÑ ¸ðµ¨À» °³¹ßÇϱâ À§ÇÑ Áö¼ÓÀûÀÎ ¿¬±¸¿Í ±â¼ú Çõ½ÅÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀº È£Èí±â ¿¬±¸¿¡¼ ü¿Ü Æó ¸ðµ¨ÀÇ Áö¼ÓÀûÀÎ ¹ßÀü°ú À¯¿ë¼ºÀ» À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
½ÃÀå ¼¼ºÐÈ: À¯Çüº°
ü¿Ü Æó ¸ðµ¨ ½ÃÀå¿¡´Â 2D ¸ðµ¨°ú 3D ¸ðµ¨ÀÌ °¢°¢ ´Ù¸¥ ¼ºÀå ÆÐÅÏ°ú ¼öÀÍ ±â¿©µµ¸¦ º¸ÀÌ´Â À¯Çüº° ¼¼ºÐÈ°¡ Á¸ÀçÇϸç, 3D ¸ðµ¨ÀÌ ÇöÀç ü¿Ü Æó ¸ðµ¨ ½ÃÀå¿¡¼ °¡Àå ³ôÀº ¸ÅÃâÀ» Â÷ÁöÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ´Â 3D ¸ðµ¨ÀÌ Àΰ£ ÆóÀÇ ±¸Á¶Àû, ±â´ÉÀû Ãø¸éÀ» Ãæ½ÇÇÏ°Ô ÀçÇöÇÒ ¼ö ÀÖ´Â °íµµÀÇ ±â´ÉÀ» °®Ãß°í ÀÖ¾î ½Å¾à °³¹ß ¹× º¹ÀâÇÑ Áúº´ ¸ðµ¨¸µ ¿¬±¸¿¡¼ ³ôÀº °¡Ä¡¸¦ ¹ßÈÖÇÏ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ±âÁ¸ 2D ¹è¾ç¿¡ ºñÇØ »ý¸®ÇÐÀûÀ¸·Î ´õ ÀûÇÕÇÑ È¯°æÀ» Á¦°øÇÒ ¼ö Àֱ⠶§¹®¿¡ °í±Þ ¿¬±¸ ȯ°æ¿¡¼ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, º¹ÀâÇÑ Æó Áúȯ ¿¬±¸¿Í È£Èí±â ¾à¹° È¿´É ½ÃÇè¿¡ ´ëÇÑ 3D ¸ðµ¨ »ç¿ë Áõ°¡·Î ÀÎÇØ 3D ¸ðµ¨ÀÇ ¼öÀÍ ¿ìÀ§´Â ´õ¿í °ÈµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª °¡Àå ³ôÀº ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â 2D ¸ðµ¨ ºÐ¾ß·Î, 3D ¸ðµ¨ÀÌ °í±Þ ±â´ÉÀ» Á¦°øÇÏ´Â ¹Ý¸é, 2D ¸ðµ¨Àº ´Ü¼ø¼º, Àú·ÅÇÑ ºñ¿ë ¹× »ç¿ë ÆíÀǼº ¶§¹®¿¡ ¿©ÀüÈ÷ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ±âÃÊ ¿¬±¸ ¹× ÀÏ»óÀûÀÎ °Ë»ç¿¡¼ 3D ¸ðµ¨ÀÇ º¹À⼺°ú ºñ¿ëÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê±â ¶§¹®¿¡ ¼ö¿ä°¡ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½ÃÀå ¼¼ºÐÈ: ¿ëµµº°
¿ëµµº° ½ÃÀå ¼¼ºÐÈ¿¡´Â ½Å¾à °³¹ß ¹× µ¶¼º ¿¬±¸, »ý¸®ÇÐ ¿¬±¸, 3D ¸ðµ¨ °³¹ß µîÀÌ Æ÷ÇԵ˴ϴÙ. ½Å¾à °³¹ß ¹× µ¶¼º ¿¬±¸ ºÐ¾ß´Â Á¦¾à »ê¾÷¿¡¼ ÀÌ·¯ÇÑ ¸ðµ¨ÀÌ Â÷ÁöÇÏ´Â Áß¿äÇÑ ¿ªÇÒ·Î ÀÎÇØ °¡Àå ³ôÀº ¼öÀÍÀ» âÃâÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ ¸ðµ¨µéÀº ÀáÀçÀû ½Å¾à Èĺ¸¹°ÁúÀÇ ½ºÅ©¸®´× ¹× µ¶¼º Æò°¡¿¡ ³Î¸® »ç¿ëµÇ¾î ÀǾàÇ° °³¹ß°ú °ü·ÃµÈ ½Ã°£°ú ºñ¿ëÀ» Å©°Ô Àý°¨ÇÏ°í ÀÖ½À´Ï´Ù. ƯÈ÷ COVID-19 ÆÒµ¥¹Í ÀÌÈÄ È£Èí±â ½Å¾à¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÇÔ²² ÀǾàÇ° ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡°¡ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» °ßÀÎÇÏ°í ÀÖÀ¸¸ç, »ý¸®ÇÐ ¿¬±¸ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¿øµ¿·ÂÀº COPD, õ½Ä, Æó¾Ï µîÀÇ º´Å»ý¸® ¿¬±¸¸¦ Æ÷ÇÔÇÏ¿© º¹ÀâÇÑ Æó Áúȯ¿¡ ´ëÇÑ ±âÃÊÀûÀÎ ÀÌÇØÀÇ Çʿ伺ÀÌ Áõ°¡ÇÏ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Áúº´¿¡ ´ëÇÑ °úÇаèÀÇ ÀÌÇØ°¡ ±í¾îÁü¿¡ µû¶ó, Àΰ£ Æó »ý¸®ÇÐÀ» ¸ð¹æÇϱâ À§ÇÑ º¸´Ù Á¤±³ÇÏ°í Á¤È®ÇÑ ¸ðµ¨ÀÇ Çʿ伺À¸·Î ÀÎÇØ »ý¸®ÇÐ ¿¬±¸¿¡¼ ü¿Ü Æó ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Áö¿ªº° ÀλçÀÌÆ®
ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀÇ Áö¸®Àû ¼¼ºÐÈ´Â Áö¿ªº°·Î ´Ù¸¥ ¼ºÀå ¹× ¼öÀÍ ÆÐÅÏÀ» °Á¶ÇÏ°í ÀÖÀ¸¸ç, 2023³â¿¡´Â ºÏ¹Ì°¡ ÀÌ ½ÃÀå¿¡¼ °¡Àå ³ôÀº ¼öÀÍÀ» âÃâÇÏ´Â Áö¿ªÀ¸·Î ºÎ»óÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¸®´õ½ÊÀº ÀÌ Áö¿ªÀÇ Ã·´Ü ÀÇ·á ¿¬±¸ ÀÎÇÁ¶ó, ¿¬±¸°³¹ß¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ, Æó °ü·Ã ¿¬±¸¿¡ Á¾»çÇÏ´Â ÁÖ¿ä Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ÀÇ Á¸Àç¿¡ ±âÀÎÇÕ´Ï´Ù. ºÏ¹ÌÀÇ ³ôÀº È£Èí±â Áúȯ À¯º´·ü°ú Çõ½ÅÀûÀÎ Ä¡·á ¼Ö·ç¼Ç °³¹ß¿¡ ÁÖ·ÂÇÏ°í ÀÖ´Â °Íµµ ºÏ¹ÌÀÇ ¾ÐµµÀûÀÎ ¸ÅÃâ¿¡ ±â¿©ÇÏ°í ÀÖÀ¸¸ç, 2024³âºÎÅÍ 2032³â±îÁö ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀå Àü¸ÁÀº ÇコÄÉ¾î ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, È£Èí±â Áúȯ ¹ßº´·ü Áõ°¡, Áß±¹ ¹× Àεµ¿Í °°Àº ±¹°¡¿¡¼ÀÇ Ã·´Ü ¿¬±¸ ¹æ¹ý·Ð¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡¿¡ ±âÀÎÇÑ °ÍÀ¸·Î ºÐ¼®µË´Ï´Ù. ¶ÇÇÑ, À̵é Áö¿ªÀÇ ÀÇ·á ÀÎÇÁ¶ó È®´ë¿Í »ý¸í°øÇÐ ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡´Â ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
°æÀï»ç µ¿Çâ
°æÀï µ¿Çâ°ú °ü·ÃÇÏ¿©, ½ÃÀå¿¡´Â ±âÁ¸ ±â¾÷°ú ½Å±Ô ÁøÀÔ Ç÷¹À̾ È¥ÇյǾî ÀÖÀ¸¸ç, °¢ Ç÷¹À̾î´Â ½ÃÀå ÀÔÁö¸¦ °ÈÇϱâ À§ÇØ °íÀ¯ ÇÑ Àü·«À» äÅÃÇÏ°í ÀÖÀ¸¸ç, 2023³â¿¡´Â Epithelix, MATTEK, Lonza, Emulate, AlveoliX AG, Nortis, CN Bio Innovations, MIMETAS, InSpheres, ATTC Global µîÀÌ »óÀ§ ¾÷ü·Î ¼±Á¤µÇ¾ú½À´Ï´Ù, AlveoliX AG, Nortis, CN Bio Innovations, MIMETAS, InSphero, ATTC Global µîÀÌ ±¤¹üÀ§ÇÑ ¿¬±¸ ¿ª·®°ú źźÇÑ Á¦Ç° Æ÷Æ®Æú¸®¿À¸¦ ¹ÙÅÁÀ¸·Î ½ÃÀåÀ» Àå¾ÇÇß½À´Ï´Ù. 2024³âºÎÅÍ 2032³â±îÁö ¿¹Ãø ±â°£ µ¿¾È À̵é ÁÖ¿ä ±â¾÷µéÀº Àü·«Àû Á¦ÈÞ, ÇÕº´, ÀμöÇÕº´ µîÀ» ÅëÇØ ±â¼ú·Â È®´ë¿Í ½ÃÀå ÁøÀÔÀ» È®´ëÇÏ´Â µ¥ ÁÖ·ÂÇÏ°í ÀÖÀ¸¸ç, ƯÈ÷ 3D ¹ÙÀÌ¿ÀÇÁ¸°Æà ¹× Àå±â ¿ÂĨ ±â¼ú µîÀÇ ºÐ¾ß¿¡¼ ±â¼ú Çõ½Å¿¡ Áö¼ÓÀûÀ¸·Î ÁýÁßÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ´Â °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇÑ Áß¿äÇÑ Àü·«ÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀÌµé ±â¾÷µéÀº ÁøÈÇÏ´Â ¿¬±¸ ¿ä±¸¿Í ±ÔÁ¦ ȯ°æ¿¡ ÀûÀÀÇÏ¸é¼ ½ÅÈï ½ÃÀå¿¡¼ÀÇ ÀÔÁö¸¦ È®´ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. Çõ½ÅÀûÀÎ Æó ¸ðµ¨ ±â¼úÀ» Àü¹®À¸·Î ÇÏ´Â ½Å±Ô ¾÷üµéÀÇ ÁøÀÔÀº ½ÃÀå °æÀïÀ» ½ÉȽÃÅ°°í ü¿Ü Æó ¸ðµ¨ ºÐ¾ßÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
º» º¸°í¼¿¡¼ ´äº¯ÇÏ´Â ÁÖ¿ä Áú¹®
ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ¹Ì½ÃÀû, °Å½ÃÀû ȯ°æ ¿äÀÎÀº ¹«¾ùÀΰ¡?
ÇöÀç ¹× ¿¹Ãø ±â°£ µ¿¾È Á¦Ç° ºÎ¹® ¹× Áö¿ª¿¡ ´ëÇÑ ÁÖ¿ä ÅõÀÚ Æ÷ÄÏÀº ¹«¾ùÀΰ¡?
2032³â±îÁöÀÇ ÃßÁ¤Ä¡ ¹× ½ÃÀå Àü¸Á
¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ CAGRÀ» º¸ÀÏ ºÎ¹®Àº?
½ÃÀå Á¡À¯À²ÀÌ ³ôÀº ºÎ¹®°ú ±× ÀÌÀ¯´Â?
ÁßÀú¼Òµæ ±¹°¡´Â ü¿Ü Æó ¸ðµ¨ ½ÃÀå¿¡ ÅõÀÚÇÏ°í Àִ°¡?
ÀκñÆ®·Î Æó ¸ðµ¨ ½ÃÀå¿¡¼ °¡Àå Å« Áö¿ª ½ÃÀåÀº ¾îµðÀΰ¡?
¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« µî ½ÅÈï ½ÃÀåÀÇ ½ÃÀå µ¿Çâ°ú ¿ªÇÐÀº?
ü¿Ü Æó ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä µ¿ÇâÀº ¹«¾ùÀΰ¡?
¼¼°è ü¿Ü Æó ¸ðµ¨ ½ÃÀå¿¡¼ ÀÔÁö¸¦ °ÈÇϱâ À§ÇÑ ÁÖ¿ä °æÀï»ç ¹× ÁÖ¿ä Àü·«Àº?
The in vitro lung model market is a specialized segment within the broader field of medical research and biotechnology. This market focuses on the development, production, and utilization of in vitro (outside the living organism) models that simulate the structure and function of human lungs. These models are crucial for various applications in respiratory research, drug discovery, and toxicology testing. The in vitro lung model market is estimated to grow at a CAGR of 17.2% from 2024 to 2032. In vitro lung models are laboratory models that mimic the biological characteristics of human lungs. They are developed using various techniques, including cell cultures, organ-on-a-chip technology, and 3D bioprinting. These models aim to replicate the lung's cellular environment, structural features, and physiological responses, providing a more accurate and ethical alternative to traditional animal testing.
Driver: Growing Need for Advanced Respiratory Disease Research
The in vitro lung model market is primarily driven by the growing need for advanced respiratory disease research. This demand is fueled by the increasing prevalence of respiratory diseases globally, including chronic obstructive pulmonary disease (COPD), asthma, and lung cancer. According to the World Health Organization, COPD alone is the third leading cause of death worldwide, and asthma affects millions of people globally. This rising burden of respiratory diseases necessitates more effective research tools for understanding disease mechanisms, developing new treatments, and improving patient outcomes. In vitro lung models offer a promising solution by providing a more accurate and ethical alternative to animal testing, enabling detailed study of lung diseases at the cellular and molecular level. The COVID-19 pandemic further highlighted the importance of lung research, as scientists worldwide turned to in vitro lung models to study the virus's effects on lung tissue and test potential treatments. This has underscored the essential role of these models in respiratory disease research and drug development, driving significant growth in the market.
Opportunity: Technological Advancements in Lung Models
The in vitro lung model market presents significant opportunities with technological advancements in lung model development. Innovations such as 3D bioprinting and organ-on-a-chip technology are revolutionizing the field, enabling the creation of more complex and physiologically relevant lung models. These advancements are not only enhancing the accuracy of drug efficacy and toxicity testing but also opening new avenues in personalized medicine. For instance, lung models can now be developed using cells from specific patients, allowing for more personalized drug response testing and the potential development of customized treatments. This technological evolution aligns with the growing trend towards personalized healthcare and precision medicine, making it a lucrative opportunity for market growth. As these technologies continue to mature and become more accessible, they are expected to significantly expand the applications and capabilities of in vitro lung models.
Restraint: High Costs and Technical Complexities
Despite the potential of in vitro lung models, the market faces significant restraints in terms of high costs and technical complexities. Developing and maintaining sophisticated lung models, especially those using cutting-edge technologies like organ-on-a-chip, requires substantial financial investment. The high costs associated with these technologies can be a barrier for academic and smaller research institutions, limiting the widespread adoption of advanced lung models. Additionally, the technical complexities involved in creating and using these models require specialized expertise and resources. This not only adds to the cost but also limits the availability of skilled professionals who can effectively utilize these models for research purposes. As such, the high cost and technical complexity of advanced in vitro lung models remain major challenges in the market, potentially hindering broader adoption and innovation.
Challenge: Replicating the Complexity of Human Lungs
One of the biggest challenges in the in vitro lung model market is replicating the intricate complexity of human lungs. The lung is a highly complex organ with a unique structure and diverse cell types, making it difficult to accurately mimic in a laboratory setting. While recent technological advancements have made significant strides in this area, there is still a gap between the current capabilities of in vitro models and the complexity of real human lungs. This challenge is critical because the efficacy of lung models in research and drug development heavily depends on how accurately they replicate human lung physiology and pathology. Overcoming this challenge requires ongoing research and innovation to develop more sophisticated models that can closely mimic the intricate architecture, cellular diversity, and dynamic physiological responses of human lungs. Addressing this issue is essential for the continued advancement and utility of in vitro lung models in respiratory research.
Market segmentation by type
In the in vitro lung model market, segmentation by type includes 2D and 3D Models, each with distinct growth patterns and revenue contributions. The 3D Model segment currently holds the highest revenue within this market. This prominence is due to the advanced capabilities of 3D models in closely replicating the structural and functional aspects of human lungs, making them highly valuable for complex studies in drug discovery and disease modeling. Their ability to provide a more physiologically relevant environment compared to traditional 2D cultures has led to their widespread adoption in advanced research settings. The revenue dominance of 3D models is further reinforced by their increasing use in studying intricate lung diseases and testing the efficacy of respiratory drugs. However, the segment expected to exhibit the highest Compound Annual Growth Rate (CAGR) is the 2D Model segment. While 3D models offer advanced features, 2D models are still widely used due to their simplicity, lower cost, and ease of use. The demand for 2D models is expected to grow, particularly in basic research and routine testing, where the complexity and cost of 3D models may not be necessary.
Market Segmentation by Application
Regarding market segmentation by application, the in vitro lung model market includes Drug Discovery & Toxicology Studies, Physiological Research, 3D Model Development, among others. The Drug Discovery & Toxicology Studies segment has generated the highest revenue, attributed to the critical role these models play in the pharmaceutical industry. They are extensively used for screening potential drug candidates and assessing their toxicity, significantly reducing the time and cost associated with drug development. The increasing investment in pharmaceutical R&D, along with the rising demand for new respiratory drugs, especially post the COVID-19 pandemic, has fueled the growth of this segment. In terms of the highest CAGR, the Physiological Research segment is projected to grow rapidly. This growth is driven by the escalating need to understand complex lung diseases at a fundamental level, including studying the pathophysiology of conditions like COPD, asthma, and lung cancers. As the scientific community's understanding of these diseases deepens, the demand for in vitro lung models in physiological research is expected to increase significantly, driven by the need for more sophisticated and accurate models to mimic human lung physiology.
Regional Insights
The in vitro lung model market's geographic segmentation highlights varied growth and revenue patterns across different regions. In 2023, North America emerged as the region with the highest revenue in this market. This leadership can be attributed to the region's advanced healthcare research infrastructure, significant investments in R&D, and the presence of key pharmaceutical and biotech companies engaged in lung-related research. The high prevalence of respiratory diseases and the strong focus on developing innovative treatment solutions in North America further contributed to its dominant revenue position. Looking towards 2024 to 2032, the Asia-Pacific region is expected to experience the highest Compound Annual Growth Rate (CAGR). This growth projection is driven by increasing investments in healthcare research, rising incidence of respiratory diseases, and growing awareness of advanced research methodologies in countries like China and India. Additionally, the expanding healthcare infrastructure and increasing government support for biotechnology research in these regions are likely to fuel the growth of the in vitro lung model market.
Competitive Trends
In terms of competitive trends, the market is characterized by a mix of established players and emerging entrants, each employing distinct strategies to strengthen their market positions. In 2023, companies such as Epithelix, MATTEK, Lonza, Emulate, AlveoliX AG, Nortis, CN Bio Innovations Ltd., MIMETAS, InSphero, ATTC Global were among the top players, leveraging their extensive research capabilities and robust product portfolios to dominate the market. These companies focused on strategic collaborations, mergers, and acquisitions to broaden their technological capabilities and enhance their market reach. For the forecast period of 2024 to 2032, these key players are expected to continue emphasizing innovation, particularly in areas like 3D bioprinting and organ-on-a-chip technologies. Investment in these advanced technologies is anticipated to be a crucial strategy for maintaining a competitive edge. Furthermore, these companies are likely to expand their presence in emerging markets, adapting to the evolving research needs and regulatory landscapes. The entry of new players specializing in innovative lung model technologies is expected to intensify competition in the market, thereby driving continuous advancements in the field of in vitro lung models.
Historical & Forecast Period
This study report represents an analysis of each segment from 2022 to 2032 considering 2023 as the base year. Compounded Annual Growth Rate (CAGR) for each of the respective segments estimated for the forecast period of 2024 to 2032.
The current report comprises quantitative market estimations for each micro market for every geographical region and qualitative market analysis such as micro and macro environment analysis, market trends, competitive intelligence, segment analysis, porters five force model, top winning strategies, top investment markets, emerging trends & technological analysis, case studies, strategic conclusions and recommendations and other key market insights.
Research Methodology
The complete research study was conducted in three phases, namely: secondary research, primary research, and expert panel review. The key data points that enable the estimation of In Vitro Lung Model market are as follows:
Research and development budgets of manufacturers and government spending
Revenues of key companies in the market segment
Number of end users & consumption volume, price, and value.
Geographical revenues generated by countries considered in the report
Micro and macro environment factors that are currently influencing the In Vitro Lung Model market and their expected impact during the forecast period.
Market forecast was performed through proprietary software that analyzes various qualitative and quantitative factors. Growth rate and CAGR were estimated through intensive secondary and primary research. Data triangulation across various data points provides accuracy across various analyzed market segments in the report. Application of both top-down and bottom-up approach for validation of market estimation assures logical, methodical, and mathematical consistency of the quantitative data.
Market Segmentation
Type
2D Model
3D Model
Application
3D Model Development
End-Use
Region Segment (2022-2032; US$ Million)
North America
U.S.
Canada
Rest of North America
UK and European Union
UK
Germany
Spain
Italy
France
Rest of Europe
Asia Pacific
China
Japan
India
Australia
South Korea
Rest of Asia Pacific
Latin America
Brazil
Mexico
Rest of Latin America
Middle East and Africa
GCC
Africa
Rest of Middle East and Africa
Key questions answered in this report
What are the key micro and macro environmental factors that are impacting the growth of In Vitro Lung Model market?
What are the key investment pockets concerning product segments and geographies currently and during the forecast period?
Estimated forecast and market projections up to 2032.
Which segment accounts for the fastest CAGR during the forecast period?
Which market segment holds a larger market share and why?
Are low and middle-income economies investing in the In Vitro Lung Model market?
Which is the largest regional market for In Vitro Lung Model market?
What are the market trends and dynamics in emerging markets such as Asia Pacific, Latin America, and Middle East & Africa?
Which are the key trends driving In Vitro Lung Model market growth?
Who are the key competitors and what are their key strategies to enhance their market presence in the In Vitro Lung Model market worldwide?