½ÃÀ庸°í¼­
»óǰÄÚµå
1804250

¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ÀÚÀ²ÁÖÇà ·¹º§º°, Â÷Á¾º°, ÃßÁø À¯Çüº°, Â÷·® ¿ëµµº°, Áö¿ªº° - ½ÃÀå ±Ô¸ð, »ê¾÷ ¿ªÇÐ, ±âȸ ºÐ¼®, ¿¹Ãø(2025-2033³â)

Global Autonomous Driving Market: Component, Autonomous Level, Vehicle Type, Propulsion Type, Vehicle Applications, Region-Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Astute Analytica | ÆäÀÌÁö Á¤º¸: ¿µ¹® 374 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÇöÀç ÀÚÀ²ÁÖÇà ½ÃÀåÀº ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü°ú ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ½Å·Ú°¡ ³ô¾ÆÁü¿¡ µû¶ó °­·ÂÇÑ »ó½Â¼¼¸¦ Ÿ°í ÀÖ½À´Ï´Ù. 2024³â ½ÃÀå ±Ô¸ð´Â ¾à 1,702¾ï 2,000¸¸ ´Þ·¯·Î ÇâÈÄ Å©°Ô ¼ºÀåÇÏ¿© 2033³â¿¡´Â 6,686¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â 2025-2033³â ¿¬Æò±Õ 17.63%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ÀÚÀ²ÁÖÇà ºÐ¾ßÀÇ ±â¼ú Çõ½Å°ú äÅà ¼Óµµ°¡ °¡¼ÓÈ­µÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.

Áö¿ªº°·Î´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ºÎ»óÇÏ°í ºÏ¹Ì°¡ ±Ù¼ÒÇÑ Â÷ÀÌ·Î ±× µÚ¸¦ ÀÌÀ» °ÍÀ¸·Î ¿¹ÃøµÇ´Â µî ¼¼°è ÀÚÀ²ÁÖÇà ½ÃÀåÀº ¶Ñ·ÇÇÑ ¼ºÀå ÆÐÅÏÀ» º¸À̰í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿ìÀ§´Â Á¤ºÎ Áö¿ø Á¤Ã¥, ºü¸¥ ±â¼ú ¹ßÀü, ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ °­·ÂÇÑ Á¸Àç°¨ µîÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÇöÀç ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖÁö¸¸, ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àû±ØÀûÀÎ Á¤Ã¥°ú ÅõÀÚ·Î ´õ ºü¸¥ ¼ºÀåÀÌ ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß±¹Àº Á¤ºÎÀÇ ´ë´ëÀûÀÎ Áö¿ø, ±¤¹üÀ§ÇÑ ½ÃÇè ÇÁ·Î±×·¥, ·Îº¿ Åýà ¼­ºñ½º °³¹ßÀ» ÅëÇØ ÀÚÀ²ÁÖÇàÂ÷ °³¹ßÀ» Àû±ØÀûÀ¸·Î ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¸ñÇÒ ¸¸ÇÑ ½ÃÀå ¹ßÀü

ÀÚÀ²ÁÖÇà ½ÃÀåÀº ±âÁ¸ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ÁÖ¿ä ±â¼ú ¾÷üµéÀÇ Ä¡¿­ÇÑ °æÀïÀÌ Æ¯Â¡À̸ç, °¢ ¾÷üµéÀº ½ÃÀå Á¡À¯À²À» È®º¸Çϱâ À§ÇØ µ¶ÀÚÀûÀÎ ±â¼ú Àü·«À» ±¸»çÇϰí ÀÖ½À´Ï´Ù. Å×½½¶ó°¡ ¿©ÀüÈ÷ ¾ÐµµÀûÀÎ °­¼¼¸¦ º¸À̰í ÀÖÁö¸¸, ¿þÀ̸ð´Â ÇǴнº, »÷ÇÁ¶õ½Ã½ºÄÚ, ·Î½º¾ØÁ©·¹½º µî ¹Ì±¹ ÁÖ¿ä µµ½Ã¿¡¼­ 700´ë ÀÌ»óÀÇ Â÷·®À» Ȱ¹ßÈ÷ ¿î¿µÇÏ¸ç ¼±µÎ ÀÚ¸®¸¦ Áö۰í ÀÖ½À´Ï´Ù. 2024³â Á߹ݱîÁö WaymoÀÇ ÀÚÀ²ÁÖÇàÂ÷´Â ¸ÅÁÖ 15¸¸ °Ç ÀÌ»óÀÇ À¯·á ¶óÀ̵ùÀ» ¼öÇàÇÏ¸ç ¼­ºñ½ºÀÇ ±Ô¸ð¿Í °ß°íÇÔÀ» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù.

°æÀï ±¸µµ¸¦ º¸¸é, ½ÃÀå ħÅõ¿Í ÀÚÀ²ÁÖÇà ±â¼ú °³¹ßÀ» À§ÇØ ´Ù¾çÇÑ Á¢±Ù ¹æ½ÄÀÌ ÀÖ´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¾ÖÇÃÀÇ ÇÁ·ÎÁ§Æ® ŸÀÌź(Project Titan)Àº Ãʱ⿡´Â ¿ÏÀüÇÑ ÀÚÀ²ÁÖÇàÀ» Ãß±¸ÇÑ´Ù´Â ¼Ò¹®ÀÌ ÀÖ¾úÁö¸¸, ÀÌÈÄ ÃÊÁ¡À» ¿Å°å½À´Ï´Ù. ÀÌ È¸»ç´Â ¿ÏÀüÀÚÀ²ÁÖÇàÂ÷¿¡ ´ëÇÑ ¾ß¸ÁÀ» Ãà¼ÒÇÑ Ã·´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿¡ ¸¹Àº ÅõÀÚ¸¦ Áö¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀÚµ¿Â÷ÀÇ ¾ÈÀü¼º°ú ÆíÀǼºÀ» ³ôÀÌ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, 2028³â°æ ½ÃÀå¿¡ Ãâ½ÃµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾ÖÇÃÀÇ º¸´Ù ½ÅÁßÇϰí Á¡ÁøÀûÀÎ Á¢±Ù ¹æ½ÄÀº ±â¾÷ÀÌ Çõ½Å°ú ±ÔÁ¦ ¹®Á¦ ¹× ½ÃÀå ÁغñÀÇ ±ÕÇüÀ» ¸ÂÃß´Â ¾÷°è Àü¹ÝÀÇ Ãß¼¼¸¦ ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù.

ÇÙ½É ÃËÁø¿äÀÎ

ÀÚÀ²ÁÖÇà ½ÃÀåÀº ³î¶ó¿î ¼Óµµ·Î ¹ßÀüÇϰí ÀÖÀ¸¸ç, ±× ÁÖ¿ä ¿øµ¿·ÂÀº ÀüÅëÀûÀÎ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ÷´Ü ±â¼ú ±â¾÷ °£ÀÇ Àü·«Àû Á¦ÈÞ·Î ¾÷°èÀÇ ÆÇµµ¸¦ ¹Ù²Ù°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦ÈÞ¸¦ ÅëÇØ ÀÚµ¿Â÷ Á¦Á¶ Àü¹® Áö½Ä°ú ÷´Ü ÀΰøÁö´É ¹× ¼¾¼­ ±â¼úÀ» °áÇÕÇÏ¿© ÀÚÀ²ÁÖÇàÂ÷ °³¹ß ¹× º¸±ÞÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. 2024³â 1¿ù ¿ì¹ö°¡ ¿þÀ̺ê(Wayve)¿ÍÀÇ Á¦ÈÞ¸¦ ¹ßÇ¥Çϰí 2026³â±îÁö ·±´ø¿¡¼­ ¿ÏÀü ¹«ÀοîÀü ·Îº¿Åýà ½Ã¹ü¿îÇàÀ» ½ÃÀÛÇÑ °ÍÀº ±× ´ëÇ¥ÀûÀÎ ¿¹ÀÔ´Ï´Ù. À̹ø Á¦ÈÞ´Â WayveÀÇ Embodied AI ±â¼úÀ» Ȱ¿ëÇÏ¿© ¸ÅÀÏ ¾à 125,000´ëÀÇ Â÷·®À» Á¦°øÇÏ´Â UberÀÇ ±¤¹üÀ§ÇÑ ³×Æ®¿öÅ©¿¡ ÀÚÀ²ÁÖÇà ±â´ÉÀ» ¿øÈ°ÇÏ°Ô ÅëÇÕÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÀÌ´Â ¼¼°è ÃÖ´ë ±Ô¸ðÀÇ µµ½Ã ½ÃÀå¿¡¼­ ¹«ÀÎ ¸ðºô¸®Æ¼ ¼­ºñ½º »ó¿ëÈ­¸¦ À§ÇÑ Áß¿äÇÑ ¹ß°ÉÀ½À» ³»µó´Â °ÍÀÔ´Ï´Ù.

»õ·Î¿î ±âȸÀÇ µ¿Çâ

ÀÚÀ²ÁÖÇà ½ÃÀåÀº °øÀ¯ ¸ðºô¸®Æ¼·ÎÀÇ ÀüȯÀ¸·Î Å« º¯È­¸¦ °Þ°í ÀÖÀ¸¸ç, ·Îº¿Åýô µµ½Ã ±³ÅëÀÇ ÀçÆí¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚÀ²ÁÖÇàÇü ¶óÀ̵åÇìÀϸµ ¼­ºñ½º´Â µµ½Ã À̵¿ÀÇ ¹Ì·¡¸¦ ¿³º¼ ¼ö ÀÖ´Â Áß¿äÇÑ Çõ½ÅÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿¹Ãø¿¡ µû¸£¸é 2030³â±îÁö Àü ¼¼°è¿¡¼­ ¾à 250¸¸ ´ëÀÇ ·Îº¸Åýð¡ ¿îÇàµÉ °ÍÀ̸ç, Àü ¼¼°è 200°³ ÀÌ»óÀÇ µµ½Ã¸¦ Ä¿¹öÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿¹»ó È®´ë´Â ±â¼úÀÇ ¹ßÀü°ú ÀÚÀ² °øÀ¯ ¸ðºô¸®Æ¼°¡ ±âÁ¸ ±³Åë¼ö´ÜÀ» ´ëüÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇϰí È¿À²ÀûÀÎ ¼ö´ÜÀ¸·Î ´ëÁß¿¡°Ô ¹Þ¾Æµé¿©Áö°í ÀÖ´Ù´Â Á¡À» ¹Ý¿µÇÕ´Ï´Ù.

ÃÖÀûÈ­¸¦ °¡·Î¸·´Â À庮

ÀÚÀ²ÁÖÇà ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀº ȸÀÇÀûÀÎ ½Ã°¢°ú ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ »çȸÀû ½Å·Ú¸¦ ¾ò´Â µ¥ Å« ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ¸¹Àº ¼ÒºñÀÚµéÀº ÀÚÀ²ÁÖÇà ±â¼ú°ú °ü·ÃµÈ ÀáÀçÀû À§ÇèÀ» ¿ì·ÁÇØ ÀÚÀ²ÁÖÇàÂ÷ µµÀÔ¿¡ ½ÅÁßÇÑ Åµµ¸¦ ÃëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÒ¾È°¨Àº Ä¿³ØÆ¼µå Â÷·® ½Ã½ºÅÛ³» Ãë¾àÁ¡À» µå·¯³½ ¸î °¡Áö À¯¸íÇÑ »çÀ̹ö º¸¾È »ç°ÇÀ¸·Î ÀÎÇØ ´õ¿í ÁõÆøµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ´Ö»ê Ä¿³ØÆ® EV ÇÁ·Î±×·¥Àº ´«¿¡ ¶ç´Â Ä§ÇØ·Î ÀÎÇØ Â÷·® ¼ÒÇÁÆ®¿þ¾î°¡ ¾Ç¿ëµÉ °¡´É¼º¿¡ ´ëÇØ °æÁ¾À» ¿ï·È½À´Ï´Ù. ¶ÇÇÑ ÇÇ¾ÆÆ® Å©¶óÀ̽½·¯´Â ¼ÒÇÁÆ®¿þ¾î Ãë¾àÁ¡ÀÌ È®ÀεǾî 140¸¸ ´ë¸¦ ¸®ÄÝÇØ¾ß Çß°í, ¼ÒÇÁÆ®¿þ¾î °áÇÔÀÌ ÀÚµ¿Â÷ÀÇ ¾ÈÀü°ú º¸¾È¿¡ ¹ÌÄ¡´Â ±¸Ã¼Àû À§Ç輺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­ ¼¼ºÎ Á¤º¸

ºÎǰº°·Î´Â ÀÚÀ²ÁÖÇà ½ÃÀå¿¡¼­ Çϵå¿þ¾î ºÎǰÀÌ ¾ÐµµÀûÀÎ À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖÀ¸¸ç, ½ÃÀå Á¡À¯À²ÀÇ 65% ÀÌ»óÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ÀÚÀ²ÁÖÇàÂ÷ÀÇ ±â´ÉÀ» ±¸ÇöÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¹°¸® ¼¾¼­¿Í ÄÄÇ»ÆÃ ÀÎÇÁ¶ó°¡ ¸Å¿ì Áß¿äÇÏ´Ù´Â °ÍÀ» ¹Ý¿µÇÕ´Ï´Ù. ÷´Ü ¼¾¼­ ±â¼úÀÇ °³¹ß ¹× ¹èÆ÷¿¡´Â ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇϸç, ÀÌ·¯ÇÑ ±¸¼º ¿ä¼Ò´Â Â÷·®ÀÌ ÁÖº¯ »óȲÀ» Á¤È®ÇÏ°Ô ÀνÄÇϰí ÇØ¼®ÇÒ ¼ö ÀÖ´Â ±âº» ¿ä¼Ò¸¦ Çü¼ºÇϱ⠶§¹®ÀÔ´Ï´Ù.

ÀÚÀ²ÁÖÇà ·¹º§º°·Î´Â ¿îÀü ÀÚµ¿È­°¡ ¾ø´Â ·¹º§ 0À¸·Î ºÐ·ùµÇ´Â Â÷·®ÀÌ 43.63%·Î °¡Àå Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ º¸±Þ·üÀº ÇöÀçÀÇ °æÁ¦ Çö½Ç°ú ÀÎÇÁ¶óÀÇ °úÁ¦¸¦ Å©°Ô ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ÇöÀç µµ·Î¸¦ ´Þ¸®´Â ´ëºÎºÐÀÇ Â÷·®Àº Æò±Õ 12.5³âÀÌ Áö³­ Â÷·®À¸·Î ÀÚÀ²ÁÖÇà ±â¼úÀÌ ³Î¸® µµÀԵDZâ ÀüÀÇ Â÷·®ÀÔ´Ï´Ù. ±× °á°ú, ´ëºÎºÐÀÇ ±âÁ¸ Â÷·®Àº ¸ðµç ¼öÁØÀÇ ÀÚÀ²ÁÖÇàÀ» Áö¿øÇÏ´Â µ¥ ÇÊ¿äÇÑ Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î ±â´ÉÀÌ ºÎÁ·ÇÕ´Ï´Ù. ÀÌ ¶§¹®¿¡ ÀÚÀ²ÁÖÇà ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ·¹º§0 Â÷·®ÀÌ ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ´Â °ÍÀÔ´Ï´Ù.

Â÷Á¾º°·Î´Â SUV°¡ ÀÚÀ²ÁÖÇà ½ÃÀå¿¡¼­ µÎµå·¯Áø À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖÀ¸¸ç, ½ÃÀå Á¡À¯À²ÀÇ ¾à 34.20%¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °­·ÂÇÑ Á¸Àç°¨Àº ÀÚÀ²ÁÖÇà¿¡ ÇʼöÀûÀΠ÷´Ü ¼¾¼­ ±â¼úÀ» ÅëÇÕÇÏ´Â Ç÷§ÆûÀ¸·Î¼­ SUV°¡ °¡Áø °íÀ¯ÇÑ ÀåÁ¡¿¡ ±âÀÎÇÏ´Â ¹Ù°¡ Å®´Ï´Ù. SUVÀÇ ÁÖ¿ä ÀåÁ¡ Áß Çϳª´Â LiDAR ¹× Ä«¸Þ¶ó ½Ã½ºÅÛÀÌ ±âÁ¸ ¼¼´Ü¿¡ ºñÇØ ÀϹÝÀûÀ¸·Î 25-35µµ Çâ»óµÈ ½Ã¾ß¸¦ È®º¸ÇÒ ¼ö ÀÖ´Â ³ôÀº ÀåÂø À§Ä¡·Î, ±âÁ¸ ¼¼´Ü¿¡ ºñÇØ Å©°Ô Çâ»óµÈ ½Ã¾ß¸¦ È®º¸ÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù.

ÃßÁø·Â À¯Çüº°·Î´Â Àü±âÀÚµ¿Â÷(EV)°¡ ÀÚÀ²ÁÖÇà ½ÃÀå¿¡¼­ Å« ¿ìÀ§¸¦ Á¡Çϰí ÀÖÀ¸¸ç, ½ÃÀå Á¡À¯À² 45.36% ÀÌ»óÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â Àü±â ±¸µ¿°è¿Í ÀÚÀ²ÁÖÇà ½Ã½ºÅÛÀÇ ÀÚ¿¬½º·¯¿î ±â¼úÀû ½Ã³ÊÁö È¿°ú¿¡ ±âÀÎÇÏ´Â ¹Ù°¡ Å®´Ï´Ù. Àü±âÀÚµ¿Â÷´Â »ó´çÇÑ ¾çÀÇ Áö¼ÓÀûÀÎ Àü·ÂÀ» ÇÊ¿ä·Î ÇÏ´Â ÀÚÀ² Çϵå¿þ¾îÀÇ ¿¡³ÊÁö ¼ö¿ä¸¦ Áö¿øÇÏ´Â µ¥ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. EV¿¡¼­ º¼ ¼ö ÀÖ´Â °íÀü¾Ð ¾ÆÅ°ÅØÃ³´Â 3,000-5,000¿ÍÆ®ÀÇ ¿¬¼Ó ÄÄÇ»ÆÃ ÆÄ¿ö¸¦ È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖÀ¸¸ç, Â÷·®ÀÇ ±¸µ¿°è È¿À²À» ¶³¾î¶ß¸®Áö ¾ÊÀ¸¸é¼­µµ ÷´Ü ÀÚÀ² ±â´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºÎ¹®º° ³»¿ª

ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • LiDAR(±¤°ËÃâ ¹× °Å¸® ÃøÁ¤) ¼¾¼­
    • Ä«¸Þ¶ó
    • RADAR(ÀüÆÄ °¨Áö ¹× °Å¸® ÃøÁ¤) ¼¾¼­
    • ÃÊÀ½ÆÄ ¼¾¼­
    • GPS ¹× IMU(°ü¼º ÃøÁ¤ ÀåÄ¡)
    • ECU(ÀüÀÚÁ¦¾îÀåÄ¡)
    • Ä¿³ØÆ¼ºñƼ ¸ðµâ(V2X, 5G)
  • ¼ÒÇÁÆ®¿þ¾î
    • ¼Ö·ç¼Ç
      • AI ¾Ë°í¸®Áò(¸Ó½Å·¯´×, µö·¯´×)
      • ¸ÅÇÎ ¹× ÇöÁöÈ­ ¼ÒÇÁÆ®¿þ¾î
      • ¼¾¼­ À¶ÇÕ ¾Ë°í¸®Áò
      • °æ·Î °èȹ ¹× Á¦¾î ¼ÒÇÁÆ®¿þ¾î
      • »çÀ̹ö º¸¾È ¼Ö·ç¼Ç
    • ¼­ºñ½º
      • Àü¹®
      • ÅëÇÕ ¼­ºñ½º
      • ÄÁ¼³ÆÃ ¼­ºñ½º
      • Ä¿½ºÅ͸¶ÀÌ¡ ¹× °³¹ß
      • ¸Å´ÏÁöµå
      • ¿ø°Ý ¸ð´ÏÅ͸µ ¹× Áø´Ü
      • ¼ÒÇÁÆ®¿þ¾î ¾÷µ¥ÀÌÆ® ¹× ÆÐÄ¡
      • Â÷·® °ü¸®
      • µ¥ÀÌÅÍ ÀúÀå ¹× °ü¸®

ÀÚÀ²ÁÖÇà ¼öÁغ°

  • ·¹º§ 0: ¿îÀü ÀÚµ¿È­ ¾øÀ½
  • ·¹º§ 1: ¿îÀü Áö¿ø
  • ·¹º§ 2: ºÎºÐ ÀÚµ¿ ¿îÀü
  • ·¹º§ 3: Á¶°ÇºÎ ¿îÀü ÀÚµ¿È­
  • ·¹º§ 4: ÷´Ü ¿îÀü ÀÚµ¿È­
  • ·¹º§ 5: ¿ÏÀü ÀÚµ¿ ¿îÀü

Â÷Á¾º°

  • ¼¼´Ü
  • SUV
  • ¹ö½º
  • Æ®·°
  • Æ®·¢ÅÍ
  • ±âŸ

ÃßÁø·Â À¯Çüº°

  • ³»¿¬±â°ü(ICE) ÀÚµ¿Â÷
  • Àü±âÀÚµ¿Â÷(EV)
  • ÇÏÀ̺긮µåÂ÷

Â÷·® ¿ëµµº°

  • ½Â¿ëÂ÷/ÀÚ°¡¿ë
  • »ó¿ëÂ÷
    • ¶óÀ̵åÇìÀϸµ
    • ´ëÁß±³Åë
      • ÀÚÀ²ÁÖÇà ¹ö½º-¼ÅƲ
      • AI¿¡ ÀÇÇÑ ´ë·® ¿î¼Û °æ·Î ÃÖÀûÈ­
    • ¹°·ù
      • ÀÚÀ²ÁÖÇà È­¹° Æ®·° ¹× ¹è¼Û ¹ê
      • AI¸¦ Ȱ¿ëÇÑ ¶ó½ºÆ®¸¶ÀÏ ¹è¼Û Â÷·®
      • â°í ¹× ¹°·ù¼¾ÅÍ ÀÚÀ²ÁÖÇà Â÷·®
  • ´ëÇüÂ÷/¿ÀÇÁ·Îµå Â÷·®
    • ±¤¾÷
    • â°í
    • ±âŸ

Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • Æú¶õµå
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ ¹× ´ºÁú·£µå
    • ASEAN
      • ¸»·¹À̽þÆ
      • ½Ì°¡Æ÷¸£
      • ű¹
      • Àεµ³×½Ã¾Æ
      • Çʸ®ÇÉ
      • º£Æ®³²
      • ±âŸ
    • ±âŸ Áö¿ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • ±âŸ

½ÃÀå Âü¿© ±â¾÷

  • NVIDIA Corporation
  • IPG Automotive GmbH
  • KPIT Technologies Ltd
  • Waymo LLC
  • Aptiv PLC
  • Infineon Technologies AG
  • Motional, Inc .
  • Tesla Inc.
  • ±âŸ

¸ñÂ÷

Á¦1Àå Á¶»ç ÇÁ·¹ÀÓ¿öÅ©

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä : ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå

Á¦4Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå °³¿ä

  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
    • ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ
    • ÃÖÁ¾»ç¿ëÀÚ
  • ¾÷°è Àü¸Á
    • ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)ÀÇ °³¿ä
    • ÀÚÀ²ÁÖÇàÂ÷ÀÇ °³¿ä
  • PESTLE ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • ½ÃÀå ¿ªÇаú µ¿Çâ
  • ½ÃÀåÀÇ ¼ºÀå°ú Àü¸Á
  • °æÀï ´ë½Ãº¸µå
  • ½Ç¿ëÀû ÀλçÀÌÆ®(¾Ö³Î¸®½ºÆ®ÀÇ ±ÇÀå»çÇ×)

Á¦5Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®(ÄÄÆ÷³ÍÆ®º°)

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø, 2020-2033³â(10¾ï ´Þ·¯)
    • Çϵå¿þ¾î
    • ¼ÒÇÁÆ®¿þ¾î

Á¦6Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®(ÀÚÀ²ÁÖÇà ·¹º§º°)

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø, 2020-2033³â(10¾ï ´Þ·¯)
    • ·¹º§ 0 : ºñ¿îÀüÀÚµ¿È­
    • ·¹º§ 1 : ¿îÀü Áö¿ø
    • ·¹º§ 2 : ºÎºÐÀû ¿îÀü ÀÚµ¿È­
    • ·¹º§ 3 : Á¶°ÇºÎ ¿îÀü ÀÚµ¿È­
    • ·¹º§ 4 : °íµµ ¿îÀü ÀÚµ¿È­
    • ·¹º§ 5 : ¿ÏÀü ÀÚÀ²ÁÖÇà

Á¦7Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®(Â÷Á¾º°)

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø, 2020-2033³â(10¾ï ´Þ·¯)
    • ¼¼´Ü
    • SUV
    • ¹ö½º
    • Æ®·°
    • Æ®·¢ÅÍ
    • ±âŸ

Á¦8Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®(ÃßÁø À¯Çüº°)

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø, 2020-2033³â(10¾ï ´Þ·¯)
    • ³»¿¬±â°ü(ICE)Â÷
    • Àü±âÀÚµ¿Â÷(EV)
    • ÇÏÀ̺긮µåÂ÷

Á¦9Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®(Â÷·® ¿ëµµº°)

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø, 2020-2033³â(10¾ï ´Þ·¯)
    • ½Â¿ëÂ÷/ÀÚ°¡¿ëÂ÷
    • »ó¿ëÂ÷
    • ´ëÇüÂ÷/¿ÀÇÁ·ÎµåÂ÷

Á¦10Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®(Áö¿ªº°)

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø, 2020-2033³â(10¾ï ´Þ·¯)
    • ºÏ¹Ì
    • ¼­À¯·´
    • µ¿À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áßµ¿
    • ¾ÆÇÁ¸®Ä«
    • ³²¹Ì

Á¦11Àå ºÏ¹ÌÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦12Àå ¼­À¯·´ÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦13Àå µ¿À¯·´ÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦14Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦15Àå Áßµ¿ÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦16Àå ¾ÆÇÁ¸®Ä«ÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦17Àå ³²¹ÌÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦18Àå Áß±¹ÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦19Àå ÀϺ»ÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦20Àå ÀεµÀÇ ÀÚÀ²ÁÖÇà ½ÃÀå ºÐ¼®

Á¦21Àå ±â¾÷ °³¿ä

  • NVIDIA Corporation
  • IPG Automotive GmbH
  • KPIT Technologies Ltd
  • Waymo LLC
  • Aptiv PLC
  • Infineon Technologies AG
  • Motional, Inc .
  • Tesla Inc.
  • Other Prominent Players

Á¦22Àå ºÎ·Ï

KSA 25.09.10

Today, the autonomous driving market is on a strong upward trajectory, propelled by rapid technological advancements and increasing consumer confidence in self-driving systems. In 2024, the market was valued at approximately US$170.22 billion and is projected to grow substantially, reaching a valuation of US$668.64 billion by 2033. This impressive expansion corresponds to a compound annual growth rate (CAGR) of 17.63% during the forecast period from 2025 to 2033, highlighting the accelerating pace of innovation and adoption within the autonomous driving sector.

Regionally, the global autonomous driving market is witnessing notable growth patterns, with the Asia Pacific region projected to emerge as the largest market, closely followed by North America. Asia Pacific's dominance is fueled by a combination of supportive government initiatives, rapid technological progress, and the strong presence of leading automakers in the region. Although North America currently holds the largest share of the market, Asia Pacific is expected to experience faster growth, driven by proactive measures and investments. China, in particular, is aggressively promoting the development of autonomous vehicles through substantial government backing, widespread testing programs, and the deployment of robotaxi services.

Noteworthy Market Developments

The autonomous driving market is characterized by intense competition between established automakers and leading technology giants, each following unique technological strategies to capture market share. Tesla remains a dominant force, but Waymo is a close contender, maintaining a leadership position with a fleet of over 700 vehicles actively operating in key U.S. cities such as Phoenix, San Francisco, and Los Angeles. By mid-2024, Waymo's autonomous vehicles were completing more than 150,000 paid rides every week, demonstrating both the scale and robustness of its service.

The competitive landscape also reveals a variety of distinct approaches toward market penetration and the development of autonomous technologies. For example, Apple's Project Titan, initially rumored to pursue full autonomy, has since shifted focus. Although the company has scaled back its ambitions for a fully autonomous vehicle, it continues to invest heavily in advanced driver assistance systems (ADAS). These systems aim to enhance vehicle safety and convenience and are expected to reach the market around 2028. Apple's more cautious and incremental approach reflects a broader trend in the industry where companies balance innovation with regulatory challenges and market readiness.

Core Growth Drivers

The autonomous driving market is progressing at an impressive pace, driven largely by strategic collaborations between traditional automakers and cutting-edge technology companies that are collectively reshaping the landscape of the industry. These partnerships enable the combination of automotive manufacturing expertise with advanced artificial intelligence and sensor technologies, accelerating the development and deployment of autonomous vehicles. A notable example occurred in January 2024, when Uber announced a partnership with Wayve to launch fully driverless robotaxi trials in London by 2026. This collaboration leverages Wayve's Embodied AI technology, which is designed to seamlessly integrate autonomous driving capabilities into Uber's extensive network that facilitates around 125,000 rides daily. The initiative represents a significant step toward commercializing driverless mobility services in one of the world's largest urban markets.

Emerging Opportunity Trends

The autonomous driving market is experiencing a profound transformation as it shifts toward shared mobility, with robotaxis playing a pivotal role in reshaping urban transportation. These autonomous ride-hailing services are becoming a key innovation driver, offering a glimpse into the future of city travel. Projections suggest that by 2030, approximately 2.5 million robotaxis will be operational around the world, covering more than 200 cities globally. This anticipated expansion reflects both technological progress and increasing public acceptance of autonomous shared mobility as a viable and efficient alternative to traditional transportation.

Barriers to Optimization

Despite rapid advancements in autonomous driving technology, the market continues to grapple with significant challenges in earning public trust, largely due to widespread skepticism and concerns over privacy. Many consumers remain cautious about embracing autonomous vehicles, fearing potential risks associated with the technology. This apprehension has been fueled by several high-profile cybersecurity incidents that have exposed vulnerabilities within connected vehicle systems. For instance, the Nissan Connect EV program suffered a notable breach, raising alarms about the possible exploitation of vehicle software. Additionally, Fiat Chrysler was compelled to recall 1.4 million vehicles due to identified software vulnerabilities, underscoring the tangible risks that software flaws can pose to vehicle safety and security.

Detailed Market Segmentation

By Component, in the autonomous driving market, hardware components hold a commanding position, accounting for more than 65% of the market share. This dominance reflects the critical importance of physical sensors and computing infrastructure in enabling autonomous vehicle functionality. The development and deployment of sophisticated sensor technology require substantial investment, as these components form the foundational elements that allow vehicles to perceive and interpret their surroundings accurately.

By Autonomous Level, vehicles classified as Level 0, which have no driving automation, hold a substantial 43.63% share. This prevalence is largely a reflection of current economic realities and infrastructural challenges. Most vehicles currently on the road are, on average, 12.5 years old, a period that predates the widespread introduction of autonomous driving technologies. As a result, the majority of the existing fleet lacks the hardware and software capabilities necessary to support any level of driving automation. This explains why Level 0 vehicles continue to dominate the market despite growing interest in autonomous technologies.

By Vehicle Type, in the autonomous driving market, SUVs hold a prominent position, capturing approximately 34.20% of the market share. This strong presence is largely due to the inherent advantages SUVs offer as platforms for integrating advanced sensor technologies essential for autonomous operation. One key benefit of SUVs is their elevated mounting positions, which allow LiDAR and camera systems to achieve a significantly improved field of view, typically enhanced by 25 to 35 degrees compared to traditional sedans.

By Propulsion Type, in the autonomous driving market, electric vehicles (EVs) hold a significant advantage, commanding over 45.36% of the market share. This dominance is largely due to the natural technological synergies between electric drivetrains and autonomous systems. Electric vehicles are particularly well-suited to support the energy demands of autonomous hardware, which requires substantial and sustained power. The high-voltage architectures found in EVs can efficiently manage continuous computing power ranging from 3,000 to 5,000 watts, enabling advanced autonomous functions without compromising the vehicle's drivetrain efficiency.

Segment Breakdown

By Component

  • Hardware
    • LiDAR (Light Detection and Ranging) Sensors
    • Cameras
    • RADAR (Radio Detection and Ranging) Sensors
    • Ultrasonic Sensors
    • GPS and IMU (Inertial Measurement Unit)
    • ECUs (Electronic Control Units)
    • Connectivity Modules (V2X, 5G)
  • Software
    • Solutions
      • AI Algorithms (Machine Learning, Deep Learning)
      • Mapping & Localization Software
      • Sensor Fusion Algorithms
      • Path Planning & Control Software
      • Cybersecurity Solutions
    • Services
      • Professional
      • Integration Services
      • Consulting Services
      • Customization & Development
      • Managed
      • Remote Monitoring & Diagnostics
      • Software Updates & Patches
      • Fleet Management
      • Data Storage & Management

By Autonomous Level

  • Level 0: no driving automation
  • Level 1: driver assistance
  • Level 2: partial driving automation
  • Level 3: conditional driving automation
  • Level 4: high driving automation
  • Level 5: full driving automation

By Vehicle Type

  • Sedans
  • SUVs
  • Buses
  • Truck
  • Tractor
  • Others

By Propulsion Type

  • Internal Combustion Engine (ICE) Vehicles
  • Electric Vehicles (EVs)
  • Hybrid Vehicles

By Vehicle Application

  • Passenger/Private Vehicles
  • Commercial Vehicles
    • Ride Hailing
    • Public Transport
      • Autonomous Buses & Shuttles
      • AI-Based Route Optimization for Mass Transit
    • Logistics
      • Autonomous Freight Trucks & Delivery Vans
      • AI-Powered Last-Mile Delivery Vehicles
      • Warehouse & Distribution Center Autonomous Fleets
  • Heavy/Off-road Vehicles
    • Mining
    • Warehouse
    • Others

By Region

  • North America
    • The U.S.
    • Canada
    • Mexico
  • Europe
    • The UK
    • Germany
    • France
    • Italy
    • Spain
    • Poland
    • Russia
    • Rest of Europe
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia & New Zealand
    • ASEAN
      • Malaysia
      • Singapore
      • Thailand
      • Indonesia
      • Philippines
      • Vietnam
      • Rest of ASEAN
    • Rest of Asia Pacific
  • Middle East & Africa
    • UAE
    • Saudi Arabia
    • South Africa
    • Rest of MEA
  • South America
    • Argentina
    • Brazil
    • Rest of South America

Leading Market Participants

  • NVIDIA Corporation
  • IPG Automotive GmbH
  • KPIT Technologies Ltd
  • Waymo LLC
  • Aptiv PLC
  • Infineon Technologies AG
  • Motional, Inc .
  • Tesla Inc.
  • Other Prominent Players

Table of Content

Chapter 1. Research Framework

  • 1.1. Research Objective
  • 1.2. Product Overview
  • 1.3. Market Segmentation

Chapter 2. Research Methodology

  • 2.1. Qualitative Research
    • 2.1.1. Primary & Secondary Sources
  • 2.2. Quantitative Research
    • 2.2.1. Primary & Secondary Sources
  • 2.3. Breakdown of Primary Research Respondents, By Region
  • 2.4. Assumption for the Study
  • 2.5. Market Size Estimation
  • 2.6. Data Triangulation

Chapter 3. Executive Summary: Global Autonomous Driving Market

Chapter 4. Global Autonomous Driving Market Overview

  • 4.1. Industry Value Chain Analysis
    • 4.1.1. Service Provider
    • 4.1.2. End User
  • 4.2. Industry Outlook
    • 4.2.1. Overview of Advanced Driving Assistance System (ADAS)
    • 4.2.2. Overview of Autonomous Vehicles
  • 4.3. PESTLE Analysis
  • 4.4. Porter's Five Forces Analysis
    • 4.4.1. Bargaining Power of Suppliers
    • 4.4.2. Bargaining Power of Buyers
    • 4.4.3. Threat of Substitutes
    • 4.4.4. Threat of New Entrants
    • 4.4.5. Degree of Competition
  • 4.5. Market Dynamics and Trends
    • 4.5.1. Growth Drivers
    • 4.5.2. Restraints
    • 4.5.3. Opportunities
    • 4.5.4. Key Trends
  • 4.6. Market Growth and Outlook
    • 4.6.1. Market Revenue Estimates and Forecast (US$ Bn), 2020-2033
    • 4.6.2. Price Trend Analysis
      • 4.6.2.1. By Vehicle Type
      • 4.6.2.2. By Propulsion
      • 4.6.2.3. By Automation Level
  • 4.7. Competition Dashboard
    • 4.7.1. Market Concentration Rate
    • 4.7.2. Company Market Share Analysis (Value %), 2024
    • 4.7.3. Competitor Mapping & Benchmarking
  • 4.8. Actionable Insights (Analyst's Recommendations)

Chapter 5. Global Autonomous Driving Market Analysis, By Component

  • 5.1. Key Insights
  • 5.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 5.2.1. Hardware
      • 5.2.1.1. LiDAR (Light Detection and Ranging) Sensors
      • 5.2.1.2. Cameras
      • 5.2.1.3. RADAR (Radio Detection and Ranging) Sensors
      • 5.2.1.4. Ultrasonic Sensors
      • 5.2.1.5. GPS and IMU (Inertial Measurement Unit)
      • 5.2.1.6. ECUs (Electronic Control Units)
      • 5.2.1.7. Connectivity Modules (V2X, 5G)
    • 5.2.2. Software
      • 5.2.2.1. Solutions
        • 5.2.2.1.1. AI Algorithms (Machine Learning, Deep Learning)
        • 5.2.2.1.2. Mapping & Localization Software
        • 5.2.2.1.3. Sensor Fusion Algorithms
        • 5.2.2.1.4. Path Planning & Control Software
        • 5.2.2.1.5. Cybersecurity Solutions
      • 5.2.2.2. Services
        • 5.2.2.2.1. Professional
          • 5.2.2.2.1.1. Integration Services
          • 5.2.2.2.1.2. Consulting Services
          • 5.2.2.2.1.3. Customization & Development
        • 5.2.2.2.2. Managed
          • 5.2.2.2.2.1. Remote Monitoring & Diagnostics
          • 5.2.2.2.2.2. Software Updates & Patches
          • 5.2.2.2.2.3. Fleet Management
          • 5.2.2.2.2.4. Data Storage & Management

Chapter 6. Global Autonomous Driving Market Analysis, By Autonomous Level

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 6.2.1. Level 0: no driving automation
    • 6.2.2. Level 1: driver assistance
    • 6.2.3. Level 2: partial driving automation
    • 6.2.4. Level 3: conditional driving automation
    • 6.2.5. Level 4: high driving automation
    • 6.2.6. Level 5: full driving automation

Chapter 7. Global Autonomous Driving Market Analysis, By Vehicle Type

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 7.2.1. Sedans
    • 7.2.2. SUVs
    • 7.2.3. Buses
    • 7.2.4. Truck
    • 7.2.5. Tractor
    • 7.2.6. Others

Chapter 8. Global Autonomous Driving Market Analysis, By Propulsion Type

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 8.2.1. Internal Combustion Engine (ICE) Vehicles
    • 8.2.2. Electric Vehicles (EVs)
    • 8.2.3. Hybrid Vehicles

Chapter 9. Global Autonomous Driving Market Analysis, By Vehicle Application

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 9.2.1. Passenger/Private Vehicles
    • 9.2.2. Commercial Vehicles
      • 9.2.2.1. Ride Hailing
      • 9.2.2.2. Public Transport
        • 9.2.2.2.1. Autonomous Buses & Shuttles
        • 9.2.2.2.2. AI-Based Route Optimization for Mass Transit
      • 9.2.2.3. Logistics
        • 9.2.2.3.1. Autonomous Freight Trucks & Delivery Vans
        • 9.2.2.3.2. AI-Powered Last-Mile Delivery Vehicles
        • 9.2.2.3.3. Warehouse & Distribution Center Autonomous Fleets
    • 9.2.3. Heavy/Off-road Vehicles
      • 9.2.3.1. Mining
      • 9.2.3.2. Warehouse
      • 9.2.3.3. Others

Chapter 10. Global Autonomous Driving Market Analysis, By Region

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 10.2.1. North America
      • 10.2.1.1. The U.S.
      • 10.2.1.2. Canada
      • 10.2.1.3. Mexico
    • 10.2.2. Western Europe
      • 10.2.2.1. The UK
      • 10.2.2.2. Germany
      • 10.2.2.3. France
      • 10.2.2.4. Italy
      • 10.2.2.5. Spain
      • 10.2.2.6. Rest of Western Europe
    • 10.2.3. Eastern Europe
      • 10.2.3.1. Poland
      • 10.2.3.2. Russia
      • 10.2.3.3. Hungary
      • 10.2.3.4. Rest of Eastern Europe
    • 10.2.4. Asia Pacific
      • 10.2.4.1. China
      • 10.2.4.2. India
      • 10.2.4.3. Japan
      • 10.2.4.4. South Korea
      • 10.2.4.5. Australia & New Zealand
      • 10.2.4.6. ASEAN
      • 10.2.4.7. Rest of Asia Pacific
    • 10.2.5. Middle East
      • 10.2.5.1. UAE
      • 10.2.5.2. Saudi Arabia
      • 10.2.5.3. Bahrain
      • 10.2.5.4. Kuwait
      • 10.2.5.5. Qatar
      • 10.2.5.6. Rest of Middle East
    • 10.2.6. Africa
      • 10.2.6.1. Morocco
      • 10.2.6.2. Egypt
      • 10.2.6.3. Nigeria
      • 10.2.6.4. South Africa
      • 10.2.6.5. Rest of Africa
    • 10.2.7. South America
      • 10.2.7.1. Argentina
      • 10.2.7.2. Brazil
      • 10.2.7.3. Rest of South America

Chapter 11. North America Autonomous Driving Market Analysis

  • 11.1. Key Insights
  • 11.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 11.2.1. By Component
    • 11.2.2. By Autonomous Level
    • 11.2.3. By Vehicle Type
    • 11.2.4. By Propulsion Type
    • 11.2.5. By Vehicle Application
    • 11.2.6. By Country

Chapter 12. Western Europe Autonomous Driving Market Analysis

  • 12.1. Key Insights
  • 12.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 12.2.1. By Component
    • 12.2.2. By Autonomous Level
    • 12.2.3. By Vehicle Type
    • 12.2.4. By Propulsion Type
    • 12.2.5. By Vehicle Application
    • 12.2.6. By Country

Chapter 13. Eastern Europe Autonomous Driving Market Analysis

  • 13.1. Key Insights
  • 13.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 13.2.1. By Component
    • 13.2.2. By Autonomous Level
    • 13.2.3. By Vehicle Type
    • 13.2.4. By Propulsion Type
    • 13.2.5. By Vehicle Application
    • 13.2.6. By Country

Chapter 14. Asia Pacific Autonomous Driving Market Analysis

  • 14.1. Key Insights
  • 14.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 14.2.1. By Component
    • 14.2.2. By Autonomous Level
    • 14.2.3. By Vehicle Type
    • 14.2.4. By Propulsion Type
    • 14.2.5. By Vehicle Application
    • 14.2.6. By Country

Chapter 15. Middle East Autonomous Driving Market Analysis

  • 15.1. Key Insights
  • 15.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 15.2.1. By Component
    • 15.2.2. By Autonomous Level
    • 15.2.3. By Vehicle Type
    • 15.2.4. By Propulsion Type
    • 15.2.5. By Vehicle Application
    • 15.2.6. By Country

Chapter 16. Africa Autonomous Driving Market Analysis

  • 16.1. Key Insights
  • 16.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 16.2.1. By Component
    • 16.2.2. By Autonomous Level
    • 16.2.3. By Vehicle Type
    • 16.2.4. By Propulsion Type
    • 16.2.5. By Vehicle Application
    • 16.2.6. By Country

Chapter 17. South America Autonomous Driving Market Analysis

  • 17.1. Key Insights
  • 17.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 17.2.1. By Component
    • 17.2.2. By Autonomous Level
    • 17.2.3. By Vehicle Type
    • 17.2.4. By Propulsion Type
    • 17.2.5. By Vehicle Application
    • 17.2.6. By Country

Chapter 18. China Autonomous Driving Market Analysis

  • 18.1. Key Insights
  • 18.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 18.2.1. By Component
    • 18.2.2. By Autonomous Level
    • 18.2.3. By Vehicle Type
    • 18.2.4. By Propulsion Type
    • 18.2.5. By Vehicle Application

Chapter 19. Japan Autonomous Driving Market Analysis

  • 19.1. Key Insights
  • 19.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 19.2.1. By Component
    • 19.2.2. By Autonomous Level
    • 19.2.3. By Vehicle Type
    • 19.2.4. By Propulsion Type
    • 19.2.5. By Vehicle Application

Chapter 20. India Autonomous Driving Market Analysis

  • 20.1. Key Insights
  • 20.2. Market Size and Forecast, 2020-2033 (US$ Bn)
    • 20.2.1. By Component
    • 20.2.2. By Autonomous Level
    • 20.2.3. By Vehicle Type
    • 20.2.4. By Propulsion Type
    • 20.2.5. By Vehicle Application

Chapter 21. Company Profile (Company Overview, Financial Matrix, Key Type landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 21.1. NVIDIA Corporation
  • 21.2. IPG Automotive GmbH
  • 21.3. KPIT Technologies Ltd
  • 21.4. Waymo LLC
  • 21.5. Aptiv PLC
  • 21.6. Infineon Technologies AG
  • 21.7. Motional, Inc .
  • 21.8. Tesla Inc.
  • 21.9. Other Prominent Players

Chapter 22. Annexure

  • 22.1. List of Secondary Autonomous Levels
  • 22.2. Key Country Markets - Marco Economic Outlook/Indicators
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦