시장보고서
상품코드
1423538

세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장 : 설계별, 플랫폼 개발별, 항속거리별, 에너지원별, 구성요소별, 국가별 - 분석 및 예측(2023-2035년)

Global and Asia-Pacific Advanced Air Mobility (AAM) Market: Focus on Design, Platform Development, Range, Energy Source, Component, and Country - Analysis and Forecast, 2023-2035

발행일: | 리서치사: BIS Research | 페이지 정보: 영문 | 배송안내 : 1-5일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장 규모는 2035년까지 203억 7,000만 달러에 달할 것으로 예상됩니다.

첨단 항공 모빌리티(AAM) 또는 도시형 항공 모빌리티(UAM)는 항공 운송의 혁신적인 개념으로, 최첨단 비행 기술과 혁신적인 항공기 설계를 기존 공역 운영에 통합하는 것입니다. UAM의 주요 목적은 화물과 여객 모두 안전하고, 자동화되고, 사용하기 쉽고, 비용 효율적인 항공 운송 시스템을 구축하는 것이며, 특히 도시와 농촌 지역과 같이 이전에는 접근하기 어려웠던 지역으로의 운송을 실현하는 것입니다. 이 공역에서 운항되는 항공기의 특징은 기존의 헬리콥터나 민간항공기와 달리 크기가 작다는 점입니다. 위성이나 레이더 기술을 통해 이러한 항공기를 지속적으로 추적하고 제어하는 것은 점점 더 비현실적인 일이 되고 있습니다. 도심 항공 모빌리티(UAM)는 AAM을 한 단계 더 발전시켜 도시와 교외의 낮은 고도에서 고도로 자동화된 항공기를 통해 도시와 지역을 효율적으로 연결하는 데 초점을 맞추고 있습니다. 첨단 항공 모빌리티의 광범위한 프레임워크는 도시 지역뿐만 아니라 공공 서비스, 단거리 및 장거리 상업적 도시 간 이동, 화물 운송, 레크리에이션 및 개인 차량에 이르기까지 광범위하게 적용됩니다. 시장에서 첨단 기술을 이용할 수 있음에도 불구하고, 규제 요건을 충족하고 대중이 수용할 수 있도록 혁신 기술을 통합하는 것은 여전히 큰 장애물이며, AAM 시장의 성공적인 상용화와 미래의 지속가능한 성장을 보장하기 위해서는 이해관계자들의 적극적인 참여가 필요합니다.

주요 시장 통계
예측 기간 2023년 - 2035년
2023년 평가 23억 1,000만 달러
2035년 예측 203억 7,000만 달러
CAGR 19.88%

첨단 항공 모빌리티(AAM) 또는 도심 항공 모빌리티(UAM)와 현재의 민간 및 공공 지상 교통수단과의 원활한 통합은 업계에 매력적인 촉매제로 부상하고 있습니다. 이러한 통합은 원활한 복합 운송을 촉진하고 전반적인 운송 효율성과 연결성을 향상시킬 수 있습니다. 도시 지역의 교통 체증이 급증하면서 교통 혼잡을 완화하고 보다 빠르고 효과적인 교통 수단을 제공하는 AAM 솔루션의 도입에 큰 원동력이 되고 있습니다. 첨단 항공 모빌리티 시장이 직면한 과제는 기존 교통망에 AAM 솔루션을 원활하게 통합하는 데 필요한 버티포트 등 지상 인프라와 중요한 물리적 구조물이 충분하지 않다는 점입니다. 이러한 중요한 요소의 부재는 AAM 기술의 보급을 가로막는 장벽으로 작용하고 있습니다.

AAM과 UAM의 등장은 특히 운송, 물류, 도시 계획 등 다양한 산업에 혁신적인 영향을 미칠 것으로 예상됩니다. 운송 분야에서 AAM은 효율적이고 신속한 항공 이동 솔루션을 제공함으로써 사람과 물자의 이동에 혁명을 일으킬 준비가 되어 있습니다. 이 획기적인 기술은 특히 인구 밀집도가 높은 도시 환경에서 교통 체증과 같은 문제를 해결하고, 이동 시간을 단축하며, 전반적인 운송 효율성을 향상시킬 것으로 기대됩니다.

물류 및 공급망 분야에서 AAM은 신속하고 직접적인 배송을 촉진하고, 물품의 흐름을 최적화하는 등 큰 이점을 제공할 것으로 예상됩니다. 지상의 장애물을 뛰어넘을 수 있는 AAM 솔루션은 공급망 운영을 간소화하고, 리드타임을 최소화하며, 전반적인 물류 효율성을 향상시킬 수 있는 잠재력을 가지고 있습니다. 또한, AAM은 원격지나 어려운 장소에 신속하고 직접적인 공중 접근을 제공함으로써 응급 대응 및 의료 서비스를 혁신하고 응급 상황에서 중요한 업무의 효율성을 향상시킬 수 있습니다.

이 보고서는 세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장을 조사하여 시장 개요와 함께 설계별, 플랫폼 개발별, 항속거리별, 에너지원별, 구성요소별, 국가별 동향, 시장 진입 기업 개요 등을 제공합니다.

목차

주요 요약

범위와 정의

제1장 시장

제2장 제품

  • 제품 개요
  • 세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장
  • 세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장(설계별)
  • 세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장(플랫폼 개발별)
  • 세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장(항속거리별)
  • 세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장(에너지원별)
  • 세계 및 아시아태평양의 첨단 항공 모빌리티(AAM) 시장(컴포넌트별)

제3장 지역

  • 지역별 개요
  • 북미, 유럽, 기타 지역
  • 아시아태평양

제4장 조사 방법

ksm 24.02.21

The Global and Asia-Pacific Advanced Air Mobility (AAM) Market Expected to Reach $20.37 Billion by 2035

Introduction of Global and Asia-Pacific Advanced Air Mobility (AAM)

Advanced air mobility (AAM) or urban air mobility (UAM) is an innovative concept in air transportation, integrating cutting-edge flight technologies and transformative aircraft designs into existing airspace operations. Its primary objective is to establish a secure, automated, accessible, and cost-effective air transportation system for both cargo and passengers, particularly in locations that were previously challenging to reach in urban and rural settings. A distinguishing feature of the aircraft operating in this airspace is their compact size, deviating from traditional helicopters and commercial planes. Continuous tracking or control of these aircraft using satellite or radar technology has become increasingly impractical. Urban air mobility (UAM) further evolves AAM, focusing on efficiently connecting people with cities and regions using highly automated aircraft operating at lower altitudes within urban and suburban areas. The broader framework of advanced air mobility extends beyond urban areas, encompassing public services, short and long-range commercial inter-city travel, cargo delivery, and recreational or private vehicles. Despite the availability of advanced technologies in the market, the integration of these innovations to meet regulatory requirements and gain public acceptance remains a significant hurdle. Successful commercialization of the AAM market and ensuring sustainable growth in the future necessitate active engagement from stakeholders.

KEY MARKET STATISTICS
Forecast Period2023 - 2035
2023 Evaluation$2.31 Billion
2035 Forecast$20.37 Billion
CAGR19.88%

Market Introduction

The seamless integration of advanced air mobility (AAM) or urban air mobility (UAM) with current private and public ground transportation emerges as a compelling catalyst for the industry. This integration facilitates smooth intermodal journeys, elevating overall transportation efficiency and connectivity. The surging congestion on urban roads serves as a substantial driving force, compelling the uptake of AAM solutions to mitigate traffic gridlock and provide swifter, more effective transportation modes. Challenges encountered by the advanced air mobility market revolve around insufficient ground infrastructure, encompassing vertiports, and essential physical structures required for the smooth assimilation of AAM solutions into existing transportation networks. The absence of these pivotal elements poses a barrier to the widespread adoption of AAM technologies.

Industrial Impact

The rise of advanced air mobility (AAM) or urban air mobility (UAM) is set to bring about a transformative impact on various industries, particularly in transportation, logistics, and urban planning. In the realm of transportation, AAM is poised to revolutionize the movement of people and goods, offering efficient and swift aerial mobility solutions. This groundbreaking technology is anticipated to address challenges such as traffic congestion, reduce travel times, and enhance overall transportation efficiency, especially in densely populated urban environments.

Logistics and supply chain sectors are poised to experience significant advantages from AAM, facilitating quicker and more direct deliveries and optimizing the flow of goods. AAM solutions, capable of navigating beyond ground-level obstacles, have the potential to streamline supply chain operations, minimizing lead times and improving overall logistics efficiency. Furthermore, AAM is positioned to transform emergency response and medical services by providing rapid and direct aerial access to remote or challenging locations, thereby enhancing the effectiveness of critical operations during emergencies.

In urban planning, the incorporation of AAM introduces novel opportunities for smart cities, influencing infrastructure development and reshaping the concept of transportation hubs. As AAM continues to advance, its industrial impact transcends traditional aviation, instigating a paradigm shift in how airspace is perceived and navigated. This evolution fosters innovation and sustainable growth across a spectrum of diverse sectors.

Market Segmentation:

Segmentation 1: by Design

  • Lift and Cruise
  • Tiltrotor
  • Multicopter
  • Ducted Vector

Multicopter Segment to Dominate the Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Design)

The global and Asia-Pacific advanced air mobility (AAM) market based on design is led by multicopter.

Segmentation 2: by Component

  • Hardware
  • Software

Hardware Segment to Dominate the Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Component)

The global and Asia-Pacific advanced air mobility (AAM) market based on component is led by hardware components.

Segmentation 3: by Energy Source

  • Electric Propulsion
  • Hybrid Propulsion
  • Hydrogen Propulsion

Electric Propulsion Segment to Dominate the Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Energy Source)

Electric Propulsion is at the forefront of the global and Asia Pacific advanced air mobility market due to its higher level of technological maturity and alignment with global environmental sustainability goals.

Segmentation 4: by Range

  • <20 Km
  • 21-100 Km
  • 101-400 Km
  • >400 Km

<20 Km Segment to Dominate the Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Range)

The <20km segment currently leads the global and Asia-Pacific advanced air mobility (AAM) market based on range due to its alignment with Urban Air Mobility (UAM) initiatives, which focus on mitigating congestion in densely populated urban centers.

Segmentation 5: by Platform Development

  • Delivery Drones
  • eVTOLs

Delivery Drones Segment to Dominate the Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Platform Development)

The global and Asia-Pacific advanced air mobility (AAM) market based on platform development is led by delivery drones because delivery drones are well-suited for industries, such as e-commerce and healthcare, where the need for swift and agile delivery is critical. Furthermore, the advent of the delivery drone has revolutionized aerial transportation, offering an efficient and swift solution for last-mile logistics in urban areas. Drones are well-suited for specific industries, such as e-commerce and healthcare, where the need for swift and agile delivery is critical.

Segmentation 6: by Region

  • North America, Europe, and Rest-of-the-World
  • Asia-Pacific

North America, Europe, and Rest-of-the-World to Dominate the Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Region)

The global and Asia-Pacific advanced air mobility (AAM) market based on region is led by North America, Europe, and Rest-of-the-World.

Recent Developments in the Global and Aisa-Pacific Advanced Air Mobility (AAM) Market

  • In August 2023, Archer Aviation obtained a special airworthiness certificate from the FAA for its Maker eVTOL technology demonstrator, allowing the vehicle to undergo initial hover test flights. This achievement signifies a crucial step in Archer's mission to develop and launch commercial eVTOL services by the end of 2024.
  • Bye Aerospace reached a noteworthy milestone in September 2023 when the FAA accepted the "Functional Hazard Analysis" for its purposefully designed electric eFlyer two aircraft. The established FAA certification basis for the eFlyer 2 (Project No. TC09549CH-A) confirmed its eligibility for a type certificate, with the FAA affirming that the type design adhered to the U.S. type certification basis and met safety standards for the requested certification category.
  • In September 2023, Airobotics Inc., a leading manufacturer of unmanned aircraft systems, secured airworthiness type certification from the FAA for its Optimus-1EX. This recognition is significant as the second-ever uncrewed aircraft to achieve such certification and the inaugural "Drone-in-a-Box solution" dedicated to fully automated drone operations for emergency response and digital data capturing. The Optimus-1EX's certification opens avenues for diverse applications, including drone first responding (DFR) and swift infrastructure surveys for disaster relief.
  • In July 2023, Joby Aviation marked a significant achievement by receiving a special airworthiness certificate from the FAA for its inaugural aircraft. This breakthrough allows Joby to progress to the next phase of flight testing for its production prototype. The granted certificate positions Joby to fulfill its vision of introducing the world's premier electric vertical take-off and landing (eVTOL) aircraft, scheduled for delivery to Edwards Air Force Base in 2024 as part of its Agility Prime contract with the U.S. Air Force. The extended Agility Prime contract, now valued at up to $131 million, reflects ongoing collaboration with key partner and investor Toyota, which invested approximately $400 million in the production line.

How can this report add value to an organization?

Product/Innovation Strategy: The product segment helps the reader understand the different types of services available for deployment and their potential globally. Moreover, the study provides the reader with a detailed understanding of the global and Asia-Pacific advanced air mobility market by products based on design, component, energy source, range, and platform development.

Growth/Marketing Strategy: The global and Asia-Pacific advanced air mobility market has seen major development by key players operating in the market, such as business expansion, partnership, collaboration, and joint venture. The favored strategy for the companies has been merger and acquisition to strengthen their position in the global and Asia-Pacific advanced air mobility market. For instance, Supernal and Inmarsat have revealed a collaborative venture to outline the utilization of satellite connectivity in advanced air mobility (AAM). The two entities will engage in testing and exchanging data to enhance hardware and network systems, aiming to facilitate the secure and efficient assimilation of electric vertical take-off and landing (eVTOL) vehicles into airspace.

Methodology: The research methodology design adopted for this specific study includes a mix of data collected from primary and secondary data sources. Both primary resources (key players, market leaders, and in-house experts) and secondary research (a host of paid and unpaid databases), along with analytical tools, have been employed to build the predictive and forecast models.

Data and validation have been taken into consideration from both primary sources as well as secondary sources.

Key Considerations and Assumptions in Market Engineering and Validation

  • Detailed secondary research has been done to ensure maximum coverage of manufacturers/suppliers operational in a country.
  • Exact revenue information, up to a certain extent, has been extracted for each company from secondary sources and databases. Revenues specific to product/service/technology were then estimated based on fact-based proxy indicators as well as primary inputs.
  • Based on the classification, the average selling price (ASP) has been calculated using the weighted average method.
  • The currency conversion rate has been taken from the historical exchange rate of Oanda and/or other relevant websites.
  • Any economic downturn in the future has not been taken into consideration for the market estimation and forecast.
  • The base currency considered for the market analysis is US$. Currencies other than the US$ have been converted to the US$ for all statistical calculations, considering the average conversion rate for that particular year.
  • The term "product" in this document may refer to "service" or "technology" as and where relevant.
  • The term "manufacturers/suppliers" may refer to "service providers" or "technology providers" as and where relevant.

Primary Research

The primary sources involve industry experts from the global and Asia-Pacific advanced air mobility industry, including advanced air mobility product providers. Respondents such as CEOs, vice presidents, marketing directors, and technology and innovation directors have been interviewed to obtain and verify both qualitative and quantitative aspects of this research study.

Secondary Research

This study involves the usage of extensive secondary research, company websites, directories, and annual reports. It also makes use of databases, such as Businessweek and others, to collect effective and useful information for a market-oriented, technical, commercial, and extensive study of the global market. In addition to the data sources, the study has been undertaken with the help of other data sources and websites.

Secondary research was done to obtain critical information about the industry's value chain, the market's monetary chain, revenue models, the total pool of key players, and the current and potential use cases and applications.

Some prominent names established in this market are:

  • Joby Aviation
  • Beta Technologies
  • Wisk Aero LLC.
  • Lilium
  • Volocopter
  • Archer
  • EHang
  • Ascendance Flight Technologies
  • Eve Holding, Inc.
  • AURA Network Systems, Inc.
  • XTI Aircraft Company
  • Urban Aeronautics
  • Airspace Experience Technologies, Inc.

Table of Contents

Executive Summary

Scope and Definition

1 Markets

  • 1.1 Overview: Global and Asia-Pacific Advanced Air Mobility Market (AAM)
  • 1.2 OEMs Applying Airworthiness (AW)/Type Certificate (TC) in the World
  • 1.3 Start-Ups and Investment Landscape
  • 1.4 Supply Chain Overview

2 Products

  • 2.1 Product Summary
  • 2.2 Global and Asia-Pacific Advanced Air Mobility (AAM) Market
    • 2.2.1 Market Overview
  • 2.3 Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Design)
    • 2.3.1 Lift and Cruise
    • 2.3.2 Tiltrotor
    • 2.3.3 Multicopter
    • 2.3.4 Ducted Vector
  • 2.4 Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Platform Development)
    • 2.4.1 Delivery Drones
    • 2.4.2 eVTOLs
      • 2.4.2.1 Air Taxi
      • 2.4.2.2 Personal Air Vehicle
      • 2.4.2.3 Air Ambulance and Medical Transportation
  • 2.5 Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Range)
    • 2.5.1 <20 km
    • 2.5.2 21-100 km
    • 2.5.3 101-400 km
    • 2.5.4 >400 km
  • 2.6 Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Energy Source)
    • 2.6.1 Electric Propulsion
    • 2.6.2 Hybrid Propulsion
    • 2.6.3 Hydrogen Propulsion
  • 2.7 Global and Asia-Pacific Advanced Air Mobility (AAM) Market (by Component)
    • 2.7.1 Hardware
      • 2.7.1.1 Aerostructure
      • 2.7.1.2 Avionics
      • 2.7.1.3 Flight Control System
      • 2.7.1.4 Others
    • 2.7.2 Software

3 Regions

  • 3.1 Regional Summary
  • 3.2 North America, Europe, and Rest-of-the-World
    • 3.2.1 Regional Overview
    • 3.2.2 Driving Factors for Market Growth
    • 3.2.3 Factors Challenging the Market
    • 3.2.4 Product
  • 3.3 Asia-Pacific
    • 3.3.1 Regional Overview
    • 3.3.2 Driving Factors for Market Growth
    • 3.3.3 Factors Challenging the Market
    • 3.3.4 Product
    • 3.3.5 China
    • 3.3.6 Product
    • 3.3.7 Japan
    • 3.3.8 Product
    • 3.3.9 South Korea
    • 3.3.10 Product
    • 3.3.11 Thailand
    • 3.3.12 Product
    • 3.3.13 Singapore
    • 3.3.14 Product
    • 3.3.15 Indonesia
    • 3.3.16 Product
    • 3.3.17 Philippines
    • 3.3.18 Product
    • 3.3.19 Vietnam
    • 3.3.20 Product
    • 3.3.21 Rest-of-Asia-Pacific
    • 3.3.22 Product

4 Research Methodology

  • 4.1 Data Sources
    • 4.1.1 Primary Data Sources
    • 4.1.2 Secondary Data Sources
    • 4.1.3 Data Triangulation
  • 4.2 Market Estimation and Forecast
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제