½ÃÀ庸°í¼­
»óǰÄÚµå
1667211

¼¼°èÀÇ µ¥ÀÌÅͼ¾ÅÍ¿ë GPU ½ÃÀå : µ¥ÀÌÅͼ¾ÅÍ À¯Çüº°, ¿ëµµº°, Áö¿ªº° ºÐ¼® ¹× ¿¹Ãø(2024-2034³â)

Data Center GPUs Market - A Global and Regional Analysis: Focus on Data Center Types, Application and Region - Analysis and Forecast, 2024-2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: BIS Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 1-5ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼¼°è µ¥ÀÌÅͼ¾ÅÍ¿ë GPU ½ÃÀå ±Ô¸ð´Â 2024³â 360¾ï ´Þ·¯¿¡¼­ ¿¹Ãø ±â°£ µ¿¾È 23.33%ÀÇ CAGRÀ» ±â·ÏÇϸç 2034³â¿¡´Â 2,932¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ·¯ÇÑ °­·ÂÇÑ ¼ºÀåÀº AI, µö·¯´×, ºòµ¥ÀÌÅÍ ºÐ¼®À» Áö¿øÇÏ´Â °í¼º´É ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ µû¸¥ °ÍÀ¸·Î, GPU´Â °í¼Ó Á¶¸³ ¶óÀÎÀÇ Àü¹® ÀÛ¾÷ÀÚ ¿ªÇÒÀ» ¼öÇàÇÏ¸ç º¹ÀâÇÑ °è»ê ÀÛ¾÷À» º¸´Ù È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸Þ¸ð¸® ¿ë·® Áõ°¡, ó¸® ´É·Â Çâ»ó, ¿¡³ÊÁö È¿À²ÀûÀÎ ¼³°è µî ²÷ÀÓ¾ø´Â ±â¼ú ¹ßÀüÀº ½º¸¶Æ® ±â¼úÀ» ÅëÇÑ Á¦Á¶ °øÀåÀÇ Çö´ëÈ­¸¦ ÃËÁøÇÏ°í ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁÖ¿ä GPU Á¦Á¶¾÷ü¿Í Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü¿ÍÀÇ Àü·«Àû Á¦ÈÞ¿Í ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î °ø±Þ¸ÁÀÇ Åº·Â¼º°ú ¿î¿µÀÇ È®À强ÀÌ °­È­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, R&D¿¡ ´ëÇÑ ÅõÀÚ È®´ë´Â GPU ¼Ö·ç¼ÇÀÇ Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¾÷°è´Â ´õ¿í ¾ö°ÝÇÑ ¿¡³ÊÁö ¹× ȯ°æ ±ÔÁ¦¸¦ ÁؼöÇϸ鼭 ÁøÈ­ÇÏ´Â ¼ö¿ä¿¡ ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú°í, ±Ã±ØÀûÀ¸·Î È®Àå °¡´ÉÇϰí Áö¼Ó°¡´ÉÇÑ µðÁöÅÐ »ýŰ踦 Áö¿øÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
¿¹Ãø ±â°£ 2024-2034³â
2024³â Æò°¡ 360¾ï ´Þ·¯
2034³â ¿¹Ãø 2,932¾ï ´Þ·¯
CAGR 23.33%

¿ëµµº°·Î´Â ÄÚ·ÎÄÉÀÌ¼Ç ºÎ¹®ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù:

ÄÚ·ÎÄÉÀ̼ÇÀº ÁÖ·Î °í¼º´É ÄÄÇ»ÆÃÀ» ÇÊ¿ä·Î ÇÏ´Â ±â¾÷µé¿¡°Ô È®À强, À¯¿¬¼º, ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö Àֱ⠶§¹®¿¡ AI, ¸Ó½Å·¯´×, °í¼º´É ÄÄÇ»ÆÃ(HPC)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó, ÄÚ·ÎÄÉÀÌ¼Ç µ¥ÀÌÅͼ¾ÅÍ´Â Àü¿ë ½Ã¼³¿¡ ¸¹Àº ÀÚº»À» ÅõÀÚÇÏÁö ¾Ê°íµµ GPU¸¦ ¸¹ÀÌ »ç¿ëÇÏ´Â ¿öÅ©·Îµå¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â Çʼö ÀÎÇÁ¶ó¸¦ Á¦°øÇÕ´Ï´Ù. ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ÄÚ·ÎÄÉÀÌ¼Ç µ¥ÀÌÅͼ¾ÅÍ´Â GPU¸¦ ¸¹ÀÌ »ç¿ëÇÏ´Â ¿öÅ©·Îµå¸¦ Áö¿øÇϱâ À§ÇÑ ÇʼöÀûÀÎ ÀÎÇÁ¶ó¸¦ Á¦°øÇϸç, Àü¿ë ½Ã¼³¿¡ ´ëÇÑ ¸·´ëÇÑ ÀÚº» ÅõÀÚ ¾øÀ̵µ À̸¦ Áö¿øÇÒ ¼ö ÀÖ´Â ÀÎÇÁ¶ó¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ ¸ðµ¨À» ÅëÇØ ±â¾÷Àº °øÀ¯ ¸®¼Ò½º¸¦ Ȱ¿ëÇÏ°í Æ¯Á¤ ¿ä±¸¿¡ ¸Â°Ô GPU ±¸¼ºÀ» ¸ÂÃãÈ­ÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÚº» ÁöÃâÀ» ÁÙÀ̸鼭µµ ÷´Ü GPU ±â¼ú¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ ÀüȯÀÇ ¼Óµµ°¡ »¡¶óÁö°í AI ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó µ¥ÀÌÅͼ¾ÅÍ È¯°æ¿¡ ÀûÇÕÇÑ ¿î¿µ ÆÐ·¯´ÙÀÓÀ¸·Î ÄÚ·ÎÄÉÀÌ¼Ç ¼­ºñ½º µµÀÔÀÌ ´õ¿í °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¦Ç°º°·Î´Â ±âÁ¸ GPU°¡ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù:

±âÁ¸ GPU´Â È®°íÇÑ ÀÔÁö¿Í ´Ù¾çÇÑ ¿öÅ©·Îµå¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÉ ¼ö ÀÖ´Ù´Â Á¡¿¡¼­ °¡±î¿î ¹Ì·¡¿¡ µ¥ÀÌÅͼ¾ÅÍ GPU ½ÃÀåÀ» Àå¾ÇÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °ÔÀÓ, ±×·¡ÇÈ ·»´õ¸µ, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, °í¼º´É ÄÄÇ»ÆÃ(HPC)¿¡¼­ ¹ü¿ë ÄÄÇ»ÆÃÀÇ ÇÙ½ÉÀÎ À̵é GPU´Â º´·Ä ó¸® ¹× AI Ã߷п¡ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¼º¼÷ÇÑ »ýŰè¿Í ±¤¹üÀ§ÇÑ º¸±ÞÀ¸·Î ÀÎÇØ GPU´Â ¸Ó½Å·¯´×, µ¥ÀÌÅÍ ºÐ¼®, ¹Ìµð¾î 󸮸¦ Áö¿øÇϱâ À§ÇÑ ÀÎÇÁ¶ó È®ÀåÀ» °í·ÁÇÏ´Â Á¶Á÷¿¡°Ô ¸Å¿ì ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Áö¿ªº°·Î´Â ºÏ¹Ì°¡ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù:

ºÏ¹Ì´Â °­·ÂÇÑ ±â¼ú ÀÎÇÁ¶ó, AI ¹× ¸Ó½Å·¯´× ¼­ºñ½º¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä, ÁÖ¿ä Ŭ¶ó¿ìµå Á¦°ø¾÷ü ¹× ±â¼ú ±â¾÷ÀÇ Á¸Àç·Î ÀÎÇØ µ¥ÀÌÅͼ¾ÅÍ GPU ½ÃÀåÀ» ¼±µµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ±¸±Û, ¾Æ¸¶Á¸, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®¿Í °°Àº ¾÷°è ¼±µÎÁÖÀÚµéÀº È®ÀåµÇ´Â Ŭ¶ó¿ìµå ¼­ºñ½º ¹× AI ¾ÖÇø®ÄÉÀ̼ÇÀ» Áö¿øÇϱâ À§ÇØ GPU°¡ žÀçµÈ µ¥ÀÌÅͼ¾ÅÍ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. °í¼º´É ÄÄÇ»ÆÃ(HPC) ¹× GPU °¡¼Ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ºÏ¹ÌÀÇ ³ôÀº ¿¬±¸ ¿ª·®°ú Áö¿øÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå¿¡¼­ÀÇ ¿ìÀ§¸¦ °­È­ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¶ÇÇÑ, AI ¸ðµ¨, µö·¯´×, Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½ºÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ºÏ¹Ì°¡ µ¥ÀÌÅͼ¾ÅÍ GPU Çõ½ÅÀÇ ¼¼°è Çãºê·Î¼­ÀÇ ÀÔÁö¸¦ ´õ¿í °ø°íÈ÷ ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­ 1 : ¿ëµµº°

  • ÇÏÀÌÆÛ½ºÄÉÀÏ
  • ÄÚµð³×À̼Ç
  • ¿£ÅÍÇÁ¶óÀÌÁî
  • ±âŸ

½ÃÀå ¼¼ºÐÈ­ 2 : Á¦Ç°º°

  • ±âÁ¸ GPU
  • °í¼Ó GPU

½ÃÀå ¼¼ºÐÈ­ 3 : Áö¿ªº°

  • ºÏ¹Ì
  • À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ±âŸ Áö¿ª

¼¼°èÀÇ µ¥ÀÌÅͼ¾ÅÍ¿ë GPU ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ÁÖ¿ä µ¿Çâ, ½ÃÀå ¿µÇâ¿äÀÎ ºÐ¼®, ¹ý¡¤±ÔÁ¦ ȯ°æ, ½ÃÀå ±Ô¸ð ÃßÁ¤ ¹× ¿¹Ãø, °¢Á¾ ºÎ¹®º°¡¤Áö¿ªº°¡¤ÁÖ¿ä ±¹°¡º° »ó¼¼ ºÐ¼®, °æÀï ±¸µµ, ÁÖ¿ä ±â¾÷ °³¿ä µîÀÇ Á¤º¸¸¦ Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

ÁÖ¿ä ¿ä¾à

¹üÀ§¿Í Á¤ÀÇ

Á¦1Àå ½ÃÀå

  • µ¥ÀÌÅͼ¾ÅÍ µ¿Çâ : ÇöÀç ¹× ÇâÈÄÀÇ ¿µÇâ Æò°¡
    • µ¥ÀÌÅͼ¾ÅÍ ¿ë·® : ÇöÀç¿Í ÇâÈÄ
    • AI ¿öÅ©·Îµå¿Í ±âÁ¸ ¿öÅ©·Îµå
    • µ¥ÀÌÅͼ¾ÅÍ Àü·Â ¼Òºñ ½Ã³ª¸®¿À
    • ÁßÁ¡ÀûÀ¸·Î ÀÓÇØ¾ß ÇÒ ±¹°¡
    • ±âŸ »ê¾÷ µ¿Çâ
  • µ¥ÀÌÅͼ¾ÅÍ ³Ã°¢ ½ÃÀå : °³¿ä
    • ¼¼°è ¹× Áö¿ª ½ÃÀå ±Ô¸ð
    • ³Ã°¢ÀÇ µµÀÔ(µ¥ÀÌÅͼ¾ÅÍ °æ°ú ¿¬¼öº°)
    • °³¼± ¹× ºê¶ó¿îÇʵå ÇÁ·ÎÁ§Æ®
    • ±×¸°Çʵå ÇÁ·ÎÁ§Æ®¿Í ½Å±Ô ¼³ºñ
    • ³Ã°¢ÀåÄ¡ µµÀÔ ÃßÀÌ ºÐ¼®
    • µ¥ÀÌÅͼ¾ÅÍ ³Ã°¢ ±â¼ú ä¿ë µ¿Çâ
    • AIµµÀÔ¿¡ ÀÇÇÑ µ¥ÀÌÅͼ¾ÅÍ ³Ã°¢ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¿µÇâ
  • ¿¬±¸°³¹ß ¸®ºä
    • ƯÇã Ãâ¿ø µ¿Çâ(±¹°¡º°, ±â¾÷º°)
  • ÀÌÇØ°ü°èÀÚ ºÐ¼®
    • »ç¿ë »ç·Ê
    • ÃÖÁ¾»ç¿ëÀÚ¿Í ±¸ÀÔ ±âÁØ
  • ½ÃÀå ¿ªÇÐ °³¿ä
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½ÃÀå ±âȸ

Á¦2Àå ¿ëµµ

  • ¿ëµµ ¼¼ºÐÈ­
  • ¿ëµµ °³¿ä
  • µ¥ÀÌÅͼ¾ÅÍ GPU ½ÃÀå(¿ëµµº°)
    • ÇÏÀÌÆÛ½ºÄÉÀÏ
    • ÄÚ·ÎÄÉÀ̼Ç
    • ±â¾÷
    • ±âŸ

Á¦3Àå Á¦Ç°

  • Á¦Ç° ¼¼ºÐÈ­
  • Á¦Ç° °³¿ä
  • µ¥ÀÌÅͼ¾ÅÍ GPU ½ÃÀå(Á¦Ç°º°)
    • ±âÁ¸ GPU
    • °í¼Ó AI GPU

Á¦4Àå Áö¿ª

  • Áö¿ªº° °³¿ä
  • ºÏ¹Ì
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ¿øµ¿·Â
    • ½ÃÀå °úÁ¦
    • ¿ëµµ
    • Á¦Ç°
    • ºÏ¹Ì(±¹°¡º°)
  • À¯·´
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ¿øµ¿·Â
    • ½ÃÀå °úÁ¦
    • ¿ëµµ
    • Á¦Ç°
    • À¯·´(±¹°¡º°)
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ¿øµ¿·Â
    • ½ÃÀå °úÁ¦
    • ¿ëµµ
    • Á¦Ç°
    • ¾Æ½Ã¾ÆÅÂÆò¾ç(±¹°¡º°)
  • ±âŸ Áö¿ª
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ¿øµ¿·Â
    • ½ÃÀå °úÁ¦
    • ¿ëµµ
    • Á¦Ç°

Á¦5Àå ½ÃÀå : °æÀï º¥Ä¡¸¶Å·°ú ±â¾÷ °³¿ä

  • Áö¸®Àû Æò°¡
  • ±â¾÷ °³¿ä
    • ¿ÜºÎ GPU/¿¢¼¿·¯·¹ÀÌÅÍ Ä¨ °ø±Þ¾÷ü
    • »ç³» µ¥ÀÌÅͼ¾ÅÍ ¿¢¼¿·¯·¹ÀÌÅÍ °³¹ßÀÚ

Á¦6Àå Á¶»ç ¹æ¹ý

ksm 25.03.18

Introduction to the Data Center GPUs Market

The data center GPUs market has been experiencing significant growth, with a realistic scenario valuing the market at $36.0 billion in 2024 and projecting expansion at a CAGR of 23.33% to reach $293.2 billion by 2034. This robust growth is driven by an increasing demand for high-performance computing to support AI, deep learning, and big data analytics, where GPUs act as specialized workers on a high-speed assembly line, tackling complex computational tasks with enhanced efficiency. Continuous technological advancements, such as improved memory capacity, enhanced processing power, and energy-efficient designs, further bolster market expansion, akin to modernizing a manufacturing plant with smart technologies. Strategic partnerships between leading GPU manufacturers and cloud service providers and the rapid development of hyperscale data centers have strengthened supply chain resilience and operational scalability, much like a well-coordinated logistics network ensuring smooth product flow. Additionally, escalating investments in research and development are spurring innovation in GPU solutions, enabling the industry to meet evolving demands while adhering to stricter energy and environmental regulations, ultimately supporting a scalable and sustainable digital ecosystem.

Data Center GPUs Market Segmentation:

KEY MARKET STATISTICS
Forecast Period2024 - 2034
2024 Evaluation$36.0 Billion
2034 Forecast$293.2 Billion
CAGR23.33%

Segmentation 1: Data Center GPUs Market (by Application)

  • Hyperscale
  • Colocation
  • Enterprise
  • Others

Colocation to Lead the Data Center GPUs Market (by Application)

Colocation is anticipated to emerge as the principal driver in the data center GPUs market, primarily due to its capacity to deliver scalable, flexible, and cost-efficient solutions for enterprises with high-performance computing requirements. As demand for artificial intelligence, machine learning, and high-performance computing (HPC) continues escalating, colocation data centers provide the essential infrastructure to support GPU-intensive workloads without requiring substantial capital investments in proprietary facilities. This model enables organizations to leverage shared resources and customize GPU configurations to meet specific needs, thereby reducing capital expenditures while ensuring access to advanced GPU technology. Moreover, the accelerating pace of digital transformation and the increasing reliance on AI-driven solutions are expected to further stimulate the adoption of colocation services as the preferred operational paradigm for data center environments.

Segmentation 2: Data Center GPUs Market (by Product)

  • Conventional GPUs
  • Accelerated GPUs

Conventional GPUs to Lead the Data Center GPUs Market (by Product)

Conventional GPUs are projected to dominate the data center GPUs market in the near term, owing to their well-established presence and extensive applicability across diverse workloads. As the cornerstone of general-purpose computing in gaming, graphics rendering, cloud computing, and high-performance computing (HPC), these GPUs remain indispensable for parallel processing and AI inference. Their mature ecosystem and widespread availability make them a highly attractive option for organizations looking to scale their infrastructure to support machine learning, data analytics, and media processing.

Segmentation 3: Data Center GPUs Market (by Region)

  • North America
  • Europe
  • Asia-Pacific
  • Rest-of-the-World

North America to Lead the Data Center GPUs Market (by Region)

North America is set to lead the data center GPUs market, driven by its robust technological infrastructure, substantial demand for AI and machine learning services, and the presence of major cloud providers and technology companies. The region continues to command a significant share of AI-driven workloads, with industry leaders such as Google, Amazon, and Microsoft making considerable investments in GPU-powered data centers to support their expanding cloud services and AI applications. As the demand for high-performance computing (HPC) and GPU acceleration grows, North America's advanced research capabilities and supportive regulatory framework will reinforce its market dominance. Moreover, the increasing adoption of AI models, deep learning, and cloud-based services further consolidates North America's position as the global hub for data center GPU innovation.

Industrial Trends for the Data Center GPUs Market

HPC Cluster Developments

  • HPC clusters have emerged as a significant trend in data centers by linking multiple high-performance computers to operate in parallel, thereby expediting the processing of extensive datasets and complex computations. This method offers considerable benefits for AI, scientific research, and big data analytics, which are becoming increasingly integral to modern data centers.
  • Moreover, HPC data centers are transforming the computing landscape by facilitating faster data processing and supporting AI-driven workloads, prompting substantial investments in their expansion and efficiency. For instance, in January 2025, Digital Power Optimization (DPO) announced that it had secured land and a reliable power supply to develop a 20MW HPC data center in Wisconsin Rapids, Wisconsin, with an estimated investment of $200 million.

Industrial Driver for the Data Center GPUs Market

Surging Demand for Cryptocurrency Mining

  • The cryptocurrency mining industry is highly dependent on data centers with robust infrastructure and substantial computing power. As demand for cryptocurrency mining increases, data centers have become central to accommodating the high-powered computer hardware necessary for mining operations, thereby driving investments in facilities that offer enhanced space, power, and cooling capacity.
  • Companies such as Primcast, Crypto Currency Machines, and Server Room provide dedicated mining servers equipped with advanced NVIDIA GPUs, including the CMP HX series and GeForce RTX 30 Series, designed specifically for efficient cryptocurrency mining. These servers are tailored for tasks such as 3D rendering, compute operations, and mining, reflecting manufacturers' commitment to meeting the rising demand for specialized hardware in the cryptocurrency industry. GPU server providers continue to optimize these features to enhance processing power for effective mining operations further.

Industrial Restraint for the Data Center GPUs Market

High Bargaining Power of GPU Manufacturers

  • Major players such as NVIDIA, AMD, and Intel hold significant sway in the data center GPU manufacturing industry, creating a highly concentrated market. These companies have established comprehensive systems that smoothly integrate both hardware and software. NVIDIA, in particular, has taken the lead with its all-encompassing full-stack approach, covering GPU, CPU, and DPU technologies. This poses a significant challenge for GPU server manufacturers in data centers, as replicating a similarly cohesive ecosystem becomes a tough task. The challenge for GPU server manufacturers trying to emulate NVIDIA's integrated approach is especially tough without their own software that seamlessly complements their hardware.
  • This becomes a substantial obstacle for data center GPU server manufacturers contemplating a shift between providers. The complex web of high switching costs is deeply rooted in the complexities of moving away from a specific GPU manufacturer's platform, exemplified by NVIDIA. Data center GPU server manufacturers entrenched in a particular ecosystem may face both financial and operational hurdles when exploring alternative solutions. They must strategically confront these substantial switching costs, requiring the development of integrated solutions compelling enough to attract and retain data center GPU server manufacturers cautious about the intricacies involved in transitioning.

Industrial Opportunity for the Data Center GPUs Market

Technological Advancement in High-Performing Computing (HPC)

  • The continuous growth of the HPC market, driven by the increasing demand for high-efficiency computing, cloud adoption, industry expansion, and advancements in AI and ML, presents significant opportunities for GPU server manufacturers such as Dell and Google to expand their market presence and cater to the rising demand for high-performance computing solutions.
  • One detailed real-time example of how GPU servers can benefit HPC and AI is the case of OpenAI's GPT-4, the world's latest and largest language model. It was trained on a vast dataset of over 1 trillion words, requiring significant computational resources. GPU servers, specifically NVIDIA H100 Tensor Core GPUs, played a crucial role by accelerating the training process up to 60 times compared to CPUs alone. This acceleration was achieved through mixed-precision training, optimizing both computation speed and memory usage. As a result, GPT-4 could be trained in a matter of weeks, achieving state-of-the-art performance in natural language processing tasks.

Key Players of the Data Center GPUs Market

  • NVIDIA Corporation
  • Advanced Micro Devices, Inc.
  • Intel
  • Graphcore
  • Tenstorrent
  • Groq, Inc.
  • Cerebras
  • Amazon
  • Meta
  • Huawei Technologies Co., Ltd.
  • Alibaba
  • Baidu, Inc.
  • Google

Table of Contents

Executive Summary

Scope and Definition

1 Markets

  • 1.1 Data Center Trends: Current and Future Impact Assessment
    • 1.1.1 Data Center Capacities: Current and Future
    • 1.1.2 AI Workloads vs. Conventional Workloads
    • 1.1.3 Data Center Power Consumption Scenario
    • 1.1.4 Key Countries to Focus
    • 1.1.5 Other Industrial Trends
      • 1.1.5.1 HPC Cluster Developments
      • 1.1.5.2 Blockchain Initiatives
      • 1.1.5.3 Super Computing
      • 1.1.5.4 5G and 6G Developments
      • 1.1.5.5 Impact of Server/Rack Density
  • 1.2 Data Center Cooling Market Overview
    • 1.2.1 Global and Regional Market size
    • 1.2.2 Adoption of Cooling (by Data Center Age)
    • 1.2.3 Retrofitting and Brownfield Projects
    • 1.2.4 Green Field Projects and New Installation
    • 1.2.5 Historical Analysis of Cooling Equipment Deployment, 2018-2022
    • 1.2.6 New Data Center Trends toward Adoption of Cooling Technology Type, 2023-2027
    • 1.2.7 Impact of AI Adoption on Data Center Cooling Infrastructure
  • 1.3 Research and Development Review
    • 1.3.1 Patent Filing Trend (by Country, by Company)
  • 1.4 Stakeholder Analysis
    • 1.4.1 Use Case
    • 1.4.2 End User and Buying Criteria
  • 1.5 Market Dynamics Overview
    • 1.5.1 Market Drivers
      • 1.5.1.1 Surging Demand for Cryptocurrency Mining
      • 1.5.1.2 Rising Enterprise Adoption of Data Center GPUs for High-Performance Computing Applications
    • 1.5.2 Market Restraints
      • 1.5.2.1 High Bargaining Power of GPU Manufacturers
    • 1.5.3 Market Opportunities
      • 1.5.3.1 Technological Advancement in High-Performing Computing (HPC)
      • 1.5.3.2 Government Support for Smart City Development and Digitalization

2 Application

  • 2.1 Application Segmentation
  • 2.2 Application Summary
  • 2.3 Data Center GPUs Market (by Application)
    • 2.3.1 Hyperscale
    • 2.3.2 Colocation
    • 2.3.3 Enterprise
    • 2.3.4 Others

3 Products

  • 3.1 Product Segmentation
  • 3.2 Product Summary
  • 3.3 Data Center GPUs Market (by Product)
    • 3.3.1 Conventional GPUs
    • 3.3.2 Accelerated AI GPUs
      • 3.3.2.1 Training GPUs
      • 3.3.2.2 Inference GPUs
      • 3.3.2.3 Hybrid or Mixed-Workload GPUs

4 Regions

  • 4.1 Regional Summary
  • 4.2 North America
    • 4.2.1 Regional Overview
    • 4.2.2 Driving Factors for Market Growth
    • 4.2.3 Factors Challenging the Market
    • 4.2.4 Application
    • 4.2.5 Product
    • 4.2.6 North America (by Country)
      • 4.2.6.1 U.S.
        • 4.2.6.1.1 Application
        • 4.2.6.1.2 Product
      • 4.2.6.2 Canada
        • 4.2.6.2.1 Application
        • 4.2.6.2.2 Product
      • 4.2.6.3 Mexico
        • 4.2.6.3.1 Application
        • 4.2.6.3.2 Product
  • 4.3 Europe
    • 4.3.1 Regional Overview
    • 4.3.2 Driving Factors for Market Growth
    • 4.3.3 Factors Challenging the Market
    • 4.3.4 Application
    • 4.3.5 Product
    • 4.3.6 Europe (by Country)
      • 4.3.6.1 Germany
        • 4.3.6.1.1 Application
        • 4.3.6.1.2 Product
      • 4.3.6.2 France
        • 4.3.6.2.1 Application
        • 4.3.6.2.2 Product
      • 4.3.6.3 U.K.
        • 4.3.6.3.1 Application
        • 4.3.6.3.2 Product
      • 4.3.6.4 Netherlands
        • 4.3.6.4.1 Application
        • 4.3.6.4.2 Product
      • 4.3.6.5 Ireland
        • 4.3.6.5.1 Application
        • 4.3.6.5.2 Product
      • 4.3.6.6 Italy
        • 4.3.6.6.1 Application
        • 4.3.6.6.2 Product
      • 4.3.6.7 Rest-of-Europe
        • 4.3.6.7.1 Application
        • 4.3.6.7.2 Product
  • 4.4 Asia-Pacific
    • 4.4.1 Regional Overview
    • 4.4.2 Driving Factors for Market Growth
    • 4.4.3 Factors Challenging the Market
    • 4.4.4 Application
    • 4.4.5 Product
    • 4.4.6 Asia-Pacific (by Country)
      • 4.4.6.1 China
        • 4.4.6.1.1 Application
        • 4.4.6.1.2 Product
      • 4.4.6.2 Japan
        • 4.4.6.2.1 Application
        • 4.4.6.2.2 Product
      • 4.4.6.3 Australia
        • 4.4.6.3.1 Application
        • 4.4.6.3.2 Product
      • 4.4.6.4 India
        • 4.4.6.4.1 Application
        • 4.4.6.4.2 Product
      • 4.4.6.5 South Korea
        • 4.4.6.5.1 Application
        • 4.4.6.5.2 Product
      • 4.4.6.6 Rest-of-Asia-Pacific
        • 4.4.6.6.1 Application
        • 4.4.6.6.2 Product
  • 4.5 Rest-of-the-World
    • 4.5.1 Regional Overview
    • 4.5.2 Driving Factors for Market Growth
    • 4.5.3 Factors Challenging the Market
    • 4.5.4 Application
    • 4.5.5 Product

5 Markets - Competitive Benchmarking and Company Profiles

  • 5.1 Geographic Assessment
  • 5.2 Company Profiles
    • 5.2.1 External GPU/ Accelerator Chip Suppliers
      • 5.2.1.1 NVIDIA Corporation
        • 5.2.1.1.1 Overview
        • 5.2.1.1.2 Top Products/Product Portfolio
        • 5.2.1.1.3 Top Competitors
        • 5.2.1.1.4 Target Customers/End Users
        • 5.2.1.1.5 Key Personnel
        • 5.2.1.1.6 Analyst View
        • 5.2.1.1.7 Market Share, 2024
      • 5.2.1.2 Advanced Micro Devices, Inc.
        • 5.2.1.2.1 Overview
        • 5.2.1.2.2 Top Products/Product Portfolio
        • 5.2.1.2.3 Top Competitors
        • 5.2.1.2.4 Target Customers/End Users
        • 5.2.1.2.5 Key Personnel
        • 5.2.1.2.6 Analyst View
        • 5.2.1.2.7 Market Share, 2024
      • 5.2.1.3 Intel
        • 5.2.1.3.1 Overview
        • 5.2.1.3.2 Top Products/Product Portfolio
        • 5.2.1.3.3 Top Competitors
        • 5.2.1.3.4 Target Customers/End Users
        • 5.2.1.3.5 Key Personnel
        • 5.2.1.3.6 Analyst View
        • 5.2.1.3.7 Market Share, 2024
      • 5.2.1.4 Graphcore
        • 5.2.1.4.1 Overview
        • 5.2.1.4.2 Top Products/Product Portfolio
        • 5.2.1.4.3 Top Competitors
        • 5.2.1.4.4 Target Customers/End Users
        • 5.2.1.4.5 Key Personnel
        • 5.2.1.4.6 Analyst View
        • 5.2.1.4.7 Market Share, 2024
      • 5.2.1.5 Tenstorrent
        • 5.2.1.5.1 Overview
        • 5.2.1.5.2 Top Products/Product Portfolio
        • 5.2.1.5.3 Top Competitors
        • 5.2.1.5.4 Target Customers/End Users
        • 5.2.1.5.5 Key Personnel
        • 5.2.1.5.6 Analyst View
        • 5.2.1.5.7 Market Share, 2024
      • 5.2.1.6 Groq, Inc.
        • 5.2.1.6.1 Overview
        • 5.2.1.6.2 Top Products/Product Portfolio
        • 5.2.1.6.3 Top Competitors
        • 5.2.1.6.4 Target Customers/End Users
        • 5.2.1.6.5 Key Personnel
        • 5.2.1.6.6 Analyst View
        • 5.2.1.6.7 Market Share, 2024
      • 5.2.1.7 Cerebras
        • 5.2.1.7.1 Overview
        • 5.2.1.7.2 Top Products/Product Portfolio
        • 5.2.1.7.3 Top Competitors
        • 5.2.1.7.4 Target Customers/End Users
        • 5.2.1.7.5 Key Personnel
        • 5.2.1.7.6 Analyst View
        • 5.2.1.7.7 Market Share, 2024
    • 5.2.2 In-House Data Center Accelerator Developers
      • 5.2.2.1 Google
        • 5.2.2.1.1 Overview
        • 5.2.2.1.2 Top Products/Product Portfolio
        • 5.2.2.1.3 Top Competitors
        • 5.2.2.1.4 Target Customers/End Users
        • 5.2.2.1.5 Key Personnel
        • 5.2.2.1.6 Analyst View
      • 5.2.2.2 Amazon
        • 5.2.2.2.1 Overview
        • 5.2.2.2.2 Top Products/Product Portfolio
        • 5.2.2.2.3 Top Competitors
        • 5.2.2.2.4 Target Customers/End Users
        • 5.2.2.2.5 Key Personnel
        • 5.2.2.2.6 Analyst View
      • 5.2.2.3 Meta
        • 5.2.2.3.1 Overview
        • 5.2.2.3.2 Top Products/Product Portfolio
        • 5.2.2.3.3 Top Competitors
        • 5.2.2.3.4 Target Customers/End Users
        • 5.2.2.3.5 Key Personnel
        • 5.2.2.3.6 Analyst View
      • 5.2.2.4 Huawei Technologies Co., Ltd.
        • 5.2.2.4.1 Overview
        • 5.2.2.4.2 Top Products/Product Portfolio
        • 5.2.2.4.3 Top Competitors
        • 5.2.2.4.4 Target Customers/End Users
        • 5.2.2.4.5 Key Personnel
        • 5.2.2.4.6 Analyst View
      • 5.2.2.5 Alibaba
        • 5.2.2.5.1 Overview
        • 5.2.2.5.2 Top Products/Product Portfolio
        • 5.2.2.5.3 Top Competitors
        • 5.2.2.5.4 Target Customers/End Users
        • 5.2.2.5.5 Key Personnel
        • 5.2.2.5.6 Analyst View
      • 5.2.2.6 Baidu, Inc.
        • 5.2.2.6.1 Overview
        • 5.2.2.6.2 Top Products/Product Portfolio
        • 5.2.2.6.3 Top Competitors
        • 5.2.2.6.4 Target Customers/End Users
        • 5.2.2.6.5 Key Personnel
        • 5.2.2.6.6 Analyst View

6 Research Methodology

  • 6.1 Data Sources
    • 6.1.1 Primary Data Sources
    • 6.1.2 Secondary Data Sources
    • 6.1.3 Data Triangulation
  • 6.2 Market Estimation and Forecast
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦