½ÃÀ庸°í¼­
»óǰÄÚµå
1778600

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå - ¼¼°è ¹× Áö¿ªº° ºÐ¼® : ¼­ºê½Ã½ºÅÛº° , ±¹°¡º° - ºÐ¼®°ú ¿¹Ãø(2024-2040³â)

Large Satellite Propulsion System Market - A Global and Regional Analysis: Focus on Subsystem and Country - Analysis and Forecast, 2024-2040

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: BIS Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 1-5ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå¿¡´Â È­ÇÐ Ã߷±â, Àü±â Ã߷±â, ³Ã°¡½º Ã߷±â, ÇÏÀ̺긮µå Ãß·Â±â µî ´Ù¾çÇÑ ¿ìÁÖ Ãß·Â ±â¼úÀÌ Æ÷ÇԵǸç, ¸ðµÎ Áß·®±Þ À§¼ºÀÇ ±Ëµµ ÁøÀÔ, Á¤Áö±Ëµµ À¯Áö, Á¾¸» Á¶Á¾¿¡ ÇʼöÀûÀÎ ±â¼úÀÔ´Ï´Ù.

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº °í󸮷® Åë½Å À§¼º, °í°íµµ Áö±¸ °üÃø Ç÷§Æû, È®ÀåµÇ´Â Ç×¹ý º°ÀÚ¸®µéÀÇ ±Þ°ÝÇÑ Áõ°¡¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â °íÈ¿À² ÃßÁø ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °íÃß·Â Àü±â Ȧ È¿°ú Ã߷±â, ģȯ°æ ÃßÁøÁ¦ È­ÇÐ ¿£Áø, ¸ðµâ½Ä ÇÏÀ̺긮µå ½ºÅ×ÀÌÁö¿Í °°Àº ÃßÁø·Â Çõ½ÅÀº È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀ̸ç Áö¼Ó°¡´ÉÇÑ ÃßÁø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ´ëÇü À§¼º »ç¾÷ÀÚÀÇ ¼ö¿ä Áõ°¡¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº °æÀïÀÌ Ä¡¿­ÇÏ¸ç º¸À×, ¿¡¾î·ÎÁ¬, ·ÎÄÏ´ÙÀÎ, ¿¡¾î¹ö½º, »çÇÁ¶õ, ³ë½º·Ó±×·ç¸Õ µî ÁÖ¿ä ±â¾÷µéÀÌ ¾÷°è¸¦ ¼±µµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÃßÁøÁ¦ÀÇ È¿À²¼º, ±Ëµµ»óÀÇ À̹°Áú °¨¼Ò, ¹Ì¼ÇÀÇ À¯¿¬¼ºÀ» Áß½ÃÇÏ´Â °æÇâÀÌ °­È­µÇ¸é¼­ ±¸¸ÅÀÚÀÇ ¿ì¼±¼øÀ§°¡ º¯È­Çϰí Â÷¼¼´ë Àü±â ÃßÁø ¹æ½Ä°ú Àç»ç¿ë °¡´ÉÇÑ ÃßÁø ¹æ½Ä¿¡ ´ëÇÑ ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº ±Þ¼ÓÇÑ ±â¼ú Çõ½Å°ú ÃֽŠ¿ìÁÖ ÀÓ¹«ÀÇ ¼º´É ¿ä±¸ Áõ°¡¿¡ µû¶ó ²÷ÀÓ¾øÀÌ ÁøÈ­Çϰí ÀÖÀ¸¸ç, ¸Å¿ì ¿ªµ¿ÀûÀÎ »óŸ¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼Ò°³

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå¿¡´Â È­ÇÐ Ã߷±â, Àü±â Ã߷±â, ³Ã°¡½º ½Ã½ºÅÛ, ÇÏÀ̺긮µå ¿£Áø µî ´Ù¾çÇÑ ¼­ºê½Ã½ºÅÛÀÌ Æ÷ÇԵǸç, ÀÌµé ¸ðµÎ´Â Áß·®±Þ ¿ìÁÖ¼±ÀÇ ¾ÈÁ¤ÀûÀÎ ±âµ¿°ú ¿ìÁÖÁ¤°ÅÀå À¯Áö¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. °í󸮷® Åë½Å, Áö±¸ °üÃø ¹× Ç×ÇØ ´É·Â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿ìÁÖ ÃßÁø¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °íÃâ·Â Ȧ È¿°ú Ã߷±â, ģȯ°æ ÃßÁøÁ¦ È­ÇÐ ¿£Áø, ¸ðµâ½Ä ÇÏÀ̺긮µå ½ºÅ×ÀÌÁö¿Í °°Àº ÃßÁø ¾ÆÅ°ÅØÃ³ÀÇ Çõ½ÅÀº ´ëÇü À§¼º¿¡ ÇÊ¿äÇÑ ±Ëµµ ¼Óµµ º¯È­¸¦ È®Àå °¡´ÉÇÏ°í ¾ÈÁ¤ÀûÀ¸·Î Á¦°øÇϱ⠶§¹®¿¡ °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. Boeing, Aerojet Rocketdyne, Airbus, Safran, Northrop Grumman µî ¾÷°è ¸®´õµéÀÌ ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖÀ¸¸ç, °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ±â¼ú Æ÷Æ®Æú¸®¿À¸¦ Áö¼ÓÀûÀ¸·Î ¹ßÀü½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼º°ú ¹Ì¼ÇÀÇ ºñ¿ë È¿À²¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ģȯ°æ ÃßÁøÁ¦¿Í °íÈ¿À² Àü±â ÃßÁø ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº ÃֽŠ¿ìÁÖ ÀÓ¹«¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í È¿À²ÀûÀÎ ±Ëµµ Á¶Á¾ÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ºü¸£°Ô ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

»ê¾÷¿¡ ¹ÌÄ¡´Â ¿µÇâ

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº »ê¾÷°è¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡¸ç, Ç×°ø¿ìÁÖ, ¿¡³ÊÁö, ÷´Ü Á¦Á¶¾÷ ºÐ¾ßÀÇ °æÁ¦ Ȱµ¿°ú °í¿ëÀ» Å©°Ô ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. È¿À²ÀûÀÎ Ãß·Â ¹ß»ý ¹× ±Ëµµ Á¶Á¾ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ÃßÁø ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀüÀÚ, ¿¡³ÊÁö ÀúÀå, Åë½Å ¹× ±âŸ »ê¾÷¿¡ ÇýÅÃÀ» °¡Á®´Ù ÁÙ °ÍÀÔ´Ï´Ù. ´ëÇü À§¼ºÀÌ Àü ¼¼°è ¿¬°á ¹× °üÃø ÀÎÇÁ¶ó¿¡ Á¡Á¡ ´õ Áß¿äÇØÁü¿¡ µû¶ó ÷´Ü ÃßÁø ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ °è¼Ó Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¿¬·á È¿À²¼º, ¸ðµâ½Ä ¾ÆÅ°ÅØÃ³, Áö´ÉÇü ¿£Áø °Ç°­ °ü¸® ½Ã½ºÅÛÀÇ °³¹ß·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº ¹ß»ç ¼­ºñ½º, ±Ëµµ ¼­ºñ½º, ¿ìÁÖ »óȲ ÀÎ½Ä µî °ü·Ã ºÐ¾ßÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß´Â È¿À²ÀûÀÎ ÃßÁø ´É·Â¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, Ãß·Â±â ¹× ¼­ºê½Ã½ºÅÛÀÇ ¹ßÀüÀº ÀÓ¹«ÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϰí Àüü ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ģȯ°æ ÃßÁøÁ¦ ¹× Àü±â ÃßÁø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ ÃËÁøµÇ°í, ¹ß»ç Ȱµ¿ÀÇ È¯°æ ¹ßÀÚ±¹À» ÁÙÀ̰í, Àç»ç¿ë °¡´ÉÇÑ ¹ß»çü¸¦ äÅÃÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÃßÁøÁ¦ÀÇ È¿À², ¼º´É, ½Å·Ú¼º ÃÖÀûÈ­¸¦ Áß½ÃÇÏ´Â ½ÃÀåÀº ¿¡³ÊÁö °ø±Þ¾÷ü, ¿¬±¸±â°ü, Ç×°ø¿ìÁÖ¾÷ü µî »ê¾÷À» ÃÊ¿ùÇÑ Çù·Â °ü°è¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çù·Â °ü°è´Â ±â¼ú ¹ßÀüÀ» ÃËÁøÇϰí À§¼ºÀÇ Àü¹ÝÀûÀÎ ¼ö¸í°ú º¹¿ø·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº ±â¼ú Çõ½Å, °æÁ¦ ¼ºÀå ¹× Áß¿äÇÑ ¼¼°è ¿ìÁÖ ±â¹Ý ÀÎÇÁ¶óÀÇ ¹Ì·¡¿¡ Áß¿äÇÑ ÃËÁøÁ¦ÀÔ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­

¼¼ºÐÈ­ : ¼­ºê½Ã½ºÅÛº°

  • È­ÇÐ Ã߷±â
    • ÃßÁøÁ¦ ÅÊÅ©
    • ÆßÇÁ
    • ¿¬·á ¹× »êÈ­Á¦ ¹ëºê
  • Àü±â Ã߷±â
    • ÃßÁøÁ¦ ÅÊÅ©
    • ÆßÇÁ
  • ³Ã°¡½º Ã߷±â
    • °¡½º ÀúÀå ÅÊÅ©
    • ÃßÁø è¹ö/³ëÁñ
    • ÆßÇÁ
  • ÇÏÀ̺긮µå Ã߷±â
    • ÃßÁøÁ¦ ÅÊÅ©
    • ÃßÁø½Ç/³ëÁñ
    • ÆßÇÁ

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀ» µ¶½ÄÇÏ´Â È­ÇÐ Ã߷±â(Á¦Ç°º°)

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå(Á¦Ç°º°)Àº È­ÇÐ Ã߷±Ⱑ ÁÖ·Î °ßÀÎÇϰí ÀÖ½À´Ï´Ù. È­ÇÐ Ã߷±⠺оߴ 2024³â 20¾ï 5,120¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2033³â¿¡´Â 34¾ï 5,200¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ºÎ¹®Àº Áß·®±Þ Åë½Å, Áö±¸ °üÃø, ±¹°¡ ¾Èº¸ ¿ìÁÖ¼±ÀÇ °íÃß·Â, °í½Å·Ú¼º ±Ëµµ »ó½Â, ¿ìÁÖÁ¤°ÅÀå À¯Áöº¸¼ö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. È­ÇÐ Ã߷±â´Â Àü±â ½Ã½ºÅÛ¸¸À¸·Î´Â ´ëÀÀÇÒ ¼ö ¾ø´Â Áï°¢ÀûÀÎ °íÀÓÆÞ½º Á¶Á¾À» ½ÇÇöÇÔÀ¸·Î½á Áö¼ÓÀûÀÎ ÀÓ¹« ¼öÇà ´É·ÂÀ» È®º¸ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. GEO ¹× ½É¿ìÁÖ ÇÁ·Î±×·¥ÀÇ ±Þ¼ÓÇÑ È®ÀåÀ¸·Î È­ÇÐ ÃßÁø·ÂÀÇ ¿ìÀ§´Â ´õ¿í °­È­µÇ°í ÀÖÀ¸¸ç, ÀÓ¹«ÀÇ Àå±âÈ­ ¹× ±Ëµµ ÀÌÅ»ÀÇ ¾ö°ÝÈ­¿¡ ´ëÀÀÇϱâ À§ÇØ ´õ ³ôÀº ÃßÁøÁ¦ ¿ë·®ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ģȯ°æ ÃßÁøÁ¦, ÷°¡Á¦ Á¦Á¶ ¿£Áø ºÎǰ, ÷´Ü ¿¬¼Ò °ü¸® ½Ã½ºÅÛ ºÐ¾ßÀÇ ±â¼ú Çõ½ÅÀº ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ÃËÁøÇϰí È­ÇÐ Ã߷±Ⱑ ÁøÈ­ÇÏ´Â È¿À²¼º, Áö¼Ó°¡´É¼º, ºñ¿ë ¸ñÇ¥¸¦ ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀÇ ÃÖ±Ù µ¿Çâ

  • 2025³â 3¿ù 14ÀÏ, Ursa Major´Â Àü¼ú À§¼º ¹ö½º¸¦ À§ÇÑ ¿ÏÀü ÅëÇÕÇü GEO±Þ ÃßÁø ÆÐŰÁö¸¦ °ø±ÞÇÏ´Â ¾à 1,000¸¸ ´Þ·¯¿¡¼­ 1,500¸¸ ´Þ·¯ ±Ô¸ðÀÇ °è¾àÀ» ü°áÇÏ¿´½À´Ï´Ù.
  • 2023³â 6¿ù 23ÀÏ, Terran Orbital°ú SafranÀº »çÇÁ¶õÀÇ Áö±¸ Àú±Ëµµ À§¼º¿ë Ȧ È¿°ú ÇöóÁ Ã߷±â PPSX00À» Áß½ÉÀ¸·Î ÇÑ Ã·´Ü Àü±â ÃßÁø ÀåÄ¡ÀÇ ¹Ì±¹ ³» »ý»êÀ» Æò°¡Çϱâ À§ÇØ ÆÄÆ®³Ê½ÊÀ» ü°áÇß½À´Ï´Ù. ÀÌ º¥Ã³´Â ±Ëµµ »ó½Â, Á¤°ÅÀå À¯Áö, ±Ëµµ À̵¿À» À§ÇÑ º¸´Ù °¡º±°í È¿À²ÀûÀÎ ½Ã½ºÅÛÀ» ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, ±âÁ¸ È­ÇÐ ¿£Áø¿¡ ºñÇØ ´ëÆøÀûÀÎ Áú·® °¨¼Ò¸¦ ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • 2022³â 7¿ù 26ÀÏ, Å»·¹½º ¾Ë·¹´Ï¾Æ ½ºÆäÀ̽º(Thales Alenia Space)´Â ÀÌÅ»¸®¾Æ ½ºÅ¸Æ®¾÷ MIPRONS¿Í Á¦ÈÞÇÏ¿© ¹°À» µ¿·Â¿øÀ¸·Î ÇÏ´Â À§¼º ÃßÁø ½Ã½ºÅÛÀ» °³¹ßÇß½À´Ï´Ù. MIPRONSÀÇ µ¶ÀÚÀûÀÎ ÀüÇØ °øÁ¤À» Ȱ¿ëÇÑ ÀÌ ±â¼úÀº ¹°À» ¼ö¼Ò¿Í »ê¼Ò·Î ºÐÇØÇÑ ÈÄ ¿£Áø ¿¬¼Ò½Ç¿¡¼­ Àç°áÇÕÇÏ¿© ±âÁ¸ ÃßÁøÁ¦¸¦ ´ëüÇÒ ¼ö Àִ ģȯ°æÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ´ë¾ÈÀ» Á¦½ÃÇÕ´Ï´Ù.
  • 2023³â 7¿ù 12ÀÏ, À̽º¶ó¿¤ÀÇ Àü±â ÃßÁø ½ºÅ¸Æ®¾÷ Space Plasmatics´Â È­ÇÐ ¿¬¼Ò¿¡ ÀÇÁ¸ÇÏ´Â ´ë½Å ÀÌ¿ÂÈ­µÈ °¡½º¸¦ °¡¼ÓÇÏ´Â Çõ½ÅÀûÀÎ ½Ã½ºÅÛÀÎ ÇöóÁ Ã߷±⸦ °ø½Ä ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ¹Ì 2023³â 6¿ù À̽º¶ó¿¤ Ç×°ø¿ìÁÖ »ê¾÷°ú ÆÄÆ®³Ê½Ê °è¾àÀ» ü°áÇÑ ¹Ù ÀÖÀ¸¸ç, IAIÀÇ ´ëÇü À§¼º Ç÷§Æû¿¡ ÀÌ Ã߷±⸦ ÅëÇÕÇÔÀ¸·Î½á ´ëÇü À§¼º ÃßÁø ºÐ¾ß¿¡¼­ IAIÀÇ °æÀï·ÂÀ» °­È­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

Á¦Ç°/Çõ½Å Àü·« : Á¦Ç° À¯ÇüÀº µ¶ÀÚ°¡ Àü ¼¼°èÀûÀ¸·Î »ç¿ë °¡´ÉÇÑ ´Ù¾çÇÑ À¯ÇüÀÇ Á¦Ç°À» ÀÌÇØÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, ÃßÁø ¼­ºê½Ã½ºÅÛ¿¡ ±â¹ÝÇÑ Á¦Ç°º°·Î ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå¿¡ ´ëÇÑ »ó¼¼ÇÑ ÀÌÇØ¸¦ µ¶ÀÚ¿¡°Ô Á¦°øÇÕ´Ï´Ù.

¼ºÀå/¸¶ÄÉÆÃ Àü·« ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå¿¡¼­´Â »ç¾÷ È®Àå, Á¦ÈÞ, Çù·Â, ÇÕÀÛ ÅõÀÚ µî ½ÃÀå¿¡¼­ »ç¾÷À» Àü°³ÇÏ´Â ÁÖ¿ä ±â¾÷µéÀÇ ÁÖ¿ä °³Ã´À» º¼ ¼ö ÀÖ½À´Ï´Ù. °¢ »ç°¡ ¼±È£ÇÏ´Â Àü·«Àº ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϱâ À§ÇÑ ½Ã³ÊÁö Ȱµ¿ÀÔ´Ï´Ù.

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº ¼¼°è ¾÷°è ¼±µÎ ¾÷üµéÀÇ Ä¡¿­ÇÑ °æÀïÀÌ Æ¯Â¡ÀÔ´Ï´Ù. L3Harris Technologies, Inc., Airbus, Safran, Boeing, Moog Inc., Northrop Grumman µî ÁÖ¿ä ±â¾÷µéÀº È­ÇÐ, Àü±â, ÇÏÀ̺긮µå ÃßÁø ¼Ö·ç¼ÇÀÇ Á¾ÇÕÀûÀÎ Æ÷Æ®Æú¸®¿À¸¦ Á¦°øÇÔÀ¸·Î½á ÀÌ ºÐ¾ß¸¦ Áö¹èÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¸¦ Áö¹èÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº À§¼ºÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ°í ¼º´É°ú ÀÓ¹« ½Å·Ú¼ºÀ» ³ôÀ̱â À§ÇØ °íÈ¿À² Ã߷±⠾ÆÅ°ÅØÃ³, Â÷¼¼´ë Åͺ¸ ÆßÇÁ, ûÁ¤ ÃßÁøÁ¦ È­ÇÐÁ¦Ç°À» Á¦°øÇϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù.

´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀü°ú °íÈ¿À² Àü±â Ã߷±â, ģȯ°æ ÃßÁøÁ¦, žç Àü±â ÃßÁø ¾ÆÅ°ÅØÃ³¸¦ µµÀÔÇÏ´Â ½Å±Ô »ç¾÷ÀÚÀÇ ÁøÀÔÀ¸·Î ´õ¿í Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªµ¿ÀûÀΠȯ°æÀ¸·Î ÀÎÇØ ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀåÀº ³ôÀº °æÀï·ÂÀ» À¯ÁöÇϰí ÀÖÀ¸¸ç, È¿À²¼º, È®À强, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ »ç¾÷ÀÚÀÇ ¿ä±¸»çÇ×ÀÌ ÁøÈ­ÇÔ¿¡ µû¶ó À§¼º °¡Ä¡»ç½½ Àü¹Ý¿¡ °ÉÃÄ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

ÀÌ ½ÃÀå¿¡ ÁøÃâÇÑ À¯¸í ±â¾÷µéÀº ´ÙÀ½°ú °°½À´Ï´Ù:

  • Boeing
  • L3Harris Technologies, Inc.
  • Airbus
  • Safran
  • QinetiQ
  • Nammo AS
  • IHI Corporation
  • ISRO
  • Lanzhou Institute of Physics
  • OKB Fakel
  • Rafael Advanced Defense System Ltd.
  • Keldysh Research Center
  • Moog Inc.
  • Northrop Grumman
  • OHB SE

¼¼°èÀÇ ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ½ÃÀå °³¿ä¿Í ÇÔ²² ¼­ºê½Ã½ºÅÛº°, ±¹°¡º° µ¿Çâ, ½ÃÀå ÁøÃâ ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

ÁÖ¿ä ¿ä¾à

Á¦1Àå Á¦Ç°

  • ½ÃÀå °³¿ä
    • Ã߷±â À¯Çüº° ÆßÇÁ ¼º´É ºÐ¼®
    • Ãß·Â±â ÆßÇÁ ½Å±â¼ú°ú Çõ½Å
    • Ãß·Â±â ÆßÇÁ »ýŰèÀÇ Àü·«Àû ÆÄÆ®³Ê½Ê°ú Çù¾÷
  • ¼¼°èÀÇ ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå(¼­ºê½Ã½ºÅÛº°)
    • ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå ¼ö¿ä ºÐ¼®(¼­ºê½Ã½ºÅÛº°), °¡Ä¡ ¹× ¼ö·® µ¥ÀÌÅÍ
    • È­ÇÐ Ã߷±â
    • Àü±â Ã߷±â
    • ³Ã°¡½º Ã߷±â
    • ÇÏÀ̺긮µå Ã߷±â

Á¦2Àå Áö¿ª

  • ¼¼°èÀÇ ´ëÇü À§¼º ÃßÁø ½Ã½ºÅÛ ½ÃÀå(Áö¿ªº°)
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ±âŸ Áö¿ª

Á¦3Àå Ã߷±â¿Í ±ÔÁ¦ ºÐ¼®

  • Ã߷±⠺м®(¿ëµµº°)
    • ÇÏÀ̺긮µå Ã߷±â
    • ³Ã°¡½º Ã߷±â
    • È­ÇÐ Ã߷±â(°í¿Â °¡½º ¹× ¿Â°¡½º)
    • Àü±â Ã߷±â
    • ¾Ö³Î¸®½ºÆ®ÀÇ °üÁ¡
  • ±ÔÁ¦ ºÐ¼®(±¹°¡º°)
    • ¹Ì±¹
    • ¿µ±¹
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • Àεµ
    • Áß±¹
    • ·¯½Ã¾Æ

Á¦4Àå Áß¿äÇÑ °í°´ Á¤º¸

Á¦5Àå ¼ºÀå ±âȸ¿Í Á¦¾È

  • ¼ºÀå ±âȸ
    • Â÷¼¼´ë Ãß·Â±â ÆßÇÁ¸¦ À§ÇÑ Àç·á°úÇÐÀÇ Áøº¸
    • AI ±¸µ¿Çü ¿¹Áöº¸Àü°ú È¿À² ÃÖÀûÈ­ÀÇ ÅëÇÕ
    • ½ÅÈï ¿ìÁÖ ¹× »ó¾÷ º¥Ã³ÀÇ ½ÃÀå ¼ö¿ä È®´ë
    • ¿ìÁÖ ¿ëµµ¿ë Áö¼Ó°¡´ÉÇϰí ģȯ°æÀûÀÎ ÆßÇÁ ¼Ö·ç¼Ç
    • ´ëÇü À§¼º ±Ëµµ ÀÌ¼Û ¹× ±âµ¿À» À§ÇÑ Å¾ç Àü±â ÃßÁø ½Ã½ºÅÛ °³¹ß
    • ¿ìÁÖ ±â¹Ý Á¤º¸ ¼öÁý¡¤°¨½Ã¡¤Á¤Âû(ISR) ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

Á¦6Àå Á¶»ç ¹æ¹ý

ksm 25.08.04

This report can be delivered within 1 working day.

Introduction of Large Satellite Propulsion System Market

The large satellite propulsion system market encompasses a broad spectrum of in-space thrust technologies, including chemical, electric, cold-gas, and hybrid thrusters, all of which are essential for orbit insertion, station-keeping, and end-of-life maneuvers of heavyweight satellites. The large satellite propulsion system market has been driven by the need for reliable, high-efficiency propulsion solutions that can support the surge in high-throughput communications satellites, advanced Earth-observation platforms, and expanding navigation constellations, each requiring precise orbit-raising and extended station-keeping capabilities. Innovations in propulsion, such as high-thrust electric Hall-effect thrusters, green-propellant chemical engines, and modular hybrid stages, are responding to the rising need among large satellite operators for scalable, cost-efficient, and sustainable propulsion solutions. The large satellite propulsion system market is highly competitive, with key players such as Boeing, Aerojet Rocketdyne, Airbus, Safran, and Northrop Grumman leading the industry. Additionally, heightened emphasis on propellant efficiency, orbital-debris mitigation, and mission flexibility is reshaping buyer priorities, spurring investment in next-generation electric and reusable propulsion architectures. Consequently, the large satellite propulsion system market remains highly dynamic, continually evolving in response to rapid technological innovation and the escalating performance demands of modern space missions.

Market Introduction

The large satellite propulsion system market encompasses a variety of subsystems, including chemical thrusters, electric thrusters, cold gas systems, and hybrid engines, all critical for ensuring reliable maneuvering and station keeping of heavyweight spacecraft. As demand for high throughput communications, Earth observation, and navigation capacity grows, the need for efficient and dependable space propulsion rises. Innovations in propulsion architectures, such as high-power Hall-effect thrusters, green propellant chemical engines, and modular hybrid stages, are gaining prominence because they deliver scalable and reliable required change in orbital velocity for large satellites. Industry leaders such as Boeing, Aerojet Rocketdyne, Airbus, Safran, and Northrop Grumman dominate the market, continually advancing their technology portfolios to remain competitive. Moreover, an increasing focus on sustainability and mission cost efficiency is driving investment in eco-friendly propellants and high-efficiency electric propulsion systems. The large satellite propulsion system market is evolving rapidly to meet the rising demands of modern space missions and the growing need for efficient orbital maneuvering.

Industrial Impact

The large satellite propulsion system market has a significant industrial impact, driving substantial economic activity and employment within the aerospace, energy, and advanced manufacturing sectors. The demand for efficient thrust generation and orbital maneuvering solutions fosters innovation in propulsion technologies, benefiting industries such as electronics, energy storage, and telecommunications. As large satellites become increasingly vital for global connectivity and observation infrastructure, the need for advanced propulsion systems continues to grow, leading to developments in fuel efficiency, modular architectures, and intelligent engine-health management systems.

Additionally, the large satellite propulsion system market supports the growth of related sectors, including launch services, on-orbit servicing, and space situational awareness. These sectors rely heavily on efficient propulsion capability, where advancements in thrusters and subsystems play a crucial role in ensuring mission reliability and reducing overall operational costs. The increasing focus on sustainability has been prompting investments in green propellants and electric propulsion solutions, reducing the environmental footprint of launch activities and encouraging the adoption of reusable launch vehicles.

Moreover, the market's emphasis on optimizing propulsion efficiency, performance, and reliability drives collaborations across industries, including energy providers, research institutions, and aerospace companies. These collaborations enhance technological advancements, improving satellites' overall longevity and resilience. Overall, the large satellite propulsion system market is a key driver of technological innovation, economic growth, and the future of critical global space-based infrastructure.

Market Segmentation:

Segmentation: By Subsystem

  • Chemical Thruster
    • Propellant Tank
    • Pump
    • Fuel and Oxidizer Valve
  • Electric Thruster
    • Propellant Tank
    • Pump
  • Cold Gas Thruster
    • Gas Storage Tank
    • Propulsion Chamber/Nozzle
    • Pump
  • Hybrid Thruster
    • Propellant Tank
    • Propulsion Chamber/Nozzle
    • Pump

Chemical Thrusters to Dominate the Large Satellite Propulsion System Market (by Product)

The large satellite propulsion system market, by product, is predominantly driven by chemical thrusters. The chemical thrusters segment was valued at $2,051.2 million in 2024 and is projected to reach $3,452.0 million by 2033. This segment has been experiencing remarkable growth due to increasing demand for high-thrust, reliable orbit-raising, and station-keeping solutions in heavyweight communications, Earth-observation, and national security spacecraft. Chemical thrusters play a crucial role in ensuring continuous mission capability by delivering immediate, high-impulse maneuvers that electric systems alone cannot match. The dominance of chemical propulsion has been further reinforced by the rapid expansion of GEO and deep-space programs, which require higher propellant capacities to accommodate extended mission durations and stricter end-of-life de-orbit mandates. Additionally, innovations in green propellants, additive-manufactured engine components, and advanced combustion management systems have driven segment growth, enabling chemical thrusters to meet evolving efficiency, sustainability, and cost targets.

Recent Developments in the Large Satellite Propulsion System Market

  • On March 14, 2025, Ursa Major secured approximately $10.0 to $15.0 million contract to supply fully integrated GEO-class propulsion packages for tactical satellite buses, boosting on-orbit maneuverability, collision-avoidance capability, and controlled de-orbit to meet the demand for more agile, responsive space operations.
  • On June 23, 2023, Terran Orbital and Safran formed a partnership to assess U.S. production of advanced electric propulsion centered on Safran's PPSX00 Hall-effect plasma thruster for low-Earth-orbit satellites. The venture targets lighter, more efficient systems for orbit raising, station-keeping, and orbital transfers, delivering significant mass savings over conventional chemical engines.
  • On July 26, 2022, Thales Alenia Space partnered with Italian startup MIPRONS to create a water-powered satellite propulsion system. Leveraging MIPRONS' proprietary electrolysis process, the technology splits water into hydrogen and oxygen, then recombines them in the engine's combustion chamber, providing a greener and more cost-effective alternative to traditional propellants.
  • On July 12, 2023, Space Plasmatics, the Israeli electric-propulsion start-up, formally unveiled its plasma thrusters, an innovative system that accelerates ionized gas instead of relying on chemical combustion. The company had already signed a partnership agreement with Israel Aerospace Industries in June 2023 to integrate these thrusters into IAI's heavy-satellite platforms, a move that strengthens IAI's competitive position in large-satellite propulsion.

How can this report add value to an organization?

Product/Innovation Strategy: The product segment helps the reader understand the different types of products available globally. Moreover, the study provides the reader with a detailed understanding of the large satellite propulsion system market by products based on propulsion subsystems.

Growth/Marketing Strategy: The large satellite propulsion system market has seen major development by key players operating in the market, such as business expansion, partnership, collaboration, and joint venture. The favored strategy for the companies has been synergistic activities to strengthen their position in the large satellite propulsion system market.

Methodology: The research methodology design adopted for this specific study includes a mix of data collected from primary and secondary data sources. Both primary resources (key players, market leaders, and in-house experts) and secondary research (a host of paid and unpaid databases), along with analytical tools, have been employed to build the predictive and forecast models.

Data and validation have been taken into consideration from both primary sources as well as secondary sources.

Key Considerations and Assumptions in Market Engineering and Validation

  • Detailed secondary research has been done to ensure maximum coverage of manufacturers/suppliers operational in a country.
  • To a certain extent, exact revenue information has been extracted for each company from secondary sources and databases. Revenues specific to product/service/technology were then estimated based on fact-based proxy indicators as well as primary inputs.
  • The average selling price (ASP) has been calculated using the weighted average method based on the classification.
  • The currency conversion rate has been taken from the historical exchange rate of Oanda and/or other relevant websites.
  • Any economic downturn in the future has not been taken into consideration for the market estimation and forecast.
  • The base currency considered for the market analysis is US$. Currencies other than the US$ have been converted to the US$ for all statistical calculations, considering the average conversion rate for that particular year.
  • The term "product" in this document may refer to "subsystem" or "thruster" as and where relevant.

Primary Research

The primary sources involve large satellite propulsion system industry experts, including large satellite propulsion system product providers. Respondents such as CEOs, vice presidents, marketing directors, and technology and innovation directors have been interviewed to obtain and verify both qualitative and quantitative aspects of this research study.

Secondary Research

This study involves the usage of extensive secondary research, company websites, directories, and annual reports. It also makes use of databases, such as Businessweek and others, to collect effective and useful information for a market-oriented, technical, commercial, and extensive study of the global market. In addition to the data sources, the study has been undertaken with the help of other data sources and websites.

Secondary research was done to obtain critical information about the industry's value chain, the market's monetary chain, revenue models, the total pool of key players, and the current and potential use cases and applications.

Key Market Players and Competition Synopsis

The large satellite propulsion system market has been characterized by intense competition among several global industry leaders. Major companies such as L3Harris Technologies, Inc., Airbus, Safran, Boeing, Moog Inc., and Northrop Grumman dominate this space by offering a comprehensive portfolio of chemical, electric, and hybrid propulsion solutions. These firms invest heavily in research and development to deliver higher-efficiency thruster architectures, next-generation turbopumps, and cleaner propellant chemistries aimed at boosting performance and mission reliability while prolonging satellite operational life.

The large satellite propulsion system market has been further shaped by ongoing technological advances and the entrance of new players, introducing high-efficiency electric thrusters, green propellants, and solar-electric propulsion architectures. This dynamic environment keeps the large satellite propulsion system market highly competitive and responsive to evolving operator requirements for efficiency, scalability, and sustainability while driving continuous innovation across the satellite value chain.

Some prominent names established in this market are:

  • Boeing
  • L3Harris Technologies, Inc.
  • Airbus
  • Safran
  • QinetiQ
  • Nammo AS
  • IHI Corporation
  • ISRO
  • Lanzhou Institute of Physics
  • OKB Fakel
  • Rafael Advanced Defense System Ltd.
  • Keldysh Research Center
  • Moog Inc.
  • Northrop Grumman
  • OHB SE

Table of Contents

Executive Summary

Market/Product Definition

1 Product

  • 1.1 Market Overview
    • 1.1.1 Analysis of Pump Performance across Thruster Types
    • 1.1.2 Emerging Technologies and Innovations in Thruster Pumps
      • 1.1.2.1 3D-Printed Pump Components and Advanced Materials
      • 1.1.2.2 AI and IoT-Driven Predictive Maintenance
      • 1.1.2.3 Sustainability and Energy-Efficiency in Pump Design
    • 1.1.3 Strategic Partnerships and Collaborations in the Thruster Pump Ecosystem
  • 1.2 Global Large Satellite Propulsion System Market (by Subsystem)
    • 1.2.1 Demand Analysis of Large Satellite Propulsion System Market (by Subsystem), Value and Volume Data
    • 1.2.2 Chemical Thruster
      • 1.2.2.1 Propellant Tank
      • 1.2.2.2 Pump
      • 1.2.2.3 Fuel and Oxidizer Valve
    • 1.2.3 Electric Thruster
      • 1.2.3.1 Propellant Tank
      • 1.2.3.2 Pump
    • 1.2.4 Cold Gas Thrusters
      • 1.2.4.1 Gas Storage Tank
      • 1.2.4.2 Propulsion Chamber/Nozzle
      • 1.2.4.3 Pump
    • 1.2.5 Hybrid Thruster
      • 1.2.5.1 Propellant Tank
      • 1.2.5.2 Propulsion Chamber/Nozzle
      • 1.2.5.3 Pump

2 Regions

  • 2.1 Global Large Satellite Propulsion System Market (by Region)
    • 2.1.1 North America
      • 2.1.1.1 North America Large Satellite Propulsion System Market (by Subsystem)
      • 2.1.1.2 North America (by Country)
        • 2.1.1.2.1 U.S.
          • 2.1.1.2.1.1 U.S. Large Satellite Propulsion System Market (by Subsystem)
        • 2.1.1.2.2 Canada
          • 2.1.1.2.2.1 Canada Large Satellite Propulsion System Market (by Subsystem)
    • 2.1.2 Europe
      • 2.1.2.1 Europe Large Satellite Propulsion System Market (by Subsystem)
      • 2.1.2.2 Europe (by Country)
        • 2.1.2.2.1 France
          • 2.1.2.2.1.1 France Large Satellite Propulsion System Market (by Subsystem)
        • 2.1.2.2.2 Germany
          • 2.1.2.2.2.1 Germany Large Satellite Propulsion System Market (by Subsystem)
        • 2.1.2.2.3 U.K.
          • 2.1.2.2.3.1 U.K. Large Satellite Propulsion System Market (by Subsystem)
        • 2.1.2.2.4 Rest-of-Europe
          • 2.1.2.2.4.1 Rest-of-Europe Large Satellite Propulsion System Market (by Subsystem)
    • 2.1.3 Asia-Pacific
      • 2.1.3.1 Asia-Pacific Large Satellite Propulsion System Market (by Subsystem)
      • 2.1.3.2 Asia-Pacific (by Country)
        • 2.1.3.2.1 China
          • 2.1.3.2.1.1 China Large Satellite Propulsion System Market (by Subsystem)
        • 2.1.3.2.2 India
          • 2.1.3.2.2.1 India Large Satellite Propulsion System Market (by Subsystem)
        • 2.1.3.2.3 Japan
          • 2.1.3.2.3.1 Japan Large Satellite Propulsion System Market (by Subsystem)
        • 2.1.3.2.4 Rest-of-Asia-Pacific
          • 2.1.3.2.4.1 Rest-of-Asia-Pacific Large Satellite Propulsion System Market (by Subsystem)
    • 2.1.4 Rest-of-the-World
      • 2.1.4.1 Rest-of-the-World Large Satellite Propulsion System Market (by Subsystem)
      • 2.1.4.2 Rest-of-the-World (by Region)
        • 2.1.4.2.1 Middle East and Africa
          • 2.1.4.2.1.1 Middle East and Africa Large Satellite Propulsion System Market (by Subsystem)
        • 2.1.4.2.2 Latin America
          • 2.1.4.2.2.1 Latin America Large Satellite Propulsion System Market (by Subsystem)

3 Thruster and Regulatory Analysis

  • 3.1 Analysis of Thrusters (by Application)
    • 3.1.1 Hybrid Thruster
      • 3.1.1.1 Maneuvering and Attitude Control
      • 3.1.1.2 End-of-Life Deorbiting
      • 3.1.1.3 Orbit Transfer
      • 3.1.1.4 Docking
      • 3.1.1.5 Station Keeping (Impulse Bits)
      • 3.1.1.6 In-Orbit Transportation
    • 3.1.2 Cold Gas Thruster
      • 3.1.2.1 Maneuvering and Attitude Control of Satellites
      • 3.1.2.2 Astronaut Maneuvering (Spacewalk)
      • 3.1.2.3 End-of-Life Deorbiting
      • 3.1.2.4 Reaction Wheel Unloading
      • 3.1.2.5 Orbit Transfer
      • 3.1.2.6 Launch Vehicle Roll Control
    • 3.1.3 Chemical Thruster (Hot and Warm Gas)
      • 3.1.3.1 Maneuvering and Attitude Control
      • 3.1.3.2 Landing Control for Interplanetary Landers
      • 3.1.3.3 Launch Vehicle Roll Control
    • 3.1.4 Electric Thruster
      • 3.1.4.1 Maneuvering and Orientation Control
      • 3.1.4.2 Primary Propulsion for Deep Space Missions
      • 3.1.4.3 Attitude Control for Microsatellites
      • 3.1.4.4 Station Keeping (Impulse Bits)
    • 3.1.5 Analyst Perspective
  • 3.2 Regulatory Analysis (by Country)
    • 3.2.1 U.S.
      • 3.2.1.1 International Traffic in Arms Regulations (ITAR)
      • 3.2.1.2 U.S. Munitions List (USML) Category XV(e)(12)
      • 3.2.1.3 Export Control Classification Number (ECCN) 9A515
    • 3.2.2 U.K.
      • 3.2.2.1 The Space Industry Regulations 2021
      • 3.2.2.2 European Space Agency (ESA) Industrial Policy Committee
      • 3.2.2.3 European Cooperation for Space Standardization/Slovenian Institute for Standardization (SIST)
        • 3.2.2.3.1 SIST EN 16603-35:2014
        • 3.2.2.3.2 ECSS-E-ST-35-06
    • 3.2.3 France
      • 3.2.3.1 Centre National D'Etudes Spatiales (CNES)
    • 3.2.4 Germany
      • 3.2.4.1 Germany Federal Office of Economics and Export Control (BAFA)
        • 3.2.4.1.1 Regulation (EU) 2021/821 - Dual-Use Export Controls
    • 3.2.5 India
      • 3.2.5.1 Indian Space Policy 2023
    • 3.2.6 China
      • 3.2.6.1 China Space Standard System
    • 3.2.7 Russia
      • 3.2.7.1 Russian Federation Federal Law
        • 3.2.7.1.1 GOST R 52925-2018

4 Key Customer Information

  • 4.1 Key Customer Information

5 Growth Opportunities and Recommendations

  • 5.1 Growth Opportunities
    • 5.1.1 Advancements in Material Science for Next-Generation Thruster Pumps
    • 5.1.2 Integration of AI-Driven Predictive Maintenance and Efficiency Optimization
    • 5.1.3 Expanding Market Demand in Emerging Space and Commercial Ventures
    • 5.1.4 Sustainable and Eco-Friendly Pump Solutions for Space Applications
    • 5.1.5 Development of Solar Electric Propulsion System for Large Satellite Orbital Transfer and Maneuver
    • 5.1.6 Growing Demand for Space-Based Intelligence, Surveillance, and Reconnaissance (ISR) Solutions

6 Research Methodology

  • 6.1 Data Sources
    • 6.1.1 Primary Data Sources
    • 6.1.2 Secondary Data Sources
  • 6.2 Data Triangulation
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦