½ÃÀ庸°í¼­
»óǰÄÚµå
1786312

¼¼°èÀÇ ÀÚ»ê ¼º°ú °ü¸®(APM) ½ÃÀå : Áö¿ªº° ºÐ¼® - ÃÖÁ¾ ¿ëµµº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, ¼Ö·ç¼Çº°, ±â´Éº°, Áö¿ªº° ºÐ¼® ¹× ¿¹Ãø(2025-2035³â)

Asset Performance Management Market - A Global and Regional Analysis: Focus on Market by End-use Application, Solution, Functionality, and Region - Analysis and Forecast, 2025-2035

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: BIS Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 1-5ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ÀÚ»ê ¼º°ú °ü¸®(APM) ½ÃÀå ±Ô¸ð´Â 2024³â 99¾ï 8,000¸¸ ´Þ·¯¿¡¼­ 2035³â¿¡´Â 273¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀ̸ç, ¿¹Ãø ±â°£(2025-2035³â) CAGR 9.34%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÀÚ»ê ¼º°ú °ü¸®(APM) ½ÃÀåÀº Àü·Â¸Á¿¡¼­ÀÇ ½Å·Ú¼º Çâ»ó, ¿¹Áöº¸Àü, ¿î¿µ È¿À²È­ÀÇ ¿ä±¸¿¡ ÈûÀÔ¾î ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. IoT ¼¾¼­, µðÁöÅÐ Æ®À©, ¸Ó½Å·¯´×ÀÇ Áøº¸·Î ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× °íÀåÀÇ Á¶±â ¹ß°ßÀ» °¡´ÉÇÏ°Ô ÇÏ¿© °¡µ¿ ÁßÁö ½Ã°£À» ÁÙÀ̰í ÀÚ»ê ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÏ¹Ì Àü·Â ½Å·Ú¼º À§¿øÈ¸(NERC)¿Í °°Àº ¼ÛÀü¸ÁÀÇ Çö´ëÈ­¿Í ź¼Ò °¨Ãà¿¡ °üÇÑ ±ÔÁ¦ÀÇ Àǹ«È­´Â äÅÃÀ» ´õ¿í ÃËÁøÇÕ´Ï´Ù. Àü·«Àû ÆÄÆ®³Ê½ÊÀº ƯÈ÷ ³ëÈÄÈ­µÈ ÀÎÇÁ¶ó ¹× ½º¸¶Æ® °³Æó ÀåÄ¡ ½Ã½ºÅÛÀ» À§ÇÑ ºñħÀÔ ¸ð´ÏÅ͸µ ¹× Ŭ¶ó¿ìµå ºÐ¼®ÀÇ Çõ½ÅÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. °úÁ¦´Â ³ôÀº Ãʱ⠺ñ¿ë, µ¥ÀÌÅÍ ÅëÇÕ, »çÀ̹ö º¸¾È À§Çè µîÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¿¡µµ ºÒ±¸Çϰí APMÀº ÀÚ»ê ¼º´É ÃÖÀûÈ­, ¼ÛÀü¸Á ¾ÈÁ¤¼º È®º¸, Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ Àüȯ Áö¿ø¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ºñ¿ë Àý°¨°ú ȸº¹·Â Çâ»óÀ» ¸ñÇ¥·Î ÇÏ´Â Àü·Âȸ»ç¿¡ À־ ÇʼöÀûÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
¿¹Ãø ±â°£ 2025-2035³â
Æò°¡(2025³â) 112¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø(2035³â) 273¾ï 7,000¸¸ ´Þ·¯
CAGR 9.34%

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå ¼­¹®

°³Æó±â, º¯¾Ð±â, °¡»ó ¼ÛÀü¼±ÀÇ ÀÚ»ê ¼º°ú °ü¸®(APM) ½ÃÀåÀº È¿À²ÀûÀÌ°í ½Å·Ú¼º ÀÖ´Â Àü·Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ ¹è°æÀ¸·Î Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT), ÀΰøÁö´É(AI), ¸Ó½Å·¯´× µî ±â¼úÀÇ Áøº¸·Î Áß¿äÇÑ ÀÚ»êÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ¿¹Áöº¸ÀüÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÀáÀçÀûÀÎ °íÀåÀÇ Á¶±â ¹ß°ßÀ» ¿ëÀÌÇÏ°Ô Çϰí, °èȹµÇÁö ¾ÊÀº Á¤ÀüÀ» ÁÙÀ̰í, ÀÚ»êÀÇ ¼ö¸íÁֱ⸦ ¿¬ÀåÇÕ´Ï´Ù. ±ÔÁ¦ ¾Ð·Â°ú Áö¼Ó°¡´É¼ºÀÇ Çʿ伺Àº À¯Æ¿¸®Æ¼ ±â¾÷ÀÌ ¿î¿µ ÃÖÀûÈ­ ¹× ȯ°æ ±âÁØ Áؼö¸¦ ¸ñÇ¥·Î ÇÏ´Â APM ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀÌ »ê¾÷¿¡ ¹ÌÄ¡´Â ¿µÇâ

ÀÚ»ê ¼º°ú °ü¸®(APM)´Â ÀåºñÀÇ °ÇÀü¼ºÀ» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µ ¹× ºÐ¼®ÇÏ°í ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¿¹Á¤ ¿ÜÀÇ ´Ù¿îŸÀÓÀ» ÁÙÀ̰í ÀÚ»êÀÇ ¼ö¸íÀ» ´Ã·Á »ê¾÷ÀÇ È¿À²È­¸¦ ÃßÁøÇÕ´Ï´Ù. ¼º´É°ú À¯Áö º¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­ÇÔÀ¸·Î½á APMÀº ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ°í ¾ÈÀü¼º°ú ÄÄÇöóÀ̾𽺸¦ Çâ»ó½ÃŰ°í °øÀå ÀüüÀÇ »ý»ê¼ºÀ» ³ôÀÔ´Ï´Ù. ¿¹¸¦ µé¾î ½´³ªÀÌ´õ ÀÏ·ºÆ®¸¯ÀÇ APM-as-a-Service ¼Ö·ç¼ÇÀº ÇÁ·Î¾×Ƽºê ¸ð´ÏÅ͸µ ¹× µ¥ÀÌÅÍ ±¸µ¿ ÀλçÀÌÆ®·Î º¯¾Ð±â ¼Õ½ÇÀ» ¹æÁöÇϰí ÃÖ´ë 100¸¸ ´Þ·¯¸¦ Àý¾àÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ APM ½Ã½ºÅÛÀº À¯Æ¿¸®Æ¼ ±â¾÷ÀÌ ¸®¾×Ƽºê À¯Áö º¸¼ö Àü·«¿¡¼­ ÄÁµð¼Ç ±â¹Ý À¯Áö º¸¼ö Àü·«À¸·Î ÀüȯÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ¿© ÀÚ»ê ¼ö¸í Áֱ⸦ ¿¬ÀåÇÏ°í ¿î¿µ È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº À¯Áö º¸¼ö ºñ¿ëÀ» ÁÙÀϻӸ¸ ¾Æ´Ï¶ó ÀÚ¿ø ¼Òºñ¸¦ ÃÖ¼ÒÈ­ÇÏ°í ±×¸®µåÀÇ Åº·Â¼ºÀ» °­È­ÇÔÀ¸·Î½á Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù. Àü¹ÝÀûÀ¸·Î APM ½Ã½ºÅÛÀº ¿¡³ÊÁö ÀÎÇÁ¶ó¸¦ Çö´ëÈ­ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â °ø±ÞÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­

¼¼ºÐÈ­ 1 : ÃÖÁ¾ ¿ëµµº°

  • 33kV ÀÌ»óÀÇ º¯¾Ð±â
  • 33kV ÀÌ»óÀÇ °³Æó±â
  • °¡»ó ¼ÛÀü¼±

°¡»ó ¼ÛÀü¼±ÀÌ ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀ» ¸®µå : ÃÖÁ¾ ¿ëµµº°

°¡»ó ¼ÛÀü¼±Àº ±¤´ëÇÑ Áö¿ª¿¡ °ÉÄ£ ¼ÛÀü ¹× ¹èÀü¿¡¼­ ±âº»ÀûÀÎ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ÃÖÁ¾ ¿ëµµ ºÎ¹®ÀÌ ÀÚ»ê ¼º´É °ü¸® ½ÃÀåÀ» ¼±µµÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. °¡»ó ¼ÛÀü¼±Àº Àü·Â ÀÎÇÁ¶óÀÇ Áß¿äÇÑ ±¸¼º¿ä¼ÒÀ̸ç, Á¾Á¾ ¾ö°ÝÇÑ ÁöÇü¿¡ °ÉÃÄ ±ØÇÑÀÇ ³¯¾¾, ºÎ½Ä, ¹°¸®Àû ¼Õ»ó°ú °°Àº ȯ°æ ½ºÆ®·¹½º ¿äÀο¡ ÀÚ»êÀ» ³ëÃâÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãë¾à¼ºÀ¸·Î ÀÎÇØ °íÀåÀ̳ª Àå¾Ö°¡ ¹ß»ýÇÒ °¡´É¼ºÀÌ ³ô¾ÆÁö¸ç, ±×¸®µåÀÇ ½Å·Ú¼º°ú ¾ÈÀü¼ºÀ» È®º¸Çϱâ À§Çؼ­´Â ÇÁ·Î¾×Ƽºê ¸ð´ÏÅ͸µ°ú À¯Áöº¸¼ö°¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÚ»ê ¼º°ú °ü¸® ¼Ö·ç¼ÇÀ» ÅëÇØ À¯Æ¿¸®Æ¼ ±â¾÷Àº ½Ç½Ã°£ µ¥ÀÌÅÍ¿Í °í±Þ ºÐ¼®À» Ȱ¿ëÇÑ ¿¹Áö º¸Àü Àü·«À» ±¸ÇöÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â Á¤Àü ¹× À§ÇèÀ¸·Î È®ÀåÇϱâ Àü¿¡ ÀáÀçÀûÀÎ ¹®Á¦¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. IoT ±â¼ú°ú ¿ø°Ý °¨Áö µµ±¸ÀÇ ÅëÇÕÀº °¡»ó ¼ÛÀü¼±ÀÇ Áö¼ÓÀûÀÎ »óÅ ¸ð´ÏÅ͸µÀ» ¿ëÀÌÇÏ°Ô Çϸç, ¿î¿µÀÚ´Â À¯Áöº¸¼ö ÀÏÁ¤ ÃÖÀûÈ­, ¿î¿µ ºñ¿ë Àý°¨, ÀÚ»ê ¼ö¸í ¿¬ÀåÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ ±ÔÁ¦ ±âÁØÀÌ ¾ö°ÝÇØÁö°í Áö¼Ó °¡´ÉÇϸç ź·ÂÀûÀÎ ¿¡³ÊÁö ½Ã½ºÅÛÀÌ Áß¿äÇØÁö¸é¼­ À¯Æ¿¸®Æ¼ ȸ»ç´Â ÄÄÇöóÀ̾𽺠¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ°í ±×¸®µå Àü¹ÝÀÇ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ °í±Þ APM ±â¼úÀ» äÅÃÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀο¡ ±Ù°ÅÇÏ¸é º¹ÀâÈ­ÇÏ´Â ¿¡³ÊÁö Á¤¼¼ °¡¿îµ¥ ÀÌÇØ°ü°èÀÚ°¡ ¿î¿µ È¿À²°ú ½Å·Ú¼º ¹× ¾ÈÀü¼ºÀÇ ¾ç¸³À» ¿ä±¸Çϰí Àֱ⠶§¹®¿¡ °¡»ó ¼ÛÀü¼± ¿ëµµ ºÐ¾ß´Â ¿©ÀüÈ÷ ÀÚ»ê ¼º´É °ü¸®¿¡ ´ëÇÑ ÅõÀÚ ¿ì¼±¼øÀ§°¡ ³ô½À´Ï´Ù.

¼¼ºÐÈ­ 2 : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • À¯Æ¿¸®Æ¼ ºÎ¹®
  • ¼®À¯ ¹× °¡½º »ê¾÷
  • ±¤¾÷
  • ö°­¾÷
  • µ¥ÀÌÅͼ¾ÅÍ
  • ±âŸ

À¯Æ¿¸®Æ¼ ºÎ¹®ÀÌ ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀ» ¼±µµ : ÃÖÁ¾ ¿ëµµ »ê¾÷º°

ÃÖÁ¾ ¿ëµµ »ê¾÷À» ¹ÙÅÁÀ¸·Î Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ ¹× ÃÖÀûÈ­¸¦ ÇÊ¿ä·Î ÇÏ´Â º¹ÀâÇÏ°í ±¤´ëÇÑ ÀÎÇÁ¶ó¿¡ ´ëÇÑ Áß¿äÇÑ ÀÇÁ¸À¸·Î ÀÎÇØ À¯Æ¿¸®Æ¼ ºÎ¹®Àº ÀÚ»ê ¼º°ú °ü¸®(APM) ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÙ½É °øÀÍ»ç¾÷ ȸ»ç´Â ¹ßÀü¼Ò, ¼ÛÀü¼±, ¹èÀü½Ã½ºÅÛ µîÀÇ ¾öû³­ ÀÚ»ê ³×Æ®¿öÅ©¸¦ ¿î¿µÇϰí ÀÖÀ¸¸ç, ¸ðµÎ Áß´Ü ¾ø´Â ¼­ºñ½º¸¦ À¯ÁöÇϰí Áõ°¡ÇÏ´Â ¿¡³ÊÁö ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. °¡µ¿ ÁßÁö ½Ã°£À» ÃÖ¼ÒÈ­ÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °íÀåÀ» ¿¹¹æÇÒ Çʿ伺À¸·Î ÀÎÇØ À¯Æ¿¸®Æ¼ ȸ»ç´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®, ¿¹Áö º¸Àü ¹× »óÅ ¸ð´ÏÅ͸µ ±â¼úÀ» Ȱ¿ëÇÑ °í±Þ APM ¼Ö·ç¼ÇÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ÀÚ»êÀÇ ¿­È­¸¦ »çÀü¿¡ ÆÄ¾ÇÇÒ ¼ö ÀÖ°Ô Çϰí, À¯Æ¿¸®Æ¼ ±â¾÷ÀÌ À¯Áöº¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­Çϸç, ¿î¿µ ºñ¿ëÀ» ÁÙÀ̰í, ÀÚ»êÀÇ ¼ö¸íÀ» ´Ã¸± ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¾ÈÀü¼º, ½Å·Ú¼º, ȯ°æÀÇ Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ´Â ±ÔÁ¦ ¾Ð·Â Áõ°¡·Î À¯Æ¿¸®Æ¼ ±â¾÷Àº °ß°íÇÑ ÀÚ»ê °ü¸® ÇÁ·¹ÀÓ¿öÅ©¸¦ µµÀÔÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±×¸®µå ¹× ½ÅÀç»ý ¿¡³ÊÁö¿ø ÅëÇÕÀ¸·ÎÀÇ ÀüȯÀº ÀÚ»ê °ü¸®ÀÇ º¹À⼺À» ´õ¿í µÎµå·¯Áö°Ô ÇÏ°í ¿ªµ¿ÀûÀÌ°í ºÐ»êµÈ ¿¡³ÊÁö È帧À» ó¸®ÇÒ ¼ö ÀÖ´Â °í±Þ APM ½Ã½ºÅÛÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ±× °á°ú, ¿î¿µÀÇ º¹À⼺, ±ÔÁ¦ Áؼö ¿ä±¸, ¿¡³ÊÁö ¹× ÀÎÇÁ¶ó½ºÆ®·°Ã³ÀÇ Àü·«Àû Á߿伺À̶ó´Â À¯Æ¿¸®Æ¼ ºÎ¹® ƯÀ¯ÀÇ Á¶ÇÕÀ¸·Î À¯Æ¿¸®Æ¼ ºÎ¹®Àº ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ÃÖÁ¾ ¿ëµµ »ê¾÷À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¼¼ºÐÈ­ 3 : ¼Ö·ç¼Çº°

  • ¼ÒÇÁÆ®¿þ¾î
  • Çϵå¿þ¾î
  • ¼­ºñ½º

ÀÚ»ê ¼º´É °ü¸® ½ÃÀåÀ» ¼±µµÇÏ´Â Çϵå¿þ¾î : ¼Ö·ç¼Çº°

Çϵå¿þ¾î ¼Ö·ç¼ÇÀº ´Ù¾çÇÑ »ê¾÷ Àڻ꿡 °ÉÃÄ È¿°úÀûÀÎ µ¥ÀÌÅÍ ¼öÁý, ¸ð´ÏÅ͸µ ¹× Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±âº»ÀûÀÎ ¿ªÇÒÀ» ÇϹǷΠÀÚ»ê ¼º´É °ü¸® ½ÃÀåÀ» ¼±µµÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±× ÇÙ½ÉÀº ¼¾¼­, ½º¸¶Æ® ¹ÌÅÍ, Åë½Å ±â±â µîÀÇ Çϵå¿þ¾î ÄÄÆ÷³ÍÆ®·Î ¹°¸®Àû ÀÚ»ê°ú µðÁöÅÐ °ü¸® ½Ã½ºÅÛ °£ÀÇ ÁÖ¿ä ÀÎÅÍÆäÀ̽º·Î¼­ ±â´ÉÇÏ¿© Á¤È®ÇÑ »óÅ ¸ð´ÏÅ͸µ ¹× ½Ç½Ã°£ µ¥ÀÌÅÍ Ãëµæ¿¡ ÇʼöÀûÀÔ´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) ±â¼úÀÇ Ã¤¿ëÀÌ ÁøÇàµÊ¿¡ µû¶ó ´Ù¾çÇÑ È¯°æ Á¶°Ç¿¡¼­ »ó¼¼ÇÑ ¿îÀü ÁöÇ¥¸¦ È®½ÇÇÏ°Ô Ãëµæ ¹× ¼Û½ÅÇÒ ¼ö ÀÖ´Â °íµµÀÇ Çϵå¿þ¾î ¼ö¿ä°¡ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀåÄ¡´Â ÀÚ»êÀÇ °ÇÀü¼º, ¼º´É ÀÌ»ó, ÀáÀçÀû °íÀå¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÔÀ¸·Î½á Á¶Á÷ÀÌ ¿¹Áö º¸Àü Àü·«À» ±¸ÇöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ Çϵå¿þ¾î¿¡ ´ëÇÑ ÅõÀÚ´Â Á¾ÇÕÀûÀÎ APM »ýŰ踦 Çü¼ºÇÏ´Â °í±Þ ºÐ¼® ¹× ¼ÒÇÁÆ®¿þ¾î ¿ëµµ¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ÀÎÇÁ¶ó¸¦ ±¸ÃàÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ±î´Ù·Î¿î »ê¾÷ ȯ°æ¿¡¼­ÀÇ ³»±¸¼º, Á¤È®¼º ¹× »óÈ£ ¿î¿ë¼º Çâ»ó¿¡ ´ëÇÑ ÁøÈ­ÇÏ´Â ¿ä±¸´Â Çϵå¿þ¾î ¼Ö·ç¼ÇÀÇ Çõ½Å°ú äÅÃÀ» °è¼Ó ÃßÁøÇϰí ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î, ¹°¸®Àû ÀÚ»ê°ú µðÁöÅÐ ÀÎÅÚ¸®Àü½º °£ÀÇ ºê¸®Â¡¿¡¼­ Çϵå¿þ¾îÀÇ ÇʼöÀûÀÎ ¿ªÇÒÀº ÀÚ»ê ¼º´É °ü¸® ½ÃÀå¿¡¼­ ÁÖ¿ä ¼Ö·ç¼Ç ºÎ¹®À¸·Î¼­ÀÇ ÁöÀ§¸¦ È®°íÈ÷ ÇÕ´Ï´Ù.

¼¼ºÐÈ­ 4 : ±â´Éº°

  • ÀÚ»ê Àü·« °ü¸®
  • ÀÚ»ê ½Å·Ú¼º °ü¸®
  • ¿¹Ãø ÀÚ»ê °ü¸®
  • ÀÚ»ê ¼ö¸íÁֱ⠰ü¸®

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀ» ¼±µµÇÏ´Â ÀÚ»ê ½Å·Ú¼º °ü¸® : ±â´Éº°

±â´Éº°·Î º¸¸é ÀÚ»ê ½Å·Ú¼º °ü¸®´Â Áß¿äÇÑ ÀÚ»êÀÇ ¿î¿µ ½Å·Ú¼º ¹× ¼ö¸íÀ» ±Ø´ëÈ­ÇÏ´Â µ¥ ÁÖ¸ñÀ» ¹Þ°í Àֱ⠶§¹®¿¡ ÀÚ»ê ¼º´É °ü¸® ½ÃÀåÀ» ¼±µµÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âº»ÀûÀ¸·Î ÀÌ ±â´ÉÀ» ÅëÇØ ±â¾÷Àº ÀÚ»êÀÇ °ÇÀü¼ºÀ» ü°èÀûÀ¸·Î ¸ð´ÏÅ͸µ, ºÐ¼®, ÃÖÀûÈ­ÇÏ°í ¿¹±âÄ¡ ¾ÊÀº °íÀåÀ» ÁÙ¿© Àüü ¼³ºñÀÇ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¹Ãø ºÐ¼®°ú ÄÁµð¼Ç ±â¹Ý ¸ð´ÏÅ͸µÀ» Ȱ¿ëÇÔÀ¸·Î½á ÀÚ»êÀÇ ½Å·Ú¼º °ü¸®´Â À¯Áöº¸¼ö ÆÀÀÌ ¸®¾×Ƽºê Àü·«¿¡¼­ ÇÁ·Î¾×Ƽºê Àü·«À¸·Î ÀüȯÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ¿© ´Ù¿îŸÀÓ°ú ¿î¿µ Áß´ÜÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀº °íÁ¤µÈ ÀÏÁ¤À» µû¸£Áö ¾Ê°í ½Ç½Ã°£ ÀÚ»ê »óȲÀ» ±â¹ÝÀ¸·Î °³ÀÔ ¿ì¼± ¼øÀ§¸¦ °áÁ¤ÇÔÀ¸·Î½á ÀÚ»ê ÀÌ¿ë·üÀ» ³ôÀ̰í À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù. ¶ÇÇÑ »ê¾÷ ÀÎÇÁ¶ó°¡ º¹ÀâÇØÁö°í ¾ÈÀü¼º°ú ¿î¿µ Áö¼Ó¼º¿¡ ´ëÇÑ ±ÔÁ¦ÀÇ ÁßÁ¡ÀÌ Ä¿Áü¿¡ µû¶ó ¾ÈÁ¤ÀûÀÎ ÀÚ»ê °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ µðÁöÅÐ ÀüȯÀ» µµÀÔÇÏ´Â µ¿¾È, ÀÚ»ê ½Å·Ú¼º °ü¸®´Â IoT, ¸Ó½Å·¯´×, µ¥ÀÌÅÍ ºÐ¼® µîÀÇ Ã·´Ü ±â¼úÀ» ÅëÇÕÇϰí ź·ÂÀûÀ̰í È¿À²ÀûÀÎ ÀÚ»ê »ýŰ踦 À°¼ºÇϱâ À§ÇÑ Áß¿äÇÑ Àο¡ÀÌºí·¯ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ» Á¾ÇÕÇϸé ÀÚ»ê ½Å·Ú¼º °ü¸®´Â ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀÇ ¼ºÀåÀ» À̲ø¾î³»´Â °¡Àå Áß¿äÇÑ ±â´ÉÀ¸·Î ÀÚ¸®¸Å±èÇÕ´Ï´Ù.

¼¼ºÐÈ­ 5 : Áö¿ªº°

  • ºÏ¹Ì
  • À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ±âŸ Áö¿ª

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀ» ¼±µµÇÏ´Â ¾Æ½Ã¾ÆÅÂÆò¾ç : Áö¿ªº°

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¸î °¡Áö Àü·«Àû ¿äÀÎÀ¸·Î ÀÚ»ê ¼º°ú °ü¸®(APM) ½ÃÀåÀ» ¼±µµÇÏ°Ô µË´Ï´Ù. ±Þ¼ÓÇÑ »ê¾÷È­¿Í Á¦Á¶¾÷ È®´ë´Â ºñÁî´Ï½º È¿À²¼ºÀ» ÃÖÀûÈ­ÇÏ°í ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇÑ °í±Þ ÀÚ»ê °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ »ç¹°ÀÎÅͳÝ(IoT)°ú ÀΰøÁö´É(AI)°ú °°Àº Àδõ½ºÆ®¸® 4.0 ±â¼úÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀº ÀÚµ¿Â÷, ¿¡³ÊÁö, È­ÇÐ µî ÁÖ¿ä »ê¾÷¿¡¼­ ½º¸¶Æ® ÀÚ»ê ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ ÅëÇÕÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª Á¤ºÎµµ ÀÎÇÁ¶ó ±Ù´ëÈ­¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç APM ¼Ö·ç¼ÇÀÇ ¹èÄ¡¸¦ ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¿¹Áöº¸Àü°ú µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ³ë·Â¿¡ ÁßÁ¡À» µÐ ÀÌ Áö¿ªÀº ÀÚ»êÀÇ ½Å·Ú¼ºÀ» ³ôÀÌ°í ¼³ºñÀÇ ¶óÀÌÇÁ»çÀÌŬÀ» ¿¬ÀåÇϰíÀÚ ÇÏ´Â ±â¾÷µé¿¡°Ô ¼ºÀåÀÇ ÇÖ½ºÆÌÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ¿¡ÄڽýºÅÛÀº ¿øÈ°ÇÑ Á¦Ç° °ø±ÞÀ» º¸ÀåÇÏ´Â Çù·ÂÀûÀÎ °ø±Þ¸Á°ú ¸¶Âù°¡Áö·Î µ¥ÀÌÅÍ ¹× ÀλçÀÌÆ®ÀÇ µ¿±âÈ­µÈ È帧À» ÃËÁøÇϰí ÀÇ»ç°áÁ¤°ú ¾÷¹« ¹Îø¼ºÀ» °­È­ÇÔÀ¸·Î½á APM ½ÃÀåÀÇ ¸®´õ½ÊÀ» È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀÇ ÃÖ±Ù µ¿Çâ :

  • 2023³â 2¿ù, ABB´Â ABB Ability Genix APM Ç÷§ÆûÀ» ÅëÇØ ¿¡³Ê ±×¸° ÆÄ¿ö»ç¿ÍÀÇ Çù¾÷À» ÅëÇØ Á¶Áü Áø´ÜÀÇ ´ëÆøÀûÀÎ Áøº¸¸¦ ÀÔÁõÇØ ÀÌÅ»¸®¾ÆÀÇ 33°³ ¼ö·Â ¹ßÀü¼Ò¿¡¼­ ¿îÀü È¿À²À» °³¼±ÇÏ°í °èȹ ¹ÛÀÇ °¡µ¿ ÁßÁö ½Ã°£À» ÁÙ¿´½À´Ï´Ù.
  • 2022³â 8¿ù, Cubico´Â Fluence¿Í Çù·ÂÇÏ¿© ȸ»çÀÇ Solem I ¹× II ž籤 ¹ßÀü¼Ò¿¡ APM ¼ÒÇÁÆ®¿þ¾î¸¦ µµÀÔÇÏ¿© µðÁöÅÐ O&M ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ °­Á¶Çß½À´Ï´Ù.
  • 2022³â 3¿ù¿¡ ¹ßÇ¥µÈ CIMSoft Corp.¿Í AVEVA Select Canada East¿ÍÀÇ Á¦ÈÞ´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÀÚ»êÀÇ ½Å·Ú¼º°ú ¿î¿µ È¿À²¼ºÀ» ÃÖÀûÈ­Çϱâ À§ÇØ AI, IIoT ¹× Ŭ¶ó¿ìµå ±â¹Ý APM ±â¼úÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ½À» µ¸º¸ÀÌ°Ô ÇÕ´Ï´Ù.

¼ö¿ä-ÃËÁø¿äÀÎ, µµÀü, ±âȸ

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

º¯¾Ð±â, °³Æó±â, °¡»ó¼± µî °í¾Ð ÀÚ»êÀ» À§ÇÑ ÀÚ»ê ¼º°ú °ü¸®(APM) ½ÃÀåÀº ¿¹Áöº¸Àü ¼Ö·ç¼Ç ¼ö¿ä Áõ°¡¸¦ ¿øµ¿·ÂÀ¸·Î Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼ºÀåÀº ÁÖ·Î ÀÎÇÁ¶óÀÇ ³ëÈÄÈ­, ¼ÛÀü¸ÁÀÇ ½Å·Ú¼º °­È­ Çʿ伺, ¿î¿µ ºñ¿ë ÃÖÀûÈ­ÀÇ Çʿ伺¿¡ ±âÀÎÇÕ´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) ¼¾¼­, ÀΰøÁö´É(AI), ¸Ó½Å·¯´× ±â¼úÀÇ Áøº¸´Â ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ¿¹Ãø ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ¿© ÀáÀçÀûÀÎ °íÀåÀÇ Á¶±â ¹ß°ßÀ» ¿ëÀÌÇÏ°Ô ÇÏ¸ç ¿¹±âÄ¡ ¾ÊÀº Á¤ÀüÀ» ÁÙÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, GE VernovaÀÇ Predix¿Í °°Àº AI¸¦ žÀçÇÑ Ç÷§ÆûÀº ½ºÀ§Ä¡±â¾îÀÇ °íÀåÀ» ¿¹ÃøÇϰí Á¤Àü ½Ã°£À» 30% ´ÜÃàÇÏ´Â ´É·ÂÀ» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ È÷ŸġÀÇ ·ç¸¶´õ Ç÷§ÆûÀ¸·Î ´ëÇ¥µÇ´Â µðÁöÅÐ Æ®À©ÀÇ ÅëÇÕÀº ½Ã¹Ä·¹À̼ǿ¡ ÀÇÇÑ ÀÀ·Â ¿µÇ⠺м®À» ÅëÇØ º¯¾Ð±âÀÇ ¼ö¸íÀ» 10-15% ¿¬ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº ÀÚ»êÀÇ ½Å·Ú¼ºÀ» ³ôÀÌ°í ¹èÃâ·®À» ÁÙÀ̰í ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈ­ÇÔÀ¸·Î½á Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù.

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ

°í¾Ð ÀÚ»êÀ» À§ÇÑ ÀÚ»ê ¼º°ú °ü¸®(APM) ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀº µÎ °¡Áö ÁÖ¿ä °úÁ¦, Áï ·¹°Å½Ã ½Ã½ºÅÛ°ú ³ôÀº µµÀÔ ºñ¿ë¿¡ ÀÇÇØ ÀúÇØµË´Ï´Ù. ¸¹Àº Àü·Â ȸ»ç´Â Modbus ¹× BACnet°ú °°Àº ¾ÈÀüÇÏÁö ¾ÊÀº Åë½Å ÇÁ·ÎÅäÄÝÀ» »ç¿ëÇÏ´Â ICONICS SCADA ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ ½Ã´ë Áö¿¬ ÀÎÇÁ¶ó¸¦ °è¼Ó ¿î¿µÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ICONICS ¹öÀü 10.97.2 ÀÌÀüÀÇ Ãë¾àÁ¡ÀÌ È®ÀεǾúÀ¸¸ç Áß¿äÇÑ ÀÚ»êÀÌ ÀáÀçÀûÀÎ °ø°Ý¿¡ ³ëÃâµÇ¾ú½À´Ï´Ù. DarkSide ±×·ìÀ¸·Î ÀÎÇÑ 2021³â ÄݷδϾó ÆÄÀÌÇÁ¶óÀÎÀÇ ·£¼¶¿þ¾î °ø°ÝÀº Áß¿äÇÑ ÀÎÇÁ¶ó¿¡¼­ ±¸Çü ½Ã½ºÅÛ°ú °ü·ÃµÈ À§ÇèÀ» ´õ¿í µ¸º¸ÀÌ°Ô ÇÕ´Ï´Ù.

¶ÇÇÑ APM ¼Ö·ç¼ÇÀÇ µµÀÔ¿¡´Â ±âÁ¸ ÀÚ»êÀÇ ¸®³ëº£À̼Ç, °í±Þ ¼¾¼­ ÅëÇÕ, »çÀ̹ö º¸¾È ÄÄÇöóÀ̾𽺠Ȯº¸ µî ¸¹Àº ºñ¿ëÀÌ µì´Ï´Ù. ¿¹¸¦ µé¾î, ¿À·¡µÈ ÀåºñÀÇ ¸®³ëº£À̼ǿ¡´Â 1´ë´ç 50,000´Þ·¯¿¡¼­ 100,000´Þ·¯ÀÇ ºñ¿ëÀÌ µé°í ¹Ìµé¿þ¾î¿Í Ŭ¶ó¿ìµå ½ºÅ丮ÁöÀÇ Ãß°¡ ºñ¿ëµµ ¹ß»ýÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÝÀüÀû À庮Àº Àü·Â ȸ»ç°¡ APM ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» ÁÖÀúÇϰí Çö´ëÈ­µÈ °­ÀÎÇÑ ¿¡³ÊÁö ÀÎÇÁ¶ó·ÎÀÇ ÀüȯÀ» ´ÊÃß°í ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â ½Ã½ºÅÛÀÇ Çö´ëÈ­ ¹× »çÀ̹ö º¸¾È °­È­¿¡ Àü·«ÀûÀ¸·Î ÅõÀÚÇÏ¿© APM ¼Ö·ç¼ÇÀÇ º¸±ÞÀ» ÃËÁøÇØ¾ß ÇÕ´Ï´Ù.

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå ±âȸ

ÀÚ»ê ¼º°ú °ü¸®(APM) ½ÃÀåÀº ¸ð¹ÙÀÏ ¼Ö·ç¼Ç°ú ÀΰøÁö´É(AI)ÀÇ Áøº¸·Î Å« ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ¸ð¹ÙÀÏ APMÀº ±â¼úÀÚ¿¡°Ô ÀÚ»ê µ¥ÀÌÅÍ¿¡ ´ëÇÑ ½Ç½Ã°£ ¾×¼¼½º¸¦ Á¦°øÇϰí È¿À²ÀûÀÎ ÀÛ¾÷ Áö½Ã °ü¸®¸¦ °¡´ÉÇÏ°Ô Çϸç Ä¿¹Â´ÏÄÉÀ̼ÇÀ» °­È­ÇÔÀ¸·Î½á ÇöÀå ¾÷¹«¸¦ º¯È­½ÃÄÑ ¿Ô½À´Ï´Ù. ¿¹¸¦ µé¾î, ÁÖ¿ä Åë½Å»ç´Â ¸ð¹ÙÀÏ APM ¼Ö·ç¼ÇÀ» µµÀÔÇÑ ÈÄ ´Ù¿îŸÀÓÀ» 22% ÁÙÀÌ°í ¿î¿µ ÀνôøÆ®°¡ 76% °¨¼ÒÇß´Ù°í º¸°íÇß½À´Ï´Ù.

µ¿½Ã¿¡ AI¸¦ Ȱ¿ëÇÑ ¿¡¼Â Çコ À妽Ì(AHI)ÀÌ Àα⸦ ²ø°í ÀÖÀ¸¸ç ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ È°¿ëÀ¸·Î ÀÚ»êÀÇ °ÇÀü¼ºÀ» Æò°¡ ¹× Á¤·®È­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ¿¹Ãø º¸ÀüÀ» ÃËÁøÇϰí ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈ­Çϸç ÀÚ»ê ¼ö¸íÀ» ¿¬ÀåÇÕ´Ï´Ù.

Á¦Ç° ¹× Çõ½Å Àü·« : ÀÌ º¸°í¼­´Â ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ Á¦Ç° ¹× Çõ½Å Àü·«À» Á¦°øÇÏ°í ½ÃÀå ÁøÃâ ±âȸ, ±â¼ú Áøº¸ ¹× Áö¼Ó °¡´ÉÇÑ ½ÇõÀ» °­Á¶ÇÕ´Ï´Ù. Á¶Á÷ÀÌ ¾÷°è ¸ñÇ¥¸¦ ´Þ¼ºÇÏ°í ´Ù¾çÇÑ ºÎ¼­¿¡¼­ ÀÚ»ê ¼º´É °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

¼ºÀå ¹× ¸¶ÄÉÆÃ Àü·« : º» º¸°í¼­´Â ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå¿¡ ƯȭµÈ °ß°íÇÑ ¼ºÀå Àü·«°ú ¸¶ÄÉÆÃ Àü·«À» °£·«È÷ ¼³¸íÇÕ´Ï´Ù. Æ´»õ ½ÃÀå ºÎ¹®À» ÆÄ¾ÇÇÏ°í °æÀï ¿ìÀ§¸¦ È®¸³ÇÏ°í ½ÃÀå Á¡À¯À²°ú À繫 ½ÇÀûÀ» ÃÖÀûÈ­ÇÏ´Â Çõ½ÅÀûÀÎ ¸¶ÄÉÆÃ Á¤Ã¥À» ½ÃÇàÇϱâ À§ÇÑ Àû±ØÀûÀÎ Á¢±Ù ¹æ½ÄÀ» °­Á¶ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àû Á¦¾ÈÀ» Ȱ¿ëÇÔÀ¸·Î½á ±â¾÷Àº ½ÃÀå¿¡¼­ÀÇ Á¸Àç°¨À» ³ôÀ̰í, »õ·Î¿î ±âȸ¸¦ Ȱ¿ëÇϰí, È¿°úÀûÀÎ ¼öÀÍ ¼ºÀåÀ» ÃßÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

°æÀï Àü·« : º» º¸°í¼­´Â ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå¿¡ ¸Â´Â °ß°íÇÑ °æÀï Àü·«À» °³·«ÀûÀ¸·Î ¼³¸íÇÕ´Ï´Ù. ÁÖ¿ä ½ÃÀå ±â¾÷À» Æò°¡Çϰí Â÷º°È­ Àü¼úÀ» Á¦¾ÈÇÏ°í °æÀï ¿ìÀ§¸¦ À¯ÁöÇϱâÀ§ÇÑ ÁöħÀ» Á¦½ÃÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àû Áöħ¿¡ µû¶ó ±â¾÷Àº °æÀï¾÷ü¿¡ ´ëÇØ È¿°úÀûÀÎ Æ÷Áö¼Å´×À» ÇÒ ¼ö ÀÖ¾î ºü¸£°Ô ÁøÈ­ÇÏ´Â ½ÃÀå¿¡¼­ Àå±âÀûÀÎ ¼º°ø°ú ¼öÀͼºÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¶»ç ¹æ¹ý

ÀÌ ¼³¹®Á¶»ç º¸°í¼­´Â °øÀÎ ÃâÆÇ¹°, À¯¸í Àü¹®°¡ ±â»ç, ¹é¼­, °è¿­»ç ¿¬·Ê º¸°í¼­, »ê¾÷ µð·ºÅ丮, ÁÖ¿ä µ¥ÀÌÅͺ£À̽º µî ±¤¹üÀ§ÇÑ 2Â÷ Á¤º¸¸¦ äÅÃÇÏ¿© ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀÇ Á¾ÇÕÀû, ±â¼úÀû, ½ÃÀå ÁöÇ⠺м®À» À§ÇÑ °¡Ä¡ ÀÖ´Â ½Ç¿ëÀûÀÎ Á¤º¸¸¦ ¼öÁýÇÕ´Ï´Ù.

½ÃÀå °øÇÐ ÇÁ·Î¼¼½º¿¡¼­´Â ½ÃÀå Åë°è »êÃâ, ½ÃÀå ±Ô¸ð Ãß°è ¹× ¿¹Ãø, µ¿Çâ ¿¹Ãø, µ¥ÀÌÅÍ »ï°¢ Ãø·® µîÀ» ½Ç½ÃÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¤·®Àû µ¥ÀÌÅÍ ÇÁ·Î¼¼½º ±â¼úÀº ´ÙÀ½ ¼½¼Ç¿¡¼­ ÀÚ¼¼È÷ ¼³¸íÇÕ´Ï´Ù. ÀÚ»ê ¼º°ú °ü¸® ºÐ¾ßÀÇ ÁÖ¿ä±â¾÷¿¡¼­ ¼¼ºÐÈ­ À¯ÇüÀ̳ª ¾÷°è µ¿Çâ¿¡ °üÇÑ Á¤º¸¸¦ ¼öÁýÇÏ°í ½ÃÀå¼öÄ¡¸¦ °ËÁõÇϱâ À§ÇØ 1Â÷ Á¶»ç¸¦ ½Ç½ÃÇß½À´Ï´Ù.

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷ ¹× °æÀï ¿ä¾à

ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå ±â¾÷ ÇÁ·ÎÆÄÀÏÀº 1Â÷ Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ Á¤º¸¿Í ±â¾÷ Ä¿¹ö¸®Áö, ÇÁ·ÎÁ§Æ® Æ÷Æ®Æú¸®¿À ¹× ½ÃÀå ħÅõµµ ºÐ¼®À» ±â¹ÝÀ¸·Î ¼±Á¤µË´Ï´Ù.

ÀÌ ½ÃÀå¿¡¼­ À¯¸íÇÑ ±â¾÷Àº ´ÙÀ½°ú °°½À´Ï´Ù.

  • ABB
  • Aspen Technology Inc
  • Bentley Systems, Incorporated
  • GE Vernova
  • IBM
  • Infor
  • Oracle
  • SAP SE
  • Schneider Electric
  • Siemens Energy
  • AVEVA Group plc
  • Rugged Monitoring
  • Honeywell International Inc.
  • Emerson Electric Co.
  • Rockwell Automation

¸ñÂ÷

ÁÖ¿ä ¿ä¾à

Á¦1Àå ½ÃÀå : ¾÷°è Àü¸Á

  • ½ÃÀå ¿ªÇÐ
  • µ¿Çâ
    • ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ Àüȯ
    • À¯Æ¿¸®Æ¼ ºÎ¹®¿¡¼­ ÀÚ»ê ÃÖÀûÈ­¸¦ À§ÇÑ IoT ¹× µðÁöÅÐ Æ®À© ±â¼ú µµÀÔ
  • R&D ¸®ºä
  • ±ÔÁ¦ »óȲ
  • ½ÃÀå ¿ªÇÐ
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½ÃÀå ±âȸ

Á¦2Àå ¿ëµµ

  • ¿ëµµÀÇ ¿ä¾à
  • ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå : ÃÖÁ¾ ¿ëµµ
    • 33kV¸¦ ³Ñ´Â º¯¾Ð±â
    • 33kV¸¦ ÃʰúÇÏ´Â ½ºÀ§Ä¡±â¾î
    • °¡°ø¼±
  • ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå : ÃÖÁ¾ ¿ëµµ »ê¾÷º°
    • À¯Æ¿¸®Æ¼ ºÎ¹®
    • ¼®À¯ ¹× °¡½º »ê¾÷
    • ±¤¾÷
    • ö°­ ¾÷°è
    • µ¥ÀÌÅͼ¾ÅÍ
    • ±âŸ

Á¦3Àå Á¦Ç°

  • Á¦Ç° ¿ä¾à
  • ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå : ¼Ö·ç¼Çº°
    • ¼ÒÇÁÆ®¿þ¾î
    • Çϵå¿þ¾î
    • ¼­ºñ½º
  • ÀÚ»ê ¼º°ú °ü¸® ½ÃÀå : ±â´Éº°
    • ÀÚ»ê Àü·« °ü¸®
    • ÀÚ»ê ½Å·Ú¼º °ü¸®
    • ¿¹Ãø ÀÚ»ê °ü¸®
    • ÀÚ»ê ¼ö¸íÁֱ⠰ü¸®

Á¦4Àå Áö¿ª

  • Áö¿ªº° ¿ä¾à
  • ºÏ¹Ì
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • µ¶ÀÏ
    • ¿µ±¹
    • ³²À¯·´ ¹× ÁöÁßÇØ À¯·´
    • µ¿À¯·´
    • ºÏÀ¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • Àεµ³×½Ã¾Æ
    • ¸»·¹À̽þÆ
    • ±âŸ
  • ±âŸ Áö¿ª
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ³²¹Ì
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦5Àå ½ÃÀå-°æÀï º¥Ä¡¸¶Å· ¹× ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • ABB
  • Aspen Technology Inc
  • Bentley Systems, Incrporated
  • GE Vernova
  • IBM
  • Infor
  • Oracle
  • SAP SE
  • Schneider Electric
  • Siemens Energy
  • AVEVA Group plc
  • Rugged Monitoring
  • Honeywell International Inc.
  • Emerson Electric Co.
  • Rockwell Automation

Á¦6Àå Á¶»ç ¹æ¹ý

AJY 25.08.14

This report can be delivered within 1 working day.

Asset Performance Management Market Overview

The global asset performance management (APM) market is projected to reach $27.37 billion by 2035 from $9.98 billion in 2024, growing at a CAGR of 9.34% during the forecast period 2025-2035. The asset performance management (APM) market has been growing rapidly, driven by the need for enhanced reliability, predictive maintenance, and operational efficiency in power grids. Advances in IoT sensors, digital twins, and machine learning enable real-time monitoring and early fault detection, reducing downtime and extending asset life. Regulatory mandates on grid modernization and carbon reduction, such as those from the North American Electric Reliability Corporation (NERC), further fuel adoption. Strategic partnerships are accelerating innovations in non-intrusive monitoring and cloud analytics, particularly for aging infrastructure and smart switchgear systems. Challenges include high initial costs, data integration, and cybersecurity risks. Despite these, APM plays a vital role in optimizing asset performance, ensuring grid stability, and supporting the shift toward sustainable energy systems, making it essential for utilities aiming to reduce costs and improve resilience.

KEY MARKET STATISTICS
Forecast Period2025 - 2035
2025 Evaluation$11.21 Billion
2035 Forecast$27.37 Billion
CAGR9.34%

Introduction to the Asset Performance Management Market

The asset performance management (APM) market for switchgears, transformers, and overhead lines has experienced significant growth, driven by increasing demand for efficient and reliable power infrastructure. Advancements in technologies such as the Internet of Things (IoT), artificial intelligence (AI), and machine learning enable real-time monitoring and predictive maintenance of critical assets. These innovations facilitate the early detection of potential failures, reducing unplanned outages and extending asset lifecycles. Regulatory pressures and the need for sustainability further propel the adoption of APM solutions as utilities seek to optimize operations and comply with environmental standards.

Asset Performance Management Market's Industrial Impact

Asset Performance Management (APM) drives industrial efficiency by continuously monitoring and analyzing equipment health, enabling predictive maintenance that reduces unplanned downtime and extends asset lifespan. By optimizing performance and maintenance schedules, APM lowers operational costs, improves safety and compliance, and boosts overall plant productivity. For instance, Schneider Electric's APM-as-a-Service solution has demonstrated the ability to save up to $1 million by preventing transformer losses through proactive monitoring and data-driven insights. Moreover, APM systems support utilities in transitioning from reactive to condition-based maintenance strategies, leading to extended asset lifecycles and improved operational efficiency. This approach not only reduces maintenance costs but also aligns with sustainability goals by minimizing resource consumption and enhancing grid resilience. Overall, APM systems are pivotal in modernizing energy infrastructure and ensuring reliable power delivery.

Asset Performance Management Market Segmentation

Segmentation 1: by End-Use Application

  • Transformers Above 33kV
  • Switchgears Above 33kV
  • Overhead Line
    • Medium Voltage 33kV - 66kV
    • High Voltage 66Kv - 132kv
    • Extra High Voltage and UHV Above 132kV

Overhead Line to Lead the Asset Performance Management Market (by End-Use Application)

The overhead line end-use application segment is set to lead the asset performance management market due to its fundamental role in the transmission and distribution of electricity across vast geographic areas. Overhead lines represent a critical component of power infrastructure, often spanning challenging terrains and exposing assets to environmental stressors such as extreme weather, corrosion, and physical damage. These vulnerabilities increase the likelihood of faults and failures, making proactive monitoring and maintenance essential to ensure grid reliability and safety. Asset performance management solutions enable utilities to implement predictive maintenance strategies, leveraging real-time data and advanced analytics to identify potential issues before they escalate into costly outages or hazards. The integration of IoT technologies and remote sensing tools facilitates continuous condition monitoring of overhead lines, empowering operators to optimize maintenance schedules, reduce operational expenses, and extend asset lifespans. Furthermore, stringent regulatory standards and the growing emphasis on sustainable and resilient energy systems drive utilities to adopt sophisticated APM technologies to meet compliance requirements and enhance overall grid performance. Given these factors, the overhead line application area remains a high priority for investment in asset performance management as stakeholders seek to balance operational efficiency with reliability and safety imperatives in an increasingly complex energy landscape.

Segmentation 2: by End-Use Industry

  • Utilities Sector
    • Generation (Generators and Independent Power Producers)
    • Transmission (Transmission System Operators and Transmission Owners)
    • Distribution (Distribution System Operators)
    • Retail (Retailers/Suppliers)
  • Oil and Gas Industry
  • Mining Industry
  • Steel Industry
  • Data Center
  • Others

Utilities Sector to Lead the Asset Performance Management Market (by End-Use Industry)

Based on the end-use industry, the utilities sector is expected to dominate the asset performance management (APM) market due to its critical reliance on complex and expansive infrastructure that requires continuous monitoring and optimization. At the core, utilities operate vast networks of assets, including power generation plants, transmission lines, and distribution systems, all of which are vital to maintaining uninterrupted service and meeting escalating energy demands. The necessity to minimize downtime and prevent costly failures drives utilities to adopt advanced APM solutions that leverage real-time data analytics, predictive maintenance, and condition monitoring technologies. These tools enable the proactive identification of asset degradation, allowing utilities to optimize maintenance schedules, reduce operational costs, and enhance asset longevity. Additionally, growing regulatory pressures emphasizing safety, reliability, and environmental sustainability compel utilities to implement robust asset management frameworks. The shift toward smart grids and integration of renewable energy sources further accentuates the complexity of asset management, necessitating sophisticated APM systems that can handle dynamic and decentralized energy flows. Consequently, the utilities sector's unique combination of operational complexity, regulatory compliance demands, and strategic importance in energy infrastructure positions it as the leading end-use industry driving growth in the asset performance management market.

Segmentation 3: by Solution

  • Software
    • Condition Monitoring and Diagnostics Software
    • Predictive Analytics and Maintenance Software
    • Dashboards and Visualization Tools
    • CMMS/EAM Integration Modules
  • Hardware
    • Sensors and Field Instruments
    • IoT Gateways and Edge Devices
    • Connectivity and Network Hardware
  • Services

Hardware to Lead the Asset Performance Management Market (by Solution)

Hardware solutions are anticipated to lead the asset performance management market due to their foundational role in enabling effective data collection, monitoring, and control across diverse industrial assets. At the core, hardware components such as sensors, smart meters, and communication devices serve as the primary interface between physical assets and digital management systems, making them indispensable for accurate condition monitoring and real-time data acquisition. The increasing adoption of Internet of Things (IoT) technologies has further heightened the demand for advanced hardware that can reliably capture and transmit detailed operational metrics under varying environmental conditions. These devices empower organizations to implement predictive maintenance strategies by providing critical insights into asset health, performance anomalies, and potential failures. Moreover, hardware investments are essential for establishing robust infrastructure capable of supporting sophisticated analytics and software applications, which together form the comprehensive APM ecosystem. The evolving needs for enhanced durability, precision, and interoperability in harsh industrial environments continue to drive innovation and adoption of hardware solutions. Consequently, the integral role of hardware in bridging physical assets with digital intelligence solidifies its position as the leading solution segment within the asset performance management market.

Segmentation 4: by Functionality

  • Asset Strategy Management
  • Asset Reliability Management
  • Predictive Asset Management
  • Asset Lifecycle Management

Asset Reliability Management to Lead the Asset Performance Management Market (by Functionality)

Based on functionality, asset reliability management is anticipated to lead the asset performance management market due to its central focus on maximizing the operational dependability and lifespan of critical assets. Fundamentally, this functionality enables organizations to systematically monitor, analyze, and optimize asset health, reducing unexpected failures and enhancing overall equipment effectiveness. By utilizing predictive analytics and condition-based monitoring, asset reliability management provides actionable insights that allow maintenance teams to transition from reactive to proactive strategies, thereby minimizing downtime and operational disruptions. This approach enhances asset utilization and reduces maintenance costs by prioritizing interventions based on real-time asset conditions rather than adhering to fixed schedules. Furthermore, the growing complexity of industrial infrastructure and increasing regulatory emphasis on safety and operational continuity have intensified the need for reliable asset management solutions. As industries embrace digital transformation, asset reliability management serves as a critical enabler for integrating advanced technologies such as IoT, machine learning, and data analytics to foster a resilient and efficient asset ecosystem. These factors collectively position asset reliability management as the foremost functionality driving growth within the asset performance management market.

Segmentation 5: by Region

  • North America
  • Europe
  • Asia-Pacific
  • Rest-of-the-World

Asia-Pacific Region to Lead the Asset Performance Management Market (by Region)

The Asia-Pacific region is set to lead the asset performance management (APM) market due to several strategic factors. Rapid industrialization and the expansion of manufacturing sectors have been driving demand for advanced asset management solutions to optimize operational efficiency and minimize downtime. Additionally, the increasing adoption of Industry 4.0 technologies, such as the Internet of Things (IoT) and Artificial Intelligence (AI), has been driving the integration of smart asset monitoring systems across key industries, including automotive, energy, and chemicals. Governments in the region have also been investing heavily in infrastructure modernization, further accelerating the deployment of APM solutions. The region's focus on predictive maintenance and digital transformation initiatives positions it as a growth hotspot as companies seek to enhance asset reliability and extend the lifecycle of their equipment. Analogous to a well-coordinated supply chain that ensures seamless product delivery, the Asia-Pacific's ecosystem fosters a synchronized flow of data and insights, enhancing decision-making and operational agility, thereby solidifying its leadership in the APM market.

Recent developments in the asset performance management market:

  • In February 2023, ABB's collaboration with Enel Green Power through the ABB Ability Genix APM platform demonstrated significant advances in predictive diagnostics, improving operational efficiency and reducing unplanned downtime across 33 hydropower plants in Italy.
  • In August 2022, Cubico partnered with Fluence to deploy APM software at its Solem I and II PV plants, highlighting a growing demand for digital O&M solutions.
  • CIMSoft Corp.'s partnership with AVEVA Select Canada East, announced in March 2022, highlights the accelerated adoption of AI, IIoT, and cloud-based APM technologies to optimize asset reliability and operational efficiency across various industries.

Demand - Drivers, Challenges, and Opportunities

Asset Performance Management Market Drivers

The asset performance management (APM) market for high-voltage assets, including transformers, switchgears, and overhead lines, has been experiencing significant growth driven by the increasing demand for predictive maintenance solutions. This growth is primarily attributed to aging infrastructure, the need for enhanced grid reliability, and the imperative to optimize operational costs. Technological advancements in the Internet of Things (IoT) sensors, artificial intelligence (AI), and machine learning enable real-time monitoring and predictive analytics, facilitating early detection of potential failures and reducing unplanned outages. For instance, AI-powered platforms such as GE Vernova's Predix have demonstrated the ability to predict switchgear faults and reduce outage durations by 30%. Additionally, the integration of digital twins, as exemplified by Hitachi's Lumada platform, extends transformer life by 10-15% through simulated stress impact analysis. These innovations enhance asset reliability and support sustainability goals by reducing emissions and optimizing resource utilization.

Asset Performance Management Market Restraints

The adoption of asset performance management (APM) solutions for high-voltage assets is impeded by two primary challenges, i.e., legacy systems and high implementation costs. Many utilities continue to operate outdated infrastructure, such as ICONICS SCADA systems, which utilize insecure communication protocols such as Modbus and BACnet. These legacy systems are vulnerable to cyber threats; for instance, vulnerabilities in ICONICS versions 10.97.2 and earlier have been identified, exposing critical assets to potential attacks. The 2021 Colonial Pipeline ransomware attack, attributed to the DarkSide group, further underscores the risks associated with outdated systems in critical infrastructure.

Additionally, deploying APM solutions involves significant expenses, including retrofitting existing assets, integrating advanced sensors, and ensuring cybersecurity compliance. For example, retrofitting older equipment can cost between $50,000 and $100,000 per unit, with additional expenses for middleware and cloud storage. These financial barriers deter utilities from adopting APM technologies, slowing the transition to modernized, resilient energy infrastructures.

Addressing these challenges requires strategic investments in system modernization and cybersecurity enhancements to facilitate the widespread adoption of APM solutions.

Asset Performance Management Market Opportunities

The asset performance management (APM) market is set to witness significant growth, driven by advancements in mobile solutions and artificial intelligence (AI). Mobile APM applications have been transforming field operations by providing technicians with real-time access to asset data, enabling efficient work order management, and enhancing communication. For instance, a leading telecom company reported a 22% reduction in downtime and a 76% decrease in operational incidents after implementing a mobile APM solution.

Concurrently, AI-driven Asset Health Indexing (AHI) has been gaining traction, enabling organizations to assess and quantify asset health through the use of machine learning algorithms. This approach facilitates predictive maintenance, optimizes resource allocation, and extends the lifespan of assets.

How can this report add value to an organization?

Product/Innovation Strategy: This report provides a comprehensive product and innovation strategy for the asset performance management market, highlighting opportunities for market entry, technological advancements, and sustainable practices. It provides actionable insights that enable organizations to achieve industry goals and capitalize on the growing demand for asset performance management solutions across various sectors.

Growth/Marketing Strategy: This report outlines a robust growth and marketing strategy specifically tailored for the asset performance management market. It emphasizes a targeted approach to identifying niche market segments, establishing competitive advantages, and implementing innovative marketing initiatives to optimize market share and financial performance. By leveraging these strategic recommendations, organizations can enhance their market presence, capitalize on emerging opportunities, and drive effective revenue growth.

Competitive Strategy: This report outlines a robust competitive strategy tailored for the asset performance management market. It assesses key market players, suggests differentiation tactics, and provides guidance for maintaining a competitive edge. By following these strategic directives, companies can effectively position themselves against competitors, ensuring long-term success and profitability in a rapidly evolving market.

Research Methodology

The section exhibits the standard assumptions and limitations followed throughout the research study named 'Asset Performance Management Market':

  • The scope of this report has been focused on applications and types of products.
  • The base currency considered for the market analysis is US$. Currencies other than the US$ have been converted to US$ for all statistical calculations, considering the average conversion rate for that particular year.
  • The currency conversion rate has been taken from the historical exchange rate of the Oanda website.
  • All the recent developments from January 2022 to May 2025 have been considered in this research study.
  • The information rendered in the report is a result of in-depth primary interviews, surveys, and secondary analysis.
  • Where relevant information was not available, proxy indicators and extrapolation were employed.
  • Any economic downturn in the future has not been taken into consideration for the market estimation and forecast.
  • Technologies currently used are expected to persist through the forecast with no major technological breakthroughs.

Asset Performance Management Market Estimation and Forecast

This research study employs extensive secondary sources, including certified publications, articles from recognized experts, white papers, annual reports from relevant companies, industry directories, and major databases, to gather valuable and actionable information for a comprehensive, technical, and market-oriented analysis of the asset performance management market.

The market engineering process encompasses calculating market statistics, estimating market size, forecasting trends, and conducting data triangulation. The methodology for these quantitative data processes is detailed in subsequent sections. Primary research has been conducted to collect information and validate market figures related to segmentation types and industry trends among key players in the asset performance management sector.

Primary Research

The primary sources involve industry experts from the asset performance management market and various stakeholders in the ecosystem. Respondents, including CEOs, vice presidents, marketing directors, and technology and innovation directors, have been interviewed to gather and verify both qualitative and quantitative aspects of this research study.

The key data points taken from primary sources include:

  • validation and triangulation of all the numbers and graphs
  • validation of reports segmentation and key qualitative findings
  • understanding the competitive landscape
  • validation of the numbers of various markets for market type
  • percentage split of individual markets for geographical analysis

Secondary Research

This research study of the asset performance management market involves extensive secondary research, directories, company websites, and annual reports. It also utilizes databases, such as ITU, Hoover's, Bloomberg, Businessweek, and Factiva, to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the global market.

Secondary research was done to obtain crucial information about the industry's value chain, revenue models, the market's monetary chain, the total pool of key players, and the current and potential use cases and applications.

The key data points taken from secondary research include:

  • segmentations and percentage shares
  • data for market value
  • key industry trends of the top players of the market
  • qualitative insights into various aspects of the market, key trends, and emerging areas of innovation
  • quantitative data for mathematical and statistical calculations

Key Asset Performance Management Market Players and Competition Synopsis

The companies profiled in the asset performance management market have been selected based on input gathered from primary experts and an analysis of company coverage, project portfolio, and market penetration.

Some of the prominent names in this market are:

  • ABB
  • Aspen Technology Inc
  • Bentley Systems, Incorporated
  • GE Vernova
  • IBM
  • Infor
  • Oracle
  • SAP SE
  • Schneider Electric
  • Siemens Energy
  • AVEVA Group plc
  • Rugged Monitoring
  • Honeywell International Inc.
  • Emerson Electric Co.
  • Rockwell Automation

Companies not part of the pool have been well represented across different sections of the report (wherever applicable).

Table of Contents

Executive Summary

Scope and Definition

1 Market: Industry Outlook

  • 1.1 Market Dynamics
    • 1.1.1 Trends, Drivers, Challenges, and Opportunities: Current and Future Impact Assessment
  • 1.2 Trends
    • 1.2.1 Shift toward Decentralized Energy Systems
    • 1.2.2 Adoption of IoT and Digital Twin Technology for Asset Optimization in the Utility Sector
  • 1.3 R&D Review
    • 1.3.1 Patent Filing Trend (by Number of Patents, by Year, and by Country)
  • 1.4 Regulatory Landscape
  • 1.5 Market Dynamics
    • 1.5.1 Market Drivers
      • 1.5.1.1 Heightened Demand for Predictive Maintenance for High-Voltage Assets
      • 1.5.1.2 Need for Grid Reliability and Cost Efficiency
    • 1.5.2 Market Restraints
      • 1.5.2.1 Legacy Systems Hindering Adoption and Increased Cybersecurity Concerns
      • 1.5.2.2 High Cost of Implementing APM Solutions
    • 1.5.3 Market Opportunities
      • 1.5.3.1 Mobile APM Solution for Field Operations
      • 1.5.3.2 AI-driven Asset Health Indexing Gaining Gradual Traction

2 Application

  • 2.1 Application Summary
  • 2.2 Asset Performance Management Market (by End-Use Application)
    • 2.2.1 Transformers Above 33kV
    • 2.2.2 Switchgears Above 33kV
    • 2.2.3 Overhead Line
      • 2.2.3.1 Medium Voltage 33kV - 66kV
      • 2.2.3.2 High Voltage 66Kv - 132kV
      • 2.2.3.3 Extra High Voltage and UHV Above 132kV
  • 2.3 Asset Performance Management Market (by End-Use Industry)
    • 2.3.1 Utilities Sector
      • 2.3.1.1 Generation (Generators and Independent Power Producers)
      • 2.3.1.2 Transmission (Transmission System Operators and Transmission Owners)
      • 2.3.1.3 Distribution (Distribution System Operators)
      • 2.3.1.4 Retail (Retailers/Suppliers)
    • 2.3.2 Oil and Gas Industry
    • 2.3.3 Mining Industry
    • 2.3.4 Steel Industry
    • 2.3.5 Data Center
    • 2.3.6 Others

3 Products

  • 3.1 Product Summary
  • 3.2 Asset Performance Management Market (by Solution)
    • 3.2.1 Software
      • 3.2.1.1 Condition Monitoring and Diagnostics Software
      • 3.2.1.2 Predictive Analytics and Maintenance Software
      • 3.2.1.3 Dashboards and Visualization Tools
      • 3.2.1.4 CMMS/EAM Integration Modules
    • 3.2.2 Hardware
      • 3.2.2.1 Sensors and Field Instruments
      • 3.2.2.2 IoT Gateways and Edge Devices
      • 3.2.2.3 Connectivity and Network Hardware
    • 3.2.3 Services
  • 3.3 Asset Performance Management Market (by Functionality)
    • 3.3.1 Asset Strategy Management
    • 3.3.2 Asset Reliability Management
    • 3.3.3 Predictive Asset Management
    • 3.3.4 Asset Lifecycle Management

4 Region

  • 4.1 Regional Summary
  • 4.2 North America
    • 4.2.1 Regional Overview
    • 4.2.2 Driving Factors for Market Growth
    • 4.2.3 Factors Challenging the Market
      • 4.2.3.1 Application
      • 4.2.3.2 Product
    • 4.2.4 U.S.
      • 4.2.4.1 Application
      • 4.2.4.2 Product
      • 4.2.4.3 Smart Infrastructure Implementation Status
      • 4.2.4.4 Level of Grid Automation
    • 4.2.5 Canada
      • 4.2.5.1 Application
      • 4.2.5.2 Product
      • 4.2.5.3 Smart Infrastructure Implementation Status
      • 4.2.5.4 Level of Grid Automation
    • 4.2.6 Mexico
      • 4.2.6.1 Application
      • 4.2.6.2 Product
      • 4.2.6.3 Smart Infrastructure Implementation Status
      • 4.2.6.4 Level of Grid Automation
  • 4.3 Europe
    • 4.3.1 Regional Overview
    • 4.3.2 Driving Factors for Market Growth
    • 4.3.3 Factors Challenging the Market
      • 4.3.3.1 Application
      • 4.3.3.2 Product
    • 4.3.4 Germany
      • 4.3.4.1 Application
      • 4.3.4.2 Product
      • 4.3.4.3 Smart Infrastructure Implementation Status
      • 4.3.4.4 Level of Grid Automation
    • 4.3.5 U.K.
      • 4.3.5.1 Application
      • 4.3.5.2 Product
      • 4.3.5.3 Smart Infrastructure Implementation Status
      • 4.3.5.4 Level of Grid Automation
    • 4.3.6 Southern and Mediterranean Europe
      • 4.3.6.1 Application
      • 4.3.6.2 Product
      • 4.3.6.3 Smart Infrastructure Implementation Status
      • 4.3.6.4 Level of Grid Automation
    • 4.3.7 Eastern Europe
      • 4.3.7.1 Application
      • 4.3.7.2 Product
      • 4.3.7.3 Smart Infrastructure Implementation Status
      • 4.3.7.4 Level of Grid Automation
    • 4.3.8 Nordic Europe
      • 4.3.8.1 Application
      • 4.3.8.2 Product
      • 4.3.8.3 Smart Infrastructure Implementation Status
      • 4.3.8.4 Level of Grid Automation
  • 4.4 Asia-Pacific
    • 4.4.1 Regional Overview
    • 4.4.2 Driving Factors for Market Growth
    • 4.4.3 Factors Challenging the Market
      • 4.4.3.1 Application
      • 4.4.3.2 Product
    • 4.4.4 China
      • 4.4.4.1 Application
      • 4.4.4.2 Product
      • 4.4.4.3 Smart Infrastructure Implementation Status
      • 4.4.4.4 Level of Grid Automation
    • 4.4.5 Japan
      • 4.4.5.1 Application
      • 4.4.5.2 Product
      • 4.4.5.3 Smart Infrastructure Implementation Status
      • 4.4.5.4 Level of Grid Automation
    • 4.4.6 India
      • 4.4.6.1 Application
      • 4.4.6.2 Product
      • 4.4.6.3 Smart Infrastructure Implementation Status
      • 4.4.6.4 Level of Grid Automation
    • 4.4.7 South Korea
      • 4.4.7.1 Application
      • 4.4.7.2 Product
      • 4.4.7.3 Smart Infrastructure Implementation Status
      • 4.4.7.4 Level of Grid Automation
    • 4.4.8 Indonesia
      • 4.4.8.1 Application
      • 4.4.8.2 Product
      • 4.4.8.3 Smart Infrastructure Implementation Status
      • 4.4.8.4 Level of Grid Automation
    • 4.4.9 Malaysia
      • 4.4.9.1 Application
      • 4.4.9.2 Product
      • 4.4.9.3 Smart Infrastructure Implementation Status
      • 4.4.9.4 Level of Grid Automation
    • 4.4.10 Rest-of-Asia-Pacific
      • 4.4.10.1 Application
      • 4.4.10.2 Product
      • 4.4.10.3 Smart Infrastructure Implementation Status
      • 4.4.10.4 Level of Grid Automation
  • 4.5 Rest-of-the-World
    • 4.5.1 Regional Overview
    • 4.5.2 Driving Factors for Market Growth
    • 4.5.3 Factors Challenging the Market
      • 4.5.3.1 Application
      • 4.5.3.2 Product
    • 4.5.4 South America
      • 4.5.4.1 Application
      • 4.5.4.2 Product
    • 4.5.5 Middle East and Africa
      • 4.5.5.1 Application
      • 4.5.5.2 Product

5 Markets - Competitive Benchmarking & Company Profiles

  • 5.1 ABB
    • 5.1.1 Overview
    • 5.1.2 Top Products/Product Portfolio
    • 5.1.3 Top Competitors
    • 5.1.4 Target Customers
    • 5.1.5 Key Personal
    • 5.1.6 Analyst View
    • 5.1.7 Market Share, 2024
  • 5.2 Aspen Technology Inc
    • 5.2.1 Overview
    • 5.2.2 Top Products/Product Portfolio
    • 5.2.3 Top Competitors
    • 5.2.4 Target Customers
    • 5.2.5 Key Personal
    • 5.2.6 Analyst View
    • 5.2.7 Market Share, 2024
  • 5.3 Bentley Systems, Incrporated
    • 5.3.1 Overview
    • 5.3.2 Top Products/Product Portfolio
    • 5.3.3 Top Competitors
    • 5.3.4 Target Customers
    • 5.3.5 Key Personal
    • 5.3.6 Analyst View
    • 5.3.7 Market Share, 2024
  • 5.4 GE Vernova
    • 5.4.1 Overview
    • 5.4.2 Top Products/Product Portfolio
    • 5.4.3 Top Competitors
    • 5.4.4 Target Customers
    • 5.4.5 Key Personal
    • 5.4.6 Analyst View
    • 5.4.7 Market Share, 2024
  • 5.5 IBM
    • 5.5.1 Overview
    • 5.5.2 Top Products/Product Portfolio
    • 5.5.3 Top Competitors
    • 5.5.4 Target Customers
    • 5.5.5 Key Personal
    • 5.5.6 Analyst View
    • 5.5.7 Market Share, 2024
  • 5.6 Infor
    • 5.6.1 Overview
    • 5.6.2 Top Products/Product Portfolio
    • 5.6.3 Top Competitors
    • 5.6.4 Target Customers
    • 5.6.5 Key Personal
    • 5.6.6 Analyst View
    • 5.6.7 Market Share, 2024
  • 5.7 Oracle
    • 5.7.1 Overview
    • 5.7.2 Top Products/Product Portfolio
    • 5.7.3 Top Competitors
    • 5.7.4 Target Customers
    • 5.7.5 Key Personal
    • 5.7.6 Analyst View
    • 5.7.7 Market Share, 2024
  • 5.8 SAP SE
    • 5.8.1 Overview
    • 5.8.2 Top Products/Product Portfolio
    • 5.8.3 Top Competitors
    • 5.8.4 Target Customers
    • 5.8.5 Key Personal
    • 5.8.6 Analyst View
    • 5.8.7 Market Share, 2024
  • 5.9 Schneider Electric
    • 5.9.1 Overview
    • 5.9.2 Top Products/Product Portfolio
    • 5.9.3 Top Competitors
    • 5.9.4 Target Customers
    • 5.9.5 Key Personal
    • 5.9.6 Analyst View
    • 5.9.7 Market Share, 2024
  • 5.1 Siemens Energy
    • 5.10.1 Overview
    • 5.10.2 Top Products/Product Portfolio
    • 5.10.3 Top Competitors
    • 5.10.4 Target Customers
    • 5.10.5 Key Personal
    • 5.10.6 Analyst View
    • 5.10.7 Market Share, 2024
  • 5.11 AVEVA Group plc
    • 5.11.1 Overview
    • 5.11.2 Top Products/Product Portfolio
    • 5.11.3 Top Competitors
    • 5.11.4 Target Customers
    • 5.11.5 Key Personal
    • 5.11.6 Analyst View
    • 5.11.7 Market Share, 2024
  • 5.12 Rugged Monitoring
    • 5.12.1 Overview
    • 5.12.2 Top Products/Product Portfolio
    • 5.12.3 Top Competitors
    • 5.12.4 Target Customers
    • 5.12.5 Key Personal
    • 5.12.6 Analyst View
    • 5.12.7 Market Share, 2024
  • 5.13 Honeywell International Inc.
    • 5.13.1 Overview
    • 5.13.2 Top Products/Product Portfolio
    • 5.13.3 Top Competitors
    • 5.13.4 Target Customers
    • 5.13.5 Key Personal
    • 5.13.6 Analyst View
    • 5.13.7 Market Share, 2024
  • 5.14 Emerson Electric Co.
    • 5.14.1 Overview
    • 5.14.2 Top Products/Product Portfolio
    • 5.14.3 Top Competitors
    • 5.14.4 Target Customers
    • 5.14.5 Key Personal
    • 5.14.6 Analyst View
    • 5.14.7 Market Share, 2024
  • 5.15 Rockwell Automation
    • 5.15.1 Overview
    • 5.15.2 Top Products/Product Portfolio
    • 5.15.3 Top Competitors
    • 5.15.4 Target Customers
    • 5.15.5 Key Personal
    • 5.15.6 Analyst View
    • 5.15.7 Market Share, 2024

6 Research Methodology

  • 6.1 Data Sources
    • 6.1.1 Primary Data Sources
    • 6.1.2 Secondary Data Sources
    • 6.1.3 Data Triangulation
  • 6.2 Market Estimation and Forecast
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦