![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1808104
¼¼°èÀÇ ¿ìÁÖ¿ë ¹èÅ͸® ½ÃÀå : Ç÷§Æûº°, ¹èÅ͸® À¯Çüº°, Ãâ·Âº°, Áö¿ªº° ºÐ¼® ¹× ¿¹Ãø(2025-2035³â)Space Battery Market - A Global and Regional Analysis: Focus on Platform, Battery Type, Power, and Country Level Analysis - Analysis and Forecast, 2025-2035 |
¼¼°èÀÇ ¿ìÁÖ¿ë ¹èÅ͸® ½ÃÀåÀº À§¼º, ±Ëµµ À̵¿Ã¼, ·ÎÄÏ, ¿ìÁÖ Á¤°ÅÀå¿¡ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿¡³ÊÁö ÀúÀåÀ» Á¦°øÇÔÀ¸·Î½á ¿ìÁÖ È°µ¿ÀÇ »õ·Î¿î ÆÄµ¿¿¡ Àü·ÂÀ» °ø±ÞÇϴµ¥ ÀÖ¾î¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
¹èÅ͸®´Â ¼Ö¶ó ¹èÅ͸® ¾î·¹À̰¡ Àü°³µÉ ¶§±îÁö ÀÏ½Ä ±â°£À» ¿¬°áÇϰí, ¸Ó´º¹ö ¹× °üÃø±â±â ¿î¿ë°ú °°Àº ¼ö¿ä°¡ ³ôÀº À̺¥Æ®¸¦ ¼Æ÷Æ®ÇØ, ž籤ÀÌ °£ÇæÀûÀ̰ųª ÀÌ¿ëÇÒ ¼ö ¾ø°Å³ª ÇÏ´Â Àå±â ¹Ì¼ÇÀÇ ¿¬¼Ó¼ºÀ» È®º¸ÇÏ´Â µî, ¹Ì¼ÇÀÇ ¶óÀÌÇÁ »çÀÌŬ Àüü¿¡ °ÉÃÄ ºÒ°¡°áÇÑ °ÍÀÔ´Ï´Ù. ¹ß»ç °£°ÝÀÌ ¿¬ÀåµÇ°í ÀÓ¹« ¾ÆÅ°ÅØÃ³°¡ ´õ¿í ¾ß½ÉÀûÀÌ µÊ¿¡ µû¶ó ½ÃÀåÀº ¾ÈÀüÇÏ°í °¡º±°í ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ¿À´Ã³¯ÀÇ ¿ìÁÖ °ø°£¿¡¼´Â ½º¸¶Æ® ¸ðµâ½Ä ÆÑ ¼³°è¿Í ½Å·Ú¼ºÀ» ³ôÀÌ°í ¼ºñ½º ¼ö¸íÀ» ¿¬ÀåÇÏ´Â AI ´ëÀÀ ¹èÅ͸® °ü¸® ½Ã½ºÅÛÀ¸·Î º¸¿ÏµÈ °íüÈÇаú ¸®Æ¬ À¯È²ÈÇÐÀÇ ±Þ¼ÓÇÑ Áøº¸¸¦ º¼ ¼ö ÀÖ½À´Ï´Ù.
ÁÖ¿ä ½ÃÀå Åë°è | |
---|---|
¿¹Ãø ±â°£ | 2025-2035³â |
2025³â Æò°¡ | 8¾ï 8,660¸¸ ´Þ·¯ |
2035³â ¿¹Ãø | 14¾ï 1,810¸¸ ´Þ·¯ |
CAGR | 4.81% |
½ÃÀå ¼Ò°³
¼¼°èÀÇ ¿ìÁÖ¿ë ¹èÅ͸® ½ÃÀå ±Ô¸ð´Â 2024³â 8¾ï 5,180¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. Çö½ÇÀûÀÎ ½Ã³ª¸®¿À¿¡¼ 2035³â¿¡´Â 14¾ï 1,810¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 4.81%À» ³ªÅ¸³¾ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¼ºÀåÀº »ó¾÷, ¹Î°£, ¹æ¾îÀÇ °¢ ¿ëµµ¿¡¼ À§¼º ¹èÄ¡ÀÇ ±ÞÁõ, Áú·®À» »è°¨ÇÏ¸é¼ ¿¡³ÊÁö ¹Ðµµ¸¦ ³ôÀÌ´Â ±â¼úÀÇ Áøº¸, ±Ëµµ»ó¿¡¼ÀÇ ¾ÈÀü¼º, °¡¿ë¼º, º¸¼ö¼ºÀ» Çâ»ó½ÃŰ´Â AI ÁÖµµÀÇ Áø´ÜÀÇ Ã¤¿ë¿¡ ÁöÁöµÇ°í ÀÖ½À´Ï´Ù. À§¼º¿î¿µÈ¸»ç, ¿ìÁÖ±â°ü, ÀÎÆ¼±×·¹ÀÌÅÍ, ¹èÅ͸® °ø±Þ¾÷ü°¡ ÀÏü°¡ µÇ¾î ¿ìÁÖ ¹èÅ͸®ÀÇ ¿ªÇÒÀ» ¼öµ¿ÀûÀÎ Àü·ÂÀúÀå¼Ò¿¡¼ ¹æ»ç¼±ÀÌ ¸¹°í ¿ÀûÀ¸·Î ºÒ¾ÈÁ¤ÇÑ È¯°æ¿¡¼ÀÇ ¹Ì¼ÇÀÇ ¼º°øÀ» Áö¿øÇÏ´Â ´Éµ¿ÀûÀ¸·Î °ü¸®µÇ¾î ¼ÒÇÁÆ®¿þ¾î·Î Á¤ÀÇµÈ ¼ºê½Ã½ºÅÛÀ¸·Î È®´ëÇϰí ÀÖ½À´Ï´Ù.
Ç÷§Æû ¹Í½º´Â Æø³Ð°í °íµµÈ°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀΰøÀ§¼ºÀº ¿©ÀüÈ÷ ÁÖ¿ä ¼ö¿äÀÇ Áß½ÉÀ̸ç Áö±¸ Àú±Ëµµ º°ÀÚ¸®¿¡ °ÇÑ ±â¼¼°¡ ÀÖ¾î GEO¿Í ½É¿ìÁÖ ÀÚ»êÀ» À§ÇÑ Àü·Â ¹Ðµµ°¡ ³ôÀº ½Ã½ºÅÛÀÌ Á߽õǰí ÀÖ½À´Ï´Ù. ±Ëµµ»ó ¼ö¼Û±â¿Í ¿ìÁÖ ¹°·ù Ç÷§ÆûÀº Àü±â ÃßÁø°ú È¿°úÀûÀ¸·Î °áÇÕµÈ °íÃâ·Â, °í¼Ó »çÀÌŬ ¹èÅ͸®ÀÇ ¿ä±¸¸¦ ȯ±âÇϰí ÀÖ½À´Ï´Ù. ¿ìÁÖ Á¤°ÅÀå°ú °¡½Ã¼± ¹ÛÀÇ Áö¼ÓÀûÀÎ ¿ù¸é ÀÎÇÁ¶ó´Â ¼ö¸íÀÌ ±æ°í ³»°áÇÔ¼ºÀÌ ¶Ù¾î³ ÆÑ°ú °í±Þ ¿ Á¦¾î¿¡ ´ëÇÑ ¿ä±¸¸¦ µÞ¹ÞħÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß Àü¹Ý¿¡¼ ÀÚ°ÝÁõ°ú Ç÷§Æûº° ¸ÂÃãÈ´Â ¿©ÀüÈ÷ °áÁ¤ÀûÀ̸ç ÈÇÐ ¼±ÅÃ, ÆÑ ¾ÆÅ°ÅØÃ³ ¹× ¹èÅ͸® °ü¸® Àü·«ÀÇ °æÀïÀ» Çü¼ºÇÕ´Ï´Ù.
½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ
¿ìÁÖ ¹èÅ͸® ½ÃÀåÀÇ ´Ü±âÀûÀÎ ¿µÇâÀº ±¤¹üÀ§ÇÑ È¯°æ ¼º°úº¸´Ù´Â ÇÁ·Î±×·¥ ÄÉÀÌ´ø½º, Ç÷§Æû ¼º´É ¹× ÀÚ°Ý Áõ¸íÀÇ °æÁ¦¼º¿¡¼ °¡Àå µÎµå·¯Áý´Ï´Ù. ¿¡³ÊÁö ¹Ðµµ¸¦ ³ôÀÌ°í ÆÑÀ» ¸ðµâÈÇϸé À§¼º, ±Ëµµ»ó ¿î¼Û±â, ¿ìÁÖ Á¤°ÅÀå, ·ÎÄÏ µî ÁÖ¿ä Ç÷§Æû¿¡¼ »ç¿ë °¡´ÉÇÑ Àü·Â ¸¶ÁøÀÌ È®´ëµÇ°í, »ç¾÷ÀÚ´Â ¹ö½º¸¦ Àç¼³°èÇÏÁö ¾Ê°í ´õ ¸¹Àº ÆäÀ̷ε带 žÀçÇϰí, µàƼ »çÀÌŬÀ» ¿¬ÀåÇϰí, »õ·Î¿î ¹Ì¼Ç ¼ºñ½º¸¦ Ãß°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â Àü±â ÃßÁøÀÇ ÀÌ¿ëÀÌ È®´ëµÊ¿¡ µû¶ó ÄܽºÅÚ·¹ÀÌ¼Ç ±¸ÃàÀÇ ½Å¼ÓÈ, ±Ëµµ¿¡¼ÀÇ Ä¿¹Ì¼Å´×ÀÇ ¿øÈ°È, OTVÀÇ Á¶Á¾ ±ÇÇÑÀÇ È®´ë·Î À̾îÁý´Ï´Ù.
ÈÇÐ ¹× ½Ã½ºÅÛ ¼öÁØÀÇ Áøº¸´Â Á¶´Þ ÆÀÀÌ PDR/CDR¿¡¼ Æò°¡ÇÏ´Â ºñ¿ë/¼º´É ¿£º§·ÎÇÁ¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ¼Ö¸®µå ½ºÅ×ÀÌÆ®¿Í ¸®Æ¬ À¯È²ÀÇ ·Îµå¸ÊÀº ºñ¿¡³ÊÁö¿Í ÇÐ´ë ³»¼ºÀÇ ´Ü°èÀû º¯È¸¦ ¾à¼ÓÇÏ´Â ÇÑÆí, Â÷¼¼´ë ¸®Æ¬ ÀÌ¿ÂÀÌ °¡±î¿î ¹Ì·¡ÀÇ ºñÇàÀÇ ÁÖ·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÅëÇÕÀÚÀÇ °æ¿ì, ÀÌ´Â ´õ ¾ö°ÝÇÑ Áú·® ¹× ¿ ¿¹»ê, ´õ °£´ÜÇÑ Çϳ׽º, ÇÑ ¹ø ÀÎÁõµÇ¸é ¿©·¯ SKU ¹× Àü·Â µî±Þ¿¡¼ Àç»ç¿ëÇÒ ¼ö ÀÖ´Â ÆÑ ±¸¼ºÀ» Á¦°øÇÕ´Ï´Ù.
µ¿½Ã¿¡ ¼öÃâ±ÔÁ¦¿Í Áß¿ä ±¤¹° Á¤Ã¥ÀÌ ¼¿, ¼¼ÆÛ·¹ÀÌÅÍ, ÀüÀÚ±â±âÀÇ Á¶´ÞÀ» Çü¼ºÇϰí, Áö¿ªº° Á¦Á¶ ´ë ±¸¸Å °áÁ¤¿¡ ¿µÇâÀ» ÁÖ¸ç, Àç¼³°è ¾øÀÌ ¿©·¯ ±ÔÁ¦ ±âÁؼ±(ITAR/ECSS)ÀÇ ÀÎÁõÀ» ÃëµæÇÒ ¼ö ÀÖ´Â º¥´õ°¡ À¯¸®ÇÏ°Ô µË´Ï´Ù. ¹Î°£ ÀÚº»(»õ·Î¿î LEO/GEO ½Ã½ºÅÛ, ¿ù¸é ÀÎÇÁ¶ó, ½É¿ìÁÖ Å½»ç±â)ÀÌ °¡¼ÓÇÏ´Â °¡¿îµ¥, ±¸¸ÅÀÚ´Â ÀÎÁ¤ °ÔÀÌÆ®¸¦ ä¿ì¸é¼ »ý»ê ±Ô¸ð¸¦ È®´ëÇÒ ¼ö ÀÖ´Â Ç÷§Æû°ú °ø±ÞÀÚ¸¦ ¿ì¼±Çϰí ÀÖ¾î, ¹èÅ͸® ±â¼úÀÇ ¼±ÅÃ, ÆÑÀÇ ¸ðµâ¼º, ÀÎÁõÀÇ ½Å·Ú¼ºÀÌ, ¼ö»ó°ú ½ºÄÉÁÙ ¸®½ºÅ© °æ°¨ÀÇ °áÁ¤¼ö°¡ µÇ°í ÀÖ½À´Ï´Ù.
»ê¾÷¿¡ ¹ÌÄ¡´Â ¿µÇâ
¿ìÁÖ ¹èÅ͸® ½ÃÀåÀº ¼¼°è °ø±Þ¸ÁÀÇ ´ëÆøÀûÀÎ À籸¼ºÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¹ë·ùüÀÎÀº ¿øÀç·á(¸®Æ¬, ´ÏÄÌ, ÄÚ¹ßÆ®, ¸Á°£, Èæ¿¬, ¼¼ÆÛ·¹ÀÌÅÍ Æ÷ÀÏ)·ÎºÎÅÍ ¼¿°ú ÄÄÆ÷³ÍÆ®ÀÇ Á¦Á¶, ¸ðµâ ¹× ½Ã½ºÅÛÀÇ ÅëÇÕ, ¹èÄ¡, ±Ã±ØÀûÀ¸·Î »ç¿ëÇÑ ÀçȰ¿ë¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. BIS Á¶»ç Ãß°è¿¡ µû¸£¸é ¿øÀç·á´Â °¡Ä¡ÀÇ ¾à 15-25%, ¼¿°ú ºÎǰÀº 25-35%, ¸ðµâ°ú ½Ã½ºÅÛ ÅëÇÕÀº 20-30%, ¹èÄ¡´Â 10-20%, ÀçȰ¿ëÀº 5-15%ÀÔ´Ï´Ù. ÀÌ ºÐÆ÷´Â ¾÷½ºÆ®¸²ÀÇ Ã¤±¼ ¹× °¡°ø ÀÚº» Áý¾àµµ¿Í ±Ëµµ»ó¿¡¼ÀÇ ¼ºñ½º³ª ȸ¼ö µî ÇÏ·ù ¼ºñ½ºÀÇ Á߿伺ÀÇ ³ô¾ÆÁüÀ» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù.
»ê¾÷ ÅõÀÚ´Â ¿©·¯ ³ëµå¿¡ °ÉÃÄ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í À¯·´Àº °í¼øµµ ¸®Æ¬°ú Á¤±Ø 󸮿¡ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, ÀϺ»°ú Çѱ¹Àº ¼¼ÆÛ·¹ÀÌÅÍ, ¾Ö³ëµå, Ư¼ö ÀüÇØÁú¿¡ °Á¡À» À¯ÁöÇϰí ÀÖ½À´Ï´Ù. ÅëÇÕ ºÐ¾ß, ƯÈ÷ À§¼º, OTV, ¿ù¸é ÀÎÇÁ¶ó¿ëÀ¸·Î´Â ¿ìÁÖ ÀÚ°ÝÀÎÁõÀ¸·Î ÀÔÁõµÈ ±â¾÷(GS Yuasa, Saft Groupe, EnerSys, EaglePicher)À» Áß½ÉÀ¸·Î ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀçȰ¿ë°ú ¼øÈ¯Çü °æÁ¦ÀÇ Á¢±ÙÀº ¾ÆÁ÷ ½ÃÀ۵ǾúÁö¸¸, ¿ìÁÖ °ø°£¿¡ ÃÊÁ¡À» ¸ÂÃá 2Â÷ ±¤¹° ȸ¼ö³ª Áö»ó°ú ¿ìÁÖÀÇ ÇÏÀ̺긮µå ÀçȰ¿ë ·çÇÁ µîÀÇ ´ëó°¡ ÁÖ¸ñÀ» ¹Þ°í ÀÖ¾î ¾çÀÌ ´Ã¾î³²¿¡ µû¶ó È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷ º¯È¸¦ Á¾ÇÕÇÏ¸é ¿ìÁÖ ¹èÅ͸® ¼½ÅÍÀÇ Àü·«Àû ¼ºÁúÀÌ °ÈµÇ°í, ±¹°¡ÀÇ ±¤¹° ¾Èº¸, ÷´Ü Á¦Á¶¾÷, Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀÌ °áÇյ˴ϴÙ.
»ê¾÷ ¹× ±â¼ú °³¿ä
¼¼ °¡Áö ±â¼ú º¤ÅͰ¡ ½ÃÀå ±Ëµµ¸¦ Çü¼ºÇÕ´Ï´Ù. ù°, °íü ¹èÅ͸®´Â ¹Ì·¡ÀÇ Áß¿äÇÑ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ¾ÈÀü¼º Çâ»ó, ¿¡³ÊÁö ¹Ðµµ Çâ»ó, »çÀÌŬ ¼ö¸í ¿¬ÀåÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ±× ä¿ëÀº ¾ÆÁ÷ ÇÁ·ÎÅäŸÀÔ¿¡ ÇÑÁ¤µÇ¾î ÀÖÁö¸¸, 2030³â´ë ÃʹݱîÁö´Â ±Ô¸ð°¡ È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µÑ°, ½º¸¶Æ® ¸ðµâÇü ¹èÅ͸® ½Ã½ºÅÛÀº ÀÓ¹«¿¡ Æ¯ÈµÈ »ç¿ëÀÚ Á¤ÀǸ¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¸ðµâ½Ä ÅëÇÕÀº NRE(ºñ°æ»ó ¿£Áö´Ï¾î¸µ) ºñ¿ëÀ» Àý°¨Çϰí, ÀÎÁõ »çÀÌŬÀ» ´ÜÃàÇϰí, À§¼º ¹× OTV¿¡¼ÀÇ Ç÷¯±× ¾Ø Ç÷¹ÀÌ ±³È¯À» Áö¿øÇϸç, ÀÀ´ä¼ºÀÌ ³ôÀº ¿ìÁÖ ¹× ¸Þ°¡ ÄܽºÅÚ·¹ÀÌ¼Ç ¼ö¿ä¿¡ µû¸¨´Ï´Ù. ¼Â°, AI¸¦ Ȱ¿ëÇÑ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)ÀÌ ½Å·Ú¼ºÀ» º¯È½Ã۰í ÀÖ½À´Ï´Ù. ¼¾¼ Ç»Àü, µðÁöÅÐ Æ®À©, ¿¹Áö º¸ÀüÀ» Ȱ¿ëÇÔÀ¸·Î½á ÀÌ·¯ÇÑ BMS´Â °íÀå ¿¹Ãø, ¿ºÎÇÏ °ü¸®, ¹Ì¼Ç ¼ö¸í ¿¬ÀåÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ¹èÅ͸®¸¦ ¼öµ¿ ¼ºê½Ã½ºÅÛ¿¡¼ Áö´ÉÀûÀÎ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚ»êÀ¸·Î À̵¿½Ãŵ´Ï´Ù.
±ÔÁ¦¿Í ¿¬±¸ °³¹ßÀÇ Æ²Àº ÀÌ·¯ÇÑ µ¿ÇâÀ» ´õ¿í °ÈÇÕ´Ï´Ù. NASA, ESA, JAXA µîÀÇ ±â°üÀº ¿ÆøÁÖ ¹æÁö, Áߺ¹¼º, ÆäÀϼ¼ÀÌÇÁ µ¿ÀÛ°ú °ü·ÃÇÏ¿© º¸´Ù ¾ö°ÝÇÑ ÀÎÁõ ±âÁØÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¼öÃâ ±ÔÁ¦(ITAR, ECSS)´Â °ø±Þ¾÷üÀÇ Á¶´Þ ¹× ÀÎÁõ °æ·Î¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç, ¸®Æ¬ Ȳ, ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¹× ÇÏÀ̺긮µå ÈÇРƯÇã´Â Áö»ó EV ¹× ±×¸®µå ½ºÅ丮Áö ¿µ¿ª¿¡¼ ¾÷°è¸¦ °¡·ÎÁö¸£´Â ÆÄ±ÞÀÌ È®´ëµÇ°í ÀÖÀ½À» ³ªÅ¸³À´Ï´Ù. ¿ìÁÖ¿ë ¹èÅ͸®´Â ŸÇù ¾ø´Â ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» À¯ÁöÇÏ¸é¼ ÃÖ÷´Ü ¿¡³ÊÁö ¹Ðµµ¿Í ¸ðµâ¼º ¿ä±¸ »çÇ×À» ÃæÁ·ÇØ¾ß ÇÕ´Ï´Ù.
½ÃÀå ¼¼ºÐÈ:
¼¼ºÐÈ 1: Ç÷§Æûº°
¿ìÁÖ¿ë ¹èÅ͸® ½ÃÀåÀ» ¼±µµÇÏ´Â À§¼º(Ç÷§Æûº°)
ÀΰøÀ§¼ºÀº 2024³â 6¾ï 580¸¸ ´Þ·¯¿¡¼ 2035³â¿¡´Â 9¾ï 6280¸¸ ´Þ·¯·Î È®´ëµÉ ¿ìÁÖ ¹èÅ͸®ÀÇ °¡Àå Å©°í °¡Àå ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼ö¿ä Áß½ÉÀÔ´Ï´Ù. ±× ÀÌÁ¡Àº ¹ß»ç Ȱµ¿ÀÇ ±Ô¸ð¿¡ ±âÀÎÇÕ´Ï´Ù. 2035³â±îÁö °èȹµÈ ±Ëµµ ¹Ì¼ÇÀÇ 80% ÀÌ»óÀº À§¼º ¹èÄ¡¿Í Á÷Á¢ °ü·ÃµÇ¾î ÀÖ½À´Ï´Ù. Áö±¸ Àú±Ëµµ(LEO)¿¡¼´Â ±¤´ë¿ª ¿¬°á, Áö±¸°üÃø, ¹æÀ§ Á¤ÂûÀ» À§ÇÑ ¸Þ°¡ À§¼ºÀÌ ¼öõ ¹øÀÇ Ãæ¹æÀü »çÀÌŬÀ» °ßµô ¼ö ÀÖ´Â ¸ðµâ½Ä °í »çÀÌŬ ¹èÅ͸®¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. Á¤Áö ±Ëµµ(GEO)´Â °íµµÀÇ Åë½Å Áß°è±â¿Í ³ôÀº 󸮷® À§¼º µî ÆäÀ̷εåÀÇ °íµµÈ°¡ ÁøÇàµÇ¾î º¸´Ù ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í Áߺ¹¼ºÀ» °®Ãá ÆÑÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.
Å¥ºê»û¿¡¼ °Å´ëÇÑ GEO Ç÷§Æû¿¡ À̸£±â±îÁö À§¼º ½ÃÀåÀÌ ´Ù¾çÇØÁü¿¡ µû¶ó ¿ìÁÖ ¹èÅ͸®´Â ³»°áÇÔ¼º, ¸ðµâ¼º ¹× ¼ö¹é ¹øÀÇ ÀÏ½Ä Áֱ⸦ °ßµô ¼ö ÀÖ´Â ÀÎÁõÀ» Á¦°øÇØ¾ß ÇÕ´Ï´Ù. ½º¸¶Æ® BMS ½Ã½ºÅÛ, ¿ Â÷Æó, ¸ðµâ½Ä ÆÑ ¼³°è´Â Çʼö Á¶°ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿Í °°Àº Áö¼ÓÀûÀÎ ¼ö¿ä·Î ÀÎÇÏ¿© À§¼ºÀº ´çºÐ°£ ÁÖ¿ä Ç÷§Æû ºÎ¹®ÀÌ µÇ°í ÀÖÀ¸¸ç °ø±Þ¾÷üÀÇ ¼öÀÍÀ» È®º¸ÇÔ°ú µ¿½Ã¿¡ OTV, ½ºÅ×À̼Ç, ½É¿ìÁÖ ¹Ì¼Ç¿¡ ´ëÇÑ ±â¼ú Çõ½ÅÀ» ÃßÁøÇÕ´Ï´Ù.
¼¼ºÐÈ 2: ¹èÅ͸® À¯Çüº°
¿ìÁÖ¿ë ¹èÅ͸® ½ÃÀåÀ» µ¶Á¡ÇÏ´Â ¸®Æ¬°è ¹èÅ͸®(¹èÅ͸® À¯Çüº°)
¸®Æ¬°è ¹èÅ͸®´Â °è¼Ó ½ÃÀå Á¡À¯À²ÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϰí 2024³â 7¾ï 7,610¸¸ ´Þ·¯¿¡¼ 2035³â¿¡´Â 13¾ï 790¸¸ ´Þ·¯·Î Áõ°¡ÇÕ´Ï´Ù. ¸®Æ¬ ¹èÅ͸®ÀÇ ¼º°øÀº ¶Ù¾î³ ¿¡³ÊÁö ¹Ðµµ, °æ·®È, ¸ðµâ·¯ ÆÑ ¼³°è¿¡ ÀûÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ´ÏÄÌ-¼ö¼Ò ¹× ´ÏÄÌ-Ä«µå¹Å ½Ã½ºÅÛÀº ¿©ÀüÈ÷ ¼Ò¼öÀÇ Àå±âÀûÀÎ ÇÁ·Î±×·¥À¸·Î Á¦ÇѵǴ °Í°ú´Â ´Þ¸®, ¸®Æ¬ ÈÇÐÀº ¿À´Ã³¯ ³ôÀº 󸮷® ÄÁ½ºÅÚ·¹À̼ǿ¡ ÇÊ¿äÇÑ ¼º´É°ú È®À强À» Áö¿øÇÕ´Ï´Ù.
°íü ¸®Æ¬°ú ¸®Æ¬-Ȳ(Li-S)°ú °°Àº ¹Ì·¡ÀÇ À¯µµÃ¼´Â ¾ÈÀü¼ºÀ» Çâ»ó½Ã۰í, °¡¿¬¼º ¾×ü ÀüÇØÁúÀ» Á¦°ÅÇϰí, »ó´çÇÑ Áú·® °¨¼Ò¸¦ Á¦°øÇÔÀ¸·Î½á ÀÌ ºÎ¹®ÀÇ ÀÌÁ¡À» È®´ëÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ´ÏÄÌ ±â¹Ý ÈÇй°ÁúÀº ÀÔÁõµÈ °ß°í¼ºÀ» Á¦°øÇÏ¿© ¼ö½Ê³âµ¿¾È ¼øÁ¶·Ó°Ô ºñÇàÇØ ¿ÔÁö¸¸ ¹úÅ©¿Í »çÀÌŬ Á¦ÇÑÀ¸·Î ÀÎÇØ °æÀï·ÂÀÌ ÀúÇϵǾú½À´Ï´Ù. ¸®Æ¬ ¹èÅ͸®´Â ½º¸¶Æ® ¸ðµâÇü ½Ã½ºÅÛ¿¡ ÅëÇÕµÇ¾î ¿¹Ãø °¡´ÉÇÑ AI ÁÖµµÀÇ BMS¸¦ Ȱ¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡ 2025-2035³âÀÇ ¿¹Ãø ±â°£À» ÅëÇØ ¿ìÁÖ¿ë Àü¿øÀÇ ±â°£À̸鼵µ Àý´ë ±Ô¸ð³ª ¹Ì¼Ç Å©¸®Æ¼Äà ¿ëµµÀÇ Á¡À¯À²·Î È®´ëµË´Ï´Ù.
¼¼ºÐÈ 3: Ãâ·Âº°
Á¤°ÝÃâ·Â 1-10kWÀÇ ¿ìÁÖ¿ë ¹èÅ͸®°¡ ÁÖ·ù°¡ µÇ°í, ºÏ¹Ì¿¡¼´Â 2024³âÀÇ 4¾ï 2,680¸¸ ´Þ·¯¿¡¼ 2035³â¿¡´Â 6¾ï 9,910¸¸ ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ºÎ¹®Àº À§¼º, OTV ¹× ¼ÒÇü ¿ìÁÖ Á¤°ÅÀåÀÇ ¿ä±¸¿¡ ¹ÐÁ¢ÇÏ°Ô ÀÏÄ¡ÇÏ¸ç °úµµÇÑ ¿ ÃàÀû ¾øÀÌ Áö¼ÓÀûÀÎ ¹æÀüÀÌ °¡´ÉÇÑ ÄÄÆÑÆ®ÇÏ°í ¿¡³ÊÁö ¹Ðµµ°¡ ³ôÀº ÆÑÀÌ ÇÊ¿äÇÕ´Ï´Ù. 1-10kWÀÇ ½Ã½ºÅÛÀÌ Á¦°øÇÏ´Â ±ÕÇüÀº ÃßÁø Áö¿ø, Åë½Å, ÆäÀ̷εåÀÇ ¿î¿µÀ» Áö¿øÇϱ⿡ ÃæºÐÇÑ ³ôÀÌÀÌ¸é¼ Àû°Ý¼ºÀ» À¯ÁöÇϱ⿡ ÃæºÐÈ÷ ³·¾Æ ¾÷°èÀÇ ÁÖ·Â Á¦Ç°ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
ÆäÀ̷εå¿Í ÀÓ¹«ÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó 11-100kW ¹× 100kW ÀÌ»óÀÇ ºÎ¹®¿¡ ´ëÇÑ ¼ö¿ä´Â ƯÈ÷ ´Þ °ÅÁÖ ½Ã¼³, ´ëÇü ±Ëµµ Ç÷§Æû ¹× ¹«°Å¿î OTV¸¦ À§ÇØ °¡¼Óȵ˴ϴÙ. ±×·¯³ª 1-10kWÀÇ ¹üÀ§´Â º°ÀÚ¸® Àü°³¿Í Àü¼úÀû ¹Ì¼ÇÀÇ ±â°£À¸·Î °è¼Ó µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ È®À强, ½Å·Ú¼º, ºñ±³Àû °£´ÜÇÑ ÀÎÁõÀÇ Á¶ÇÕÀº ÀÌ ÆÄ¿ö Ŭ·¡½º°¡ 2035³â±îÁö ¼ö·®°ú ½ÃÀå Àü¹ÝÀûÀÎ °¡Ä¡ÀÇ ¾ç¸é¿¡¼ Áö¹èÀûÀ̶ó´Â °ÍÀ» º¸ÀåÇÕ´Ï´Ù.
¼¼ºÐÈ 4: Áö¿ªº°
ºÏ¹Ì°¡ ¿ìÁÖ¿ë ¹èÅ͸® ½ÃÀåÀ» ¸®µå(Áö¿ªº°)
ºÏ¹Ì´Â 2024³â 7¾ï 1,050¸¸ ´Þ·¯¿¡¼ 2035³â 11¾ï 7,470¸¸ ´Þ·¯·Î È®´ëµÇ¾î Áö¿ª ¸®´õ½ÊÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹Àº NASAÀÇ Artemis ÇÁ·Î±×·¥, ±¹¹æºÎ À§¼º ÀÌ´Ï¼ÅÆ¼ºê, SpaceX, Blue Origin, Northrop Grumman°ú °°Àº ±â¾÷ÀÌ ÁÖµµÇÏ´Â ±Þ¼ºÀåÁßÀÎ »ó¾÷ ¹ß»ç ºÎ¹®À» ÅëÇØ ÀÌ·¯ÇÑ ¿ìÀ§¸¦ Áö¿øÇÕ´Ï´Ù. GS Yuasa, Saft Groupe(¹Ì±¹ ÀÚȸ»ç °æÀ¯), EnerSys, EaglePicher Technologies µî ¼±µµÀûÀÎ °ø±Þ¾÷üÀÇ Á¸Àç´Â »ê¾÷ ±â¹ÝÀ» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
°ß°íÇÑ R&D ÀÎÇÁ¶ó ¿Ü¿¡µµ ºÏ¹Ì´Â °øÀÎ ½Ã¼³, Áß¿äÇÑ ±¤¹° °ø±Þ Àü·«, °ø±Þ¸Á À§ÇèÀ» ÁÙÀÌ´Â °ü¹Î ÆÄÆ®³Ê½ÊÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. À¯·´Àº ESA ÇÏ¿¡¼ °íü ¹× ¸ðµâ ¼³°è¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡(Áß±¹, Àεµ, ÀϺ»)´Â ±Þ¼ÓÈ÷ »ý»ê ´É·Â°ú ±¹»ê ´É·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí, ºÏ¹Ì´Â ºñÇàÀ¯»ê°ú »ó¾÷ÈÀÇ Çãºê·Î ³²¾Æ ÀÖÀ¸¸ç ¿¹Ãø±â°£ µ¿¾È ÃÖ´ëÀÇ Áö¿ª½ÃÀå Á¡À¯À²À» À¯ÁöÇϰí ÀÖ½À´Ï´Ù.
¼ö¿ä: ÃËÁø¿äÀÎ, ÇѰè, ±âȸ
½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ : À§¼º º°ÀÚ¸®, ±íÀº °ø°£¿¡ ´ëÇÑ ÀÇ¿å, ±â¼ú Áøº¸
¿ìÁÖ¿ë ¹èÅ͸® ½ÃÀåÀº À§¼º ¹ß»çÀÇ ±ÞÁõ¿¡ ÃßÁøµÇ°í ÀÖÀ¸¸ç, Áö±¸ Àú±Ëµµ º°ÀÚ¸®¸¸À¸·Îµµ 2025³â¿¡´Â 50% ÀÌ»óÀÇ ¼ºÀåÀÌ ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·Ê ¾ø´Â ¿¬¼Ó¼ºÀº ½Å¼ÓÇÑ ÀÎÁõ°ú ±ä »çÀÌŬ ³»±¸¼ºÀ» °®Ãá Àå¾Ö Çã¿ë¼ºÀÌ ÀÖ´Â ¸ðµâ½Ä ÆÑÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. µ¿½Ã¿¡ ¿ù¸é±âÁö, ȼºÅ½»ç, ¼ÒÇ༺Ž»ç¿¡ À̸£´Â ½É¿ìÁÖŽ»çÀÇ ¾ß¸ÁÀº Àå¼ö¸í, °í¿¡³ÊÁö ¹Ðµµ, ³»¹æ»ç¼±¼ºÀ» °ÈÇÑ ÈÇй°Áú¿¡ ´ëÇÑ ¼ö¿ä¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù.
±â¼ú ¼öÁØ¿¡¼ ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¹èÅ͸®¿Í ¸®Æ¬ À¯È² ½Ã½ºÅÛÀº ¾ÈÀü°ú ¹«°ÔÀÇ È¹±âÀûÀÎ °³¼±À» ¾à¼ÓÇϰí AI ´ëÀÀ BMS°¡ ¿¹Áö º¸Àü, µðÁöÅÐ Æ®À©, ½Ç½Ã°£ ¿Âµµ Á¦¾î¸¦ µµÀÔÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ¿ìÁÖ ¹èÅ͸®´Â ´Ü¼øÈ÷ ¿¡³ÊÁö ÀúÀå°í°¡ ¾Æ´Ï¶ó ÀÓ¹«ÀÇ À¯¿¬¼º°ú ½Å·Ú¼ºÀ» ³ôÀÌ´Â ´Éµ¿ÀûÀÎ ¿¡ÀÌºí·¯ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÃßÁø ¿äÀÎÀÌ °áÇյǾî Çõ½ÅÀÌ ¿É¼ÇÀÌ ¾Æ´Ï¶ó ÇÊ¿¬ÀûÀÎ ½ÃÀå ȯ°æÀ» Áö¿øÇÕ´Ï´Ù.
½ÃÀåÀÇ °úÁ¦: ÀÚ°ÝÀÎÁõ ºÎ´ã, ºñ¿ë ¾Ð·Â, °ø±Þ Á¦¾à
°ÇÑ ±â¼¼¿¡µµ ºÒ±¸Çϰí ÀÌ ºÐ¾ß´Â ½É°¢ÇÑ ¹®Á¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ¼¿, ¸ðµâ, ÆÑÀº Áø°ø, Áøµ¿, ¹æ»ç¼±, °¡È¤ÇÑ ¿ »çÀÌŬ Á¶°Ç ÇÏ¿¡¼ ÀÔÁõµÇ¾î¾ß ÇÕ´Ï´Ù. ´ÏÄÌ ¼ö¼Ò ÆÑ¿¡¼ º¸°íµÈ °Í°ú °°Àº ¿ ÆøÁÖ »ç°í´Â ¿©·¯ °³ÀÇ ÆäÀÏ ¼¼ÀÌÇÁ, Áߺ¹¼º, º¸¼öÀûÀÎ ¼³°è ¸¶ÁøÀÇ Çʿ伺À» °ÈÇϰí ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍÀÌ ºñ¿ë°ú ¹«°Ô¸¦ ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù.
°æÁ¦ÀûÀÎ À庮µµ ¸¶Âù°¡Áö·Î ¾î·Æ½À´Ï´Ù. °³¹ß ¹× ÀÎÁõ Ä·ÆäÀο¡´Â ¼ö¹é¸¸ ´Þ·¯ÀÇ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °æ¿ì°¡ ¸¹À¸¸ç, Âü°¡ÀÚ´Â ÁÖ·Î ±âÁ¸ Ç×°ø¿ìÁÖ ÇÁ¶óÀÓ ±â¾÷ ¹× Ư¼ö °ø±Þ¾÷ü·Î Á¦Çѵ˴ϴÙ. °ø±Þ Ãø¸é¿¡¼ Áß¿äÇÑ ±¤¹°(¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌ, Èæ¿¬) ¹× ºÐ¸®¸·¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀº °¡°Ý º¯µ¿, ÁöÁ¤ÇÐÀû È¥¶õ, ITAR ¹× ECSS¿Í °°Àº ¼öÃâ ±ÔÁ¦ ½Ã½ºÅÛ¿¡ ÇÁ·Î±×·¥À» ³ëÃâÇÕ´Ï´Ù. ÀÌ·¯ÇÑ À§ÇèÀº ÇÁ·ÎÁ§Æ®ÀÇ °æÁ¦¼ºÀ» ¾Ð¹ÚÇÒ »Ó¸¸ ¾Æ´Ï¶ó À§¼º ¹× ¹ß»ç ÀÏÁ¤¿¡ ÆÄ±ÞµÉ ¼ö ÀÖ´Â ÀÏÁ¤ÀÇ ºÒÈ®½Ç¼ºÀ» ³º½À´Ï´Ù.
½ÃÀå ±âȸ : ¹Î°£ ÅõÀÚ, ÇÏÀ̺긮µå ¿¡³ÊÁö ½Ã½ºÅÛ, ÀçȰ¿ë ³ë·Â
ÀÌ·¯ÇÑ Á¦¾à¿¡ ´ëÇ×ÇÒ ¼ö ÀÖ´Â °ÍÀº Å« ±âȸÀÔ´Ï´Ù. ¹Î°£ ÅõÀÚ´Â ¿ìÁÖ ¿¡³ÊÁö ½ÅÈï ±â¾÷ÀÇ »õ·Î¿î ÆÄµµ·Î Èê·¯ µé¾î°¡°í ÀÖ½À´Ï´Ù. ±× ¿¹·Î´Â Zeno Power(¶óµð¿À ¾ÆÀ̼ÒÅäÇÁ Áö¿ø ½Ã½ºÅÛ), Aetherflux(°íü ÇÁ·ÎÅäŸÀÔ), Pixxel(ÅëÇÕ À§¼º ¿¡³ÊÁö Ç÷§Æû) µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº ¾ÈÀü¼º, ¸ðµâ¼º, ¿µ¿ª Ⱦ´ÜÀû ÅëÇÕÀÇ ÇѰ踦 È®´ëÇϰí ÀÖ½À´Ï´Ù.
žçÀüÁö ¾î·¹ÀÌ, ¿¬·áÀüÁö ¹× ÷´Ü ÀüÁö¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå ¿¡³ÊÁö ½Ã½ºÅÛÀº ¿ù°£ ±âÁö, OTV, Àå±â ü·ù ½ºÅ×À̼ÇÀÇ °·ÂÇÑ Àο¡ÀÌºí·¯·Î µîÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ÀÓ¹« ÇÁ·ÎÆÄÀÏÀ» È®ÀåÇÏ¿© ´ÜÀÏ ¿¡³ÊÁö ¿ø¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀÔ´Ï´Ù. ÇÑÆí, ÀçȰ¿ëÀ̳ª ÀÚ¿ø ȸ¼ö ÇÁ·Î±×·¥µµ ±¸Ã¼ÈÇϱ⠽ÃÀÛÇϰí ÀÖ¾î, »ç¿ëÇÑ ¿ìÁÖ ÆÑÀ¸·ÎºÎÅÍ ¸®Æ¬, ´ÏÄÌ, ÄÚ¹ßÆ®¸¦ ÃßÃâÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÑ ´ëó°¡ ÇàÇØÁö°í ÀÖ½À´Ï´Ù. ¼øÈ¯Çü °æÁ¦ÀÇ ¸ñÇ¥¿¡ µû¶ó ÀÌ·¯ÇÑ ÇÁ·Î±×·¥Àº ºñ¿ëÀ» Àý°¨Çϰí Àç·áÀÇ ¾ÈÀü¼ºÀ» Çâ»óÇÏ¸ç ¿ìÁÖ »ê¾÷ÀÇ Áö¼Ó°¡´É¼ºÀ» ³ôÀÔ´Ï´Ù.
ÀÌ·¯ÇÑ ¼ö¿ä ÃËÁø¿äÀÎ, °úÁ¦ ¹× ±âȸ°¡ ÇÔ²² º¹ÀâÇÏ°í ¿ªµ¿ÀûÀÎ ½ÃÀåÀ» Á¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å°ú ½Å·Ú¼º, ºñ¿ë°ú ÀÚ°ÝÀÇ ¾ö°ÝÇÔÀÇ ±ÕÇüÀ» ¸ÂÃâ ¼ö ÀÖ´Â ÀÌÇØ°ü°èÀÚ´Â Àå±âÀûÀÎ ¼ºÀåÀ» ÀÌ·ç±â À§ÇÑ ÃÖ¼±ÀÇ ÀÔÀå¿¡ ¼³ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
Á¦Ç° ¹× À̳뺣ÀÌ¼Ç Àü·« : º» º¸°í¼´Â °íü ¹èÅ͸®¿Í ¸®Æ¬ À¯È² ¹èÅ͸®ÀÇ ±Þ¼ÓÇÑ Áøº¸¿Í ÇÔ²² ¿ìÁÖ ¹èÅ͸® ÈÇÐÀÇ ÁøÈ¸¦ ¹àÈ÷°í, ÆÑ ¾ÆÅ°ÅØÃ³, ¿ ¼³°è, ³²¿ë ³»¼º, AI ´ëÀÀ BMS°¡ ¾ÈÀü¼º°ú ¼ö¸íÀ» Çâ»ó½Ã۱â À§ÇØ ¾î¶»°Ô ¼ö·ÅÇϰí ÀÖ´ÂÁö¸¦ ÇØºÎÇϰí ÀÖ½À´Ï´Ù. R&D ÆÀÀº ÀÌ·¯ÇÑ Áö½ÄÀ» Ȱ¿ëÇÏ¿© ÀÚ°Ý ÀÎÁõ °æ·Î ¿ì¼±¼øÀ§ ÁöÁ¤, Àç·á ¼±Åà À§Çè ȸÇÇ, LEO, GEO, ½É¿ìÁÖ¿¡¼ Ç÷§Æûº° Á¦¾à¿¡ ¸Â´Â ¸ðµâ ¼³°è¸¦ ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.
¼ºÀå ¹× ¸¶ÄÉÆÃ Àü·« : ¿ìÁÖ¿ë ¹èÅ͸® ½ÃÀåÀº À§¼º º°ÀÚ¸®, ±íÀº ¿ìÁÖ ÀÓ¹«, ±Ëµµ À̵¿Ã¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ²ÙÁØÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù. °¢ ȸ»ç´Â ¿ìÁÖ ±â°ü ¹× »ó¾÷ ¹ß±Þ Á¦°ø¾÷ü¿Í Àû±ØÀûÀ¸·Î Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¸Î°í Àå±â °ø±Þ °è¾àÀ» È®º¸ÇÏ°í »ç¾÷ ¿µ¿ªÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. °í¿¡³ÊÁö ¹Ðµµ, ¸ðµâ¼º, Ç÷§Æûº° ¸ÂÃãȸ¦ Áß½ÃÇÑ Ã·´Ü ¹èÅ͸® ½Ã½ºÅÛÀ» Á¦°øÇÔÀ¸·Î½á ±â¾÷Àº ¿©·¯ ¹Ì¼Ç ÇÁ·ÎÆÄÀÏ¿¡ °ÉÄ£ ¼ö¿ä¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. °íüÈÇаú ¸®Æ¬ À¯È²ÈÇÐ µîÀÇ ±â¼ú Çõ½ÅÀ» °Á¶Çϰí ÀÔÁõµÈ ºñÇà ½ÇÀûÀ» º¸¿©ÁÜÀ¸·Î½á °ø±Þ¾÷ü´Â ºê·£µåÀÇ ½Å·Ú¼ºÀ» ³ôÀÌ°í °í°´°úÀÇ °ü°è¸¦ °ÈÇϰí ÇâÈÄ À§¼º°ú Ž»ç ÇÁ·Î±×·¥¿¡¼ ´õ Å« Á¡À¯À²À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.
°æÀï Àü·«: ÀÌ º¸°í¼´Â GS Yuasa Corporation, Saft Groupe(TotalEnergies), EnerSys, EaglePicher Technologies µî ¿ìÁÖ ¹èÅ͸® ½ÃÀå¿¡¼ ÁÖ¿ä ±â¾÷ÀÇ »ó¼¼ÇÑ ºÐ¼® ¹× ÇÁ·ÎÆÄÀϸµÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ºÐ¼®Àº °¢ ±â¾÷ÀÇ Á¦Ç° Æ÷Æ®Æú¸®¿À, ÃÖ±Ù ±â¼ú µ¿Çâ, ÇÁ·Î±×·¥ Âü¿©, Áö¿ª ½ÃÀåÀÇ °Á¡À» º¸¿©ÁÝ´Ï´Ù. ½ÃÀå ¿ªÇаú °æÀïÀÇ Æ÷Áö¼Å´×À» öÀúÈ÷ °ËÁõÇϰí Àֱ⠶§¹®¿¡ µ¶ÀÚµéÀº ÀÌµé ±â¾÷µéÀÌ ¾î¶»°Ô ¼·Î¸¦ º¥Ä¡¸¶Å·Çϰí ÁøÈÇÏ´Â ÇÁ·Î±×·¥ ¿ä±¸»çÇ׿¡ ÀûÀÀÇÏ´ÂÁö¸¦ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ °æÀï ±¸µµ Æò°¡¸¦ ÅëÇØ ±â¾÷Àº Àü·«À» ÀçÁ¶Á¤Çϰí ÈÇÐ Çõ½Å ¹× BMS ÅëÇÕ°ú °°Àº ºÐ¾ß¿¡¼ Â÷º°È ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ¿ì¼± ¼øÀ§°¡ ³ôÀº Áö¿ª°ú Ç÷§Æû ºÎ¹®¿¡¼ ¼ºÀåÀ» Ãß±¸ÇÏ´Â Áß¿äÇÑ °í·Á »çÇ×À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
This report can be delivered within 1 working day.
Introduction to the Space Battery Market
The space battery market plays a pivotal role in powering the new wave of space activity by providing reliable, mission-critical energy storage for satellites, orbital transfer vehicles, launch vehicles, and space stations. Batteries are indispensable across the mission lifecycle; they bridge eclipse periods before solar arrays deploy, support high-demand events such as maneuvers and instrument operations, and ensure continuity on long-duration missions where sunlight is intermittent or unavailable. As launch cadence rises and mission architectures become more ambitious, the market is shifting toward safer, lighter, and higher-energy solutions, space today, with rapid progress in solid-state and lithium-sulfur chemistries, complemented by smart, modular pack designs and AI-enabled battery management systems that raise reliability and extend useful life.
KEY MARKET STATISTICS | |
---|---|
Forecast Period | 2025 - 2035 |
2025 Evaluation | $886.6 Million |
2035 Forecast | $1,418.1 Million |
CAGR | 4.81% |
Market Introduction
In 2024, the global space battery market was valued at $851.8 million. Under the realistic scenario, it is projected to reach $1,418.1 million by 2035, reflecting a 4.81% CAGR over the forecast horizon. Growth is anchored in the surge of satellite deployments across commercial, civil, and defense applications; in technology advances that lift energy density while cutting mass; and in the adoption of AI-driven diagnostics that improve safety, availability, and maintainability in orbit. Together, satellite operators, space agencies, integrators, and battery suppliers are expanding the role of space batteries from a passive power reservoir to an actively managed, software-defined subsystem that underwrites mission success in radiation-rich, thermally volatile environments.
The platform mix is broad and increasing in sophistication. Satellites remain the principal demand center, with strong momentum in low Earth orbit constellations and growing emphasis on power-dense systems for GEO and deep-space assets. Orbital transfer vehicles and space logistics platforms are catalyzing needs for high-power, fast-cycling batteries that pair effectively with electric propulsion. Space stations and over-the-horizon sustained lunar infrastructure are driving requirements for long-life, fault-tolerant packs and advanced thermal control. Across this spectrum, qualification rigor and platform-specific customization remain decisive, shaping the competitive playing field for chemistry choices, pack architecture, and battery management strategies.
Market Impact
The space battery market's near-term impact will be most visible in program cadence, platform performance, and qualification economics rather than broad environmental outcomes. Higher energy density and pack modularity are expanding usable power margins across key platforms, i.e., satellites, orbital transfer vehicles, space stations, and launch vehicles, allowing operators to carry more payload, extend duty cycles, or add new mission services without redesigning the bus. This translates into faster constellation build-outs, smoother in-orbit commissioning, and greater maneuver authority for OTVs as electric-propulsion use scales.
Advances at the chemistry and system levels are reshaping the cost/performance envelope that procurement teams evaluate at PDR/CDR. Solid-state and lithium-sulfur roadmaps promise step-changes in specific energy and abuse tolerance, while next-generation Li-ion continues to be the workhorse for near-term flights. For integrators, this yields tighter mass and thermal budgets, simpler harnessing, and pack configurations that can be qualified once and reused across multiple SKUs and power classes.
At the same time, export controls and critical-minerals policies shape sourcing of cells, separators, and electronics, influencing regional make-versus-buy decisions and favoring vendors that can certify to multiple regulatory baselines (ITAR/ECSS) without redesign. As private capital accelerates (new LEO/GEO systems, lunar infrastructure, deep-space probes), buyers are prioritizing platforms and suppliers that can scale production while meeting qualification gates, turning battery technology selection, pack modularity, and certification credibility into decisive factors for award and schedule risk mitigation.
Industrial Impact
The space battery market is driving a deep reconfiguration of the global supply chain. The value chain extends from raw materials (lithium, nickel, cobalt, manganese, graphite, and separator foils), through cell and component manufacturing, to module/system integration, deployment, and ultimately end-of-life recycling. According to BIS Research estimates, raw materials contribute roughly 15-25% of the value, cells and components 25-35%, modules and system integration 20-30%, deployment 10-20%, and recycling 5-15%. This distribution reflects both the capital intensity of upstream mining/processing and the rising importance of downstream services, such as in-orbit servicing and recovery.
Industrial investment is scaling across multiple nodes. North America and Europe are focusing on high-purity lithium and cathode processing, while Japan and South Korea maintain strength in separators, anodes, and specialty electrolytes. The integration segment, particularly for satellites, OTVs, and lunar infrastructure, is consolidating around players with proven space qualification credentials (GS Yuasa, Saft Groupe, EnerSys, EaglePicher). Recycling and circular-economy approaches are still nascent but expected to expand as volumes rise, with initiatives such as space-focused secondary mineral recovery and hybrid terrestrial/space recycling loops gaining attention. Collectively, these industrial shifts reinforce the strategic nature of the space battery sector, linking national mineral security, advanced manufacturing, and long-term sustainability.
Industry and Technology Overview
Three technology vectors are shaping the market trajectory. First, solid-state batteries are emerging as a key future solution, offering improved safety, higher energy density, and longer cycle life, critical in radiation-heavy or thermally volatile orbits. Their adoption remains limited to prototypes but is expected to scale by the early 2030s. Second, smart modular battery systems are enabling mission-specific customization. Modular integration reduces NRE (non-recurring engineering) costs, shortens qualification cycles, and supports plug-and-play replacement in satellites and OTVs, aligning with responsive space and mega-constellation demands. Third, AI-enabled battery management systems (BMS) are transforming reliability. By leveraging sensor fusion, digital twins, and predictive maintenance, these BMS can anticipate failures, manage thermal loads, and extend mission lifetimes, moving the battery from a passive subsystem to an intelligent, software-defined asset.
Regulatory and R&D frameworks further reinforce these trends. Agencies such as NASA, ESA, and JAXA are embedding more stringent qualification standards around thermal runaway prevention, redundancy, and fail-safe operation. Export controls (ITAR, ECSS) influence supplier sourcing and certification paths, while patents in lithium-sulfur, solid-state, and hybrid chemistries indicate growing cross-industry spillover from terrestrial EV and grid storage domains. Collectively, these dynamics underscore a dual imperative; space batteries must meet cutting-edge energy density and modularity demands while maintaining uncompromising safety and reliability.
Market Segmentation:
Segmentation 1: by Platform
Satellites to Lead the Space Battery Market (by Platform)
Satellites remain the largest and most reliable demand center for space batteries, expanding from $605.8 million in 2024 to $962.8 million by 2035. Their dominance stems from the sheer scale of launch activity; more than 80% of planned orbital missions through 2035 are directly tied to satellite deployments. In low Earth orbit (LEO), mega-constellations for broadband connectivity, Earth observation, and defense reconnaissance require modular, high-cycle batteries capable of surviving thousands of charge/discharge cycles. In geostationary orbit (GEO), increasing payload sophistication, including advanced communication transponders and high-throughput satellites, demands packs with greater energy density and redundancy.
As the satellite market diversifies, from CubeSats to massive GEO platforms, space batteries must deliver fault tolerance, modularity, and qualification for hundreds of eclipse cycles. Smart BMS systems, thermal shielding, and modular pack designs are becoming prerequisites. This continuous demand ensures satellites remain the dominant platform segment for the foreseeable future, anchoring revenue for suppliers while driving innovation that later flows into OTVs, stations, and deep-space missions.
Segmentation 2: by Battery Type
Lithium-Based Batteries to Dominate the Space Battery Market (by Battery Type)
Lithium-based batteries continue to account for the majority of market share, rising from $776.1 million in 2024 to $1,307.9 million by 2035. Their success lies in their superior energy density, lighter mass, and adaptability to modular pack designs. Unlike nickel-hydrogen or nickel-cadmium systems, which remain limited to a handful of long-standing programs, lithium chemistries support the performance and scalability required by today's high-throughput constellations.
Future derivatives such as solid-state lithium and lithium-sulfur (Li-S) are expected to extend the dominance of this segment by improving safety, eliminating flammable liquid electrolytes, and offering substantial mass savings. While nickel-based chemistries provide proven robustness and have flown successfully for decades, their bulk and cycle limitations reduce their competitiveness. Lithium batteries, with their ability to integrate into smart modular systems and leverage predictive AI-driven BMS, will continue to be the backbone of space power through the forecast period 2025-2035, expanding both in absolute scale and in share of mission-critical applications.
Segmentation 3: by Power
Space batteries rated in the 1-10 kW power range are projected to dominate, growing from $426.8 million in 2024 to $699.1 million by 2035 in North America. This segment aligns closely with the needs of satellites, OTVs, and smaller space stations, which require compact, energy-dense packs capable of sustained discharge without excessive thermal buildup. The balance offered by 1-10 kW systems is high enough to support propulsion assists, communications, and payload operations, yet low enough to remain manageable for qualification, making them the workhorse of the industry.
As payloads and mission complexity increase, demand in the 11-100 kW and >100 kW segments will accelerate, particularly for lunar habitats, large orbital platforms, and heavy OTVs. However, the 1-10 kW range is expected to remain the backbone of constellation deployments and tactical missions. Its combination of scalability, reliability, and relatively straightforward qualification will ensure this power class continues to dominate in both unit volume and overall market value through 2035.
Segmentation 4: by Region
North America to Lead the Space Battery Market (by Region)
North America is expected to maintain its regional leadership, expanding from $710.5 million in 2024 to $1,174.7 million by 2035. The U.S. anchors this dominance through NASA's Artemis program, Department of Defense satellite initiatives, and a rapidly growing commercial launch sector led by companies such as SpaceX, Blue Origin, and Northrop Grumman. The presence of leading suppliers such as GS Yuasa, Saft Groupe (via U.S. subsidiaries), EnerSys, and EaglePicher Technologies further strengthens the industrial base.
In addition to robust R&D infrastructure, North America benefits from qualification facilities, critical mineral supply strategies, and public-private partnerships that reduce supply-chain risk. Europe, under ESA, is investing heavily in solid-state and modular designs, while Asia-Pacific nations (China, India, Japan) are rapidly scaling capacity and indigenous capability. Still, North America remains the hub for both flight heritage and commercialization, ensuring it retains the largest regional market share throughout the forecast horizon.
Demand: Drivers, Limitations, and Opportunities
Market Drivers: Satellite Constellations, Deep-Space Ambitions, and Technology Advances
The space battery market is being propelled by a surge in satellite launches, with low Earth orbit constellations alone projected to grow by more than 50% in 2025. This unprecedented cadence requires fault-tolerant, modular packs with rapid qualification and long-cycle durability. Simultaneously, ambitions for deep-space exploration spanning lunar bases, Mars exploration, and asteroid probes are intensifying demand for chemistries with extended lifetimes, high energy density, and enhanced radiation tolerance.
At the technology level, solid-state batteries and lithium-sulfur systems promise game-changing improvements in safety and weight, while AI-enabled BMS introduce predictive maintenance, digital twins, and real-time thermal control. These advances ensure that space batteries are not merely energy reservoirs but active enablers of mission flexibility and reliability. Together, these drivers underpin a market environment where innovation is a necessity, not an option.
Market Challenges: Qualification Burden, Cost Pressures, and Supply Constraints
Despite strong momentum, the sector faces critical challenges. The qualification burden remains extremely high; every cell, module, and pack must be proven under conditions of vacuum, vibration, radiation, and severe thermal cycling. Incidents of thermal runaway, such as those reported with nickel-hydrogen packs, have reinforced the need for multiple fail-safes, redundancy, and conservative design margins, all of which drive cost and weight.
Economic barriers are equally daunting. Development and qualification campaigns often cost tens of millions of dollars, limiting participation primarily to established aerospace primes and specialty suppliers. On the supply side, the reliance on critical minerals (lithium, cobalt, nickel, and graphite) and separator films exposes programs to price volatility, geopolitical disruptions, and export control regimes such as ITAR and ECSS. These risks not only strain project economics but also create scheduling uncertainties that can ripple through satellite and launch timelines.
Market Opportunities: Private Investment, Hybrid Energy Systems, and Recycling Initiatives
Counterbalancing these constraints are significant opportunities. Private investment is flowing into a new wave of space-energy startups, examples include Zeno Power (radioisotope-assisted systems), Aetherflux (solid-state prototypes), and Pixxel (integrated satellite energy platforms). These firms are pushing boundaries on safety, modularity, and cross-domain integration.
Hybrid energy systems, which combine solar arrays, fuel cells, and advanced batteries, are emerging as powerful enablers for lunar bases, OTVs, and long-duration stations. These systems extend mission profiles and reduce dependency on any single energy source. Meanwhile, recycling and resource-recovery programs are beginning to take shape, with initiatives aimed at extracting lithium, nickel, and cobalt from retired space packs. By aligning with circular-economy goals, these programs reduce costs, improve material security, and enhance the sustainability credentials of the space industry.
Together, these demand drivers, challenges, and opportunities define a market that is both complex and dynamic. Stakeholders who can balance innovation with reliability and cost with qualification rigor will be best positioned to capture long-term growth.
How can this report add value to an organization?
Product/Innovation Strategy: This report clarifies the evolution of space-grade battery chemistries, space today, with rapid progress in solid-state and lithium-sulfur batteries, and dissects how pack architecture, thermal design, abuse tolerance, and AI-enabled BMS are converging to raise safety and lifetime. R&D teams can use these insights to prioritize qualification paths, de-risk material choices, and align module designs to platform-specific constraints in LEO, GEO, and deep space.
Growth/Marketing Strategy: The space battery market has been experiencing steady expansion, fueled by the rising demand for satellite constellations, deep-space missions, and orbital transfer vehicles. Companies are actively forming strategic partnerships with space agencies and commercial launch providers to secure long-term supply contracts and expand their operational footprint. By offering advanced battery systems that emphasize high energy density, modularity, and platform-specific customization, organizations can position themselves to capture demand across multiple mission profiles. Emphasizing technological innovation, such as solid-state and lithium-sulfur chemistries, and demonstrating proven flight heritage will allow suppliers to enhance brand credibility, strengthen customer relationships, and secure a larger share of upcoming satellite and exploration programs.
Competitive Strategy: The report provides a detailed analysis and profiling of key players in the space battery market, including GS Yuasa Corporation, Saft Groupe (TotalEnergies), EnerSys, and EaglePicher Technologies. The analysis highlights their product portfolios, recent technological developments, program participation, and regional market strengths. It thoroughly examines market dynamics and competitive positioning, enabling readers to understand how these companies benchmark against each other and adapt to evolving program requirements. This competitive landscape assessment provides organizations with critical insights to refine their strategies, identify differentiation opportunities in areas such as chemistry innovation and BMS integration, and pursue growth in high-priority regions and platform segments.
Research Methodology
Factors for Data Prediction and Modelling
Market Estimation and Forecast
The space battery market research study involves the usage of extensive secondary sources, such as certified publications, articles from recognized authors, white papers, annual reports of companies, directories, and major databases to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the market.
The market engineering process involves the calculation of the market statistics, market size estimation, market forecast, market crackdown, and data triangulation (the methodology for such quantitative data processes has been explained in further sections). The primary research study has been undertaken to gather information and validate the market numbers for segmentation types and industry trends of the key players in the market.
Primary Research
The primary sources involve industry experts from the space battery market and various stakeholders in the ecosystem. Respondents such as CEOs, vice presidents, marketing directors, and technology and innovation directors have been interviewed to obtain and verify both qualitative and quantitative aspects of this research study.
The key data points taken from primary sources include:
Secondary Research
Space battery market research study involves the usage of extensive secondary research, directories, company websites, and annual reports. It also makes use of databases, such as Hoovers, Bloomberg, Businessweek, and Factiva, to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the global market. In addition to the data sources, the study has been undertaken with the help of other data sources and websites, such as the Space Foundation, UCS, UNOOSA, etc.
Secondary research was done to obtain crucial information about the industry's value chain, revenue models, the market's monetary chain, the total pool of key players, and the current and potential use cases and applications.
The key data points taken from secondary research include:
Scope and Definition