시장보고서
상품코드
1658658

물류 분야 생성형 인공지능(AI) 시장 : 유형별, 구성 요소별, 배포 모드별, 용도별, 최종 사용자별, 지역별 세계 동향 분석, 경쟁 구도 및 예측(2019-2031년)

Generative AI in Logistics Market, By Type; By Component; By Deployment Mode; By Application; By End User; By Region, Global Trend Analysis, Competitive Landscape & Forecast, 2019-2031

발행일: | 리서치사: Blueweave Consulting | 페이지 정보: 영문 511 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    



■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

세계 물류 분야 생성형 인공지능(AI) 시장은 공급망 프로세스를 최적화하기 위한 자동화와 AI 기술의 채용이 증가하고 물류 업무에서의 의사결정 능력을 강화할 필요성이 높아지고 있기 때문에 활황을 보이고 있습니다.

세계 물류 분야 생성형 인공지능(AI) 시장 규모는 2024년에 11억 달러에 달했습니다. 2025년부터 2031년까지의 예측 기간 동안 44.20%의 견조한 CAGR로 확대될 것으로 추정되며, 2031년에는 156억 달러에 달할 것으로 예상되고 있습니다. 절차를 표준화하고 마지막 마일 배송을 개선하기 위한 인공지능(AI)에 대한 투자 증가는 세계 물류 분야 생성형 인공지능(AI) 시장의 주요 성장 요인 중 하나입니다. 물류업계는 공급망 자동화, 수요 예측, 창고 관리, 재고 관리, 루트 최적화 등 다양한 방법으로 생성형 AI의 혜택을 받아 기업 관계자가 정보를 기반으로 한 선택을 즉시 수행할 수 있게 됩니다.

AI 기술에 대한 투자 증가와 AI 기술의 진화는 세계 물류 분야 생성형 인공지능(AI) 시장에 유리한 성장 기회를 가져올 것으로 예측됩니다. AI 모델은 현재 물류 업무에서 IoT 장치, GPS 및 기타 센서에서 생성된 엄청난 양의 데이터를 활용할 수 있게 되어 있으며, 이러한 데이터를 사용하여 시스템을 훈련하고 정확하고 예측 및 최적화를 생성할 수 있습니다. 또한 머신러닝(ML) 알고리즘, 자연 언어 처리(NLP), 신경망의 발전은 엄청난 데이터 세트를 분석하고 의사 결정을 자동화하는 생성형 AI의 능력을 지속적으로 향상시키고 있습니다. 이러한 진보는 물류기업에 있어서 생성AI를 보다 친숙하고 효과적인 것으로 하여, 이 분야에서의 급속한 도입으로 이어지고 있습니다.

지정학적 긴장의 격화는 세계 물류 분야 생성형 인공지능(AI) 시장의 성장을 가속할 수 있습니다. 세계 공급망은 무역 제한, 국경 폐쇄 및 운송 지연으로 인해 지정학적 분쟁으로 혼란스럽습니다. 이러한 혼란은 이러한 장애를 해결하기 위해 물류 업계에서 생성형 AI의 사용을 뒷받침했습니다. 루트 최적화, 수요 변동 예측, 기타 공급업체 및 루트 발견을 통해 생성형 AI는 이러한 중단을 예측하고 완화하는 데 활용됩니다. 그러나 지정학적 분쟁은 AI 시스템 훈련에 필요한 실시간 소비자 데이터가 부족하기 때문에 AI 모델의 정확성에 영향을 미칠 수 있으며 생성형 AI 산업에 심각한 장애가 될 수 있습니다.

이 보고서는 세계 물류 분야 생성형 인공지능(AI) 시장을 조사했으며, 시장 개요와 함께 유형별, 구성 요소별, 배포 모드별, 용도별, 최종 사용자별, 지역별 동향, 경쟁 구도, 시장 진출기업 프로파일 등의 정보를 제공합니다.

목차

제1장 조사 프레임워크

제2장 주요 요약

제3장 세계의 물류 분야 생성형 인공지능(AI) 시장 인사이트

  • 업계 밸류체인 분석
  • DROC 분석
    • 성장 촉진요인
    • 성장 억제요인
    • 기회
    • 과제
  • 기술 진보/최근 동향
  • 규제 프레임워크
  • Porter's Five Forces 분석

제4장 세계 물류 분야 생성형 인공지능(AI) 시장 : 마케팅 전략

제5장 세계 물류 분야 생성형 인공지능(AI) 시장 : 지역 분석

  • 세계의 물류 분야 생성형 인공지능(AI) 시장, 지역 분석(2024년)
  • 세계의 물류 분야 생성형 인공지능(AI) 시장, 시장의 매력 분석(2024-2031년)

제6장 세계 물류 분야 생성형 인공지능(AI) 시장 개요

  • 시장 규모와 예측(2019-2031년)
  • 시장 점유율과 예측
    • 유형별
    • 구성 요소별
    • 배포 모드별
    • 용도별
    • 최종 사용자별
    • 지역별

제7장 북미의 물류 분야 생성형 인공지능(AI) 시장

제8장 유럽의 물류 분야 생성형 인공지능(AI) 시장

제9장 아시아태평양의 물류 분야 생성형 인공지능(AI) 시장

제10장 라틴아메리카의 물류 분야 생성형 인공지능(AI) 시장

제11장 중동 및 아프리카의 물류 분야 생성형 인공지능(AI) 시장

제12장 경쟁 구도

  • 주요 참가 기업과 그 제공 내용의 리스트
  • 세계의 물류 분야 생성형 인공지능(AI) 시장 점유율 분석(2024년)
  • 경영 파라미터별 경쟁 벤치마킹
  • 주요 전략적 전개(합병, 인수, 제휴)

제13장 지정학적 긴장의 고조가 세계의 물류 분야 생성형 인공지능(AI) 시장에 미치는 영향

제14장 기업 프로파일(기업 개요, 재무 매트릭스, 경쟁 구도, 주요 인원, 주요 경쟁 기업, 연락처, 전략적 전망, SWOT 분석)

  • Blue Yonder
  • CH Robinson
  • FedEx Corp
  • Google Cloud
  • IBM
  • Microsoft
  • PackageX
  • Salesforce
  • Deutsche Post AG
  • Schneider Electric
  • AP Moller-Maersk
  • 기타

제15장 주요 전략적 제안

제16장 조사 방법

KTH 25.03.06

Global Generative AI in Logistics Market Zooming 14X to Touch USD 16 Billion by 2031

Global Generative AI in Logistics Market is flourishing because of the rising adoption of automation and AI technologies to optimize supply chain processes and growing need for enhanced decision-making capabilities in logistics operations.

BlueWeave Consulting, a leading strategic consulting and market research firm, in its recent study, estimated Global Generative AI in Logistics Market size at USD 1.10 billion in 2024. During the forecast period between 2025 and 2031, BlueWeave expects Global Generative AI in Logistics Market size to expand at a robust CAGR of 44.20% reaching a value of USD 15.60 billion by 2031. Increasing investments in artificial intelligence (AI) to standardize procedures and improve last-mile delivery is one of the key growth drivers for Global Generative AI in Logistics Market. The logistics industry benefits from generative AI in a number of ways, including supply chain automation, demand forecasting, warehousing and inventory management, and route optimization, which enables business actors to make informed choices instantly.

Opportunity - Advancements in AI Technology and Data Availability

Rising investments in and evolution of AI technologies are projected to present lucrative growth opportunities for Global Generative AI in Logistics Market. AI models are now able to leverage vast amounts of data being generated from IoT devices, GPS, and other sensors in logistics operations that can be used to train these systems and generate highly accurate predictions and optimizations. Furthermore, advancements in machine learning (ML) algorithms, natural language processing (NLP), and neural networks are constantly improving the ability of generative AI to analyze vast datasets and automate decision-making. These advancements make generative AI more accessible and effective for logistics companies, leading to their rapid adoption across the sector.

Impact of Escalating Geopolitical Tensions on Global Generative AI in Logistics Market

Intensifying geopolitical tensions could propel the growth of Global Generative AI in Logistics Market. The global supply chain is disrupted by geopolitical conflicts because of trade restrictions, border closures, and delays in transit. These disruptions pushed the use of generative AI in the logistics industry to address these obstacles. Through route optimization, demand fluctuation predictions, and the discovery of other suppliers and routes, generative AI is being utilized to anticipate and lessen these interruptions. Geopolitical conflicts, however, may also present serious obstacles for the generative AI industry because of the scarcity of real-time consumer data needed to train these AI systems, which might affect the accuracy of AI models.

Route Optimization Leads Global Generative AI Logistics Market

The route optimization segment holds the largest share of Global Generative AI in Logistics Market. In the logistics industry, generative AI is frequently used to improve routes by analyzing historical data, current traffic conditions, and other variables. In order to cut down on delivery times and transportation expenses, the analysis is then utilized to create effective transportation strategies. The demand forecasting segment also covers substantial market share. Supply chain managers may use generative AI to automate ordering plans to keep inventory levels up to date and forecast future trends based on historical data.

North America Dominates Global Generative AI in Logistics Market

North America holds a major market share in Global Generative AI in Logistics Market. The adoption of generative AI in the logistics sector is directly fueled by the presence of industry giants in this field, such as Google, AWS, OpenAI, and IBM in the region. Logistics companies in the United States are employing modern technologies, such as generative AI, for numerous objectives, such as tracking customer behavior and historical sales data, optimizing production planning, and conducting risk anticipation. Such cases increase the logistics industry's operational resilience and productivity, which encourages this sector to incorporate generative AI into their operations.

Competitive Landscape

The major industry players of global Generative AI in Logistics market include Blue Yonder, C. H. Robinson, FedEx Corp., Google Cloud, IBM, Microsoft, PackageX, Salesforce, Deutsche Post AG, Schneider Electric, and A.P. Moller - Maersk. The presence of high number of companies intensify the market competition as they compete to gain a significant market share. These companies employ various strategies, including mergers and acquisitions, partnerships, joint ventures, license agreements, and new product launches to further enhance their market share.

The in-depth analysis of the report provides information about growth potential, upcoming trends, and Global Generative AI in Logistics Market. It also highlights the factors driving forecasts of total market size. The report promises to provide recent technology trends in Global Generative AI in Logistics Market and industry insights to help decision-makers make sound strategic decisions. Furthermore, the report also analyzes the growth drivers, challenges, and competitive dynamics of the market.

Table of Contents

1. Research Framework

  • 1.1. Research Objective
  • 1.2. Product Overview
  • 1.3. Market Segmentation

2. Executive Summary

3. Global Generative AI in Logistics Market Insights

  • 3.1. Industry Value Chain Analysis
  • 3.2. DROC Analysis
    • 3.2.1. Growth Drivers
      • 3.2.1.1. Rising Adoption of Automation and AI Technologies to Optimize Supply Chain Processes
      • 3.2.1.2. Growing Need for Enhanced Decision-Making Capabilities in Logistics Operations
      • 3.2.1.3. Increasing Use of Predictive Analytics for Demand Forecasting and Route Optimization
    • 3.2.2. Restraints
      • 3.2.2.1. High Implementation Costs of Generative AI Solutions for Logistics Companies
      • 3.2.2.2. Limited AI Expertise and Skilled Workforce to Operate and Manage AI Technologies
    • 3.2.3. Opportunities
      • 3.2.3.1. Integration of Generative AI with IoT, Blockchain, and Robotics to Enhance Supply Chain Efficiency
      • 3.2.3.2. Development of AI-driven Autonomous Vehicles and Drones for Logistics Operations
      • 3.2.3.3. Growing Adoption of Generative AI in Warehouse Management and Inventory Optimization
    • 3.2.4. Challenges
      • 3.2.4.1. Managing Data Quality and Standardization Across Fragmented Supply Chain Networks.
      • 3.2.4.2. Data Privacy and Cybersecurity Concerns in Handling Sensitive Logistics Data
  • 3.3. Technological Advancements/Recent Developments
  • 3.4. Regulatory Framework
  • 3.5. Porter's Five Forces Analysis
    • 3.5.1. Bargaining Power of Suppliers
    • 3.5.2. Bargaining Power of Buyers
    • 3.5.3. Threat of New Entrants
    • 3.5.4. Threat of Substitutes
    • 3.5.5. Intensity of Rivalry

4. Global Generative AI in Logistics Market: Marketing Strategies

5. Global Generative AI in Logistics Market: Geographical Analysis

  • 5.1. Global Generative AI in Logistics Market, Geographical Analysis, 2024
  • 5.2. Global Generative AI in Logistics Market, Market Attractiveness Analysis, 2024-2031

6. Global Generative AI in Logistics Market Overview

  • 6.1. Market Size & Forecast, 2019-2031
    • 6.1.1. By Value (USD Billion)
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
      • 6.2.1.1. Variational Autoencoder (VAE)
      • 6.2.1.2. Generative Adversarial Networks (GANs)
      • 6.2.1.3. Recurrent Neural Networks (RNNs)
      • 6.2.1.4. Long Short-Term Memory (LSTM) networks
      • 6.2.1.5. Others
    • 6.2.2. By Component
      • 6.2.2.1. Software
      • 6.2.2.2. Services
    • 6.2.3. By Deployment Mode
      • 6.2.3.1. Cloud
      • 6.2.3.2. On-premises
    • 6.2.4. By Application
      • 6.2.4.1. Route Optimization
      • 6.2.4.2. Demand Forecasting
      • 6.2.4.3. Warehouse & Inventory Management
      • 6.2.4.4. Supply Chain Automation
      • 6.2.4.5. Predictive Maintenance
      • 6.2.4.6. Risk Management
      • 6.2.4.7. Customized Logistics Solutions
      • 6.2.4.8. Others
    • 6.2.5. By End User
      • 6.2.5.1. Road Transportation
      • 6.2.5.2. Railway Transportation
      • 6.2.5.3. Aviation
      • 6.2.5.4. Shipping & Ports
    • 6.2.6. By Region
      • 6.2.6.1. North America
      • 6.2.6.2. Europe
      • 6.2.6.3. Asia Pacific (APAC)
      • 6.2.6.4. Latin America (LATAM)
      • 6.2.6.5. Middle East and Africa (MEA)

7. North America Generative AI in Logistics Market

  • 7.1. Market Size & Forecast, 2019-2031
    • 7.1.1. By Value (USD Billion)
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Component
    • 7.2.3. By Deployment Mode
    • 7.2.4. By Application
    • 7.2.5. By End User
    • 7.2.6. By Country
      • 7.2.6.1. United States
      • 7.2.6.1.1. By Type
      • 7.2.6.1.2. By Component
      • 7.2.6.1.3. By Deployment Mode
      • 7.2.6.1.4. By Application
      • 7.2.6.1.5. By End User
      • 7.2.6.2. Canada
      • 7.2.6.2.1. By Type
      • 7.2.6.2.2. By Component
      • 7.2.6.2.3. By Deployment Mode
      • 7.2.6.2.4. By Application
      • 7.2.6.2.5. By End User

8. Europe Generative AI in Logistics Market

  • 8.1. Market Size & Forecast, 2019-2031
    • 8.1.1. By Value (USD Billion)
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Component
    • 8.2.3. By Deployment Mode
    • 8.2.4. By Application
    • 8.2.5. By End User
    • 8.2.6. By Country
      • 8.2.6.1. Germany
      • 8.2.6.1.1. By Type
      • 8.2.6.1.2. By Component
      • 8.2.6.1.3. By Deployment Mode
      • 8.2.6.1.4. By Application
      • 8.2.6.1.5. By End User
      • 8.2.6.2. United Kingdom
      • 8.2.6.2.1. By Type
      • 8.2.6.2.2. By Component
      • 8.2.6.2.3. By Deployment Mode
      • 8.2.6.2.4. By Application
      • 8.2.6.2.5. By End User
      • 8.2.6.3. Italy
      • 8.2.6.3.1. By Type
      • 8.2.6.3.2. By Component
      • 8.2.6.3.3. By Deployment Mode
      • 8.2.6.3.4. By Application
      • 8.2.6.3.5. By End User
      • 8.2.6.4. France
      • 8.2.6.4.1. By Type
      • 8.2.6.4.2. By Component
      • 8.2.6.4.3. By Deployment Mode
      • 8.2.6.4.4. By Application
      • 8.2.6.4.5. By End User
      • 8.2.6.5. Spain
      • 8.2.6.5.1. By Type
      • 8.2.6.5.2. By Component
      • 8.2.6.5.3. By Deployment Mode
      • 8.2.6.5.4. By Application
      • 8.2.6.5.5. By End User
      • 8.2.6.6. Belgium
      • 8.2.6.6.1. By Type
      • 8.2.6.6.2. By Component
      • 8.2.6.6.3. By Deployment Mode
      • 8.2.6.6.4. By Application
      • 8.2.6.6.5. By End User
      • 8.2.6.7. Russia
      • 8.2.6.7.1. By Type
      • 8.2.6.7.2. By Component
      • 8.2.6.7.3. By Deployment Mode
      • 8.2.6.7.4. By Application
      • 8.2.6.7.5. By End User
      • 8.2.6.8. The Netherlands
      • 8.2.6.8.1. By Type
      • 8.2.6.8.2. By Component
      • 8.2.6.8.3. By Deployment Mode
      • 8.2.6.8.4. By Application
      • 8.2.6.8.5. By End User
      • 8.2.6.9. Rest of Europe
      • 8.2.6.9.1. By Type
      • 8.2.6.9.2. By Component
      • 8.2.6.9.3. By Deployment Mode
      • 8.2.6.9.4. By Application
      • 8.2.6.9.5. By End User

9. Asia Pacific Generative AI in Logistics Market

  • 9.1. Market Size & Forecast, 2019-2031
    • 9.1.1. By Value (USD Billion)
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Component
    • 9.2.3. By Deployment Mode
    • 9.2.4. By Application
    • 9.2.5. By End User
    • 9.2.6. By Country
      • 9.2.6.1. China
      • 9.2.6.1.1. By Type
      • 9.2.6.1.2. By Component
      • 9.2.6.1.3. By Deployment Mode
      • 9.2.6.1.4. By Application
      • 9.2.6.1.5. By End User
      • 9.2.6.2. India
      • 9.2.6.2.1. By Type
      • 9.2.6.2.2. By Component
      • 9.2.6.2.3. By Deployment Mode
      • 9.2.6.2.4. By Application
      • 9.2.6.2.5. By End User
      • 9.2.6.3. Japan
      • 9.2.6.3.1. By Type
      • 9.2.6.3.2. By Component
      • 9.2.6.3.3. By Deployment Mode
      • 9.2.6.3.4. By Application
      • 9.2.6.3.5. By End User
      • 9.2.6.4. South Korea
      • 9.2.6.4.1. By Type
      • 9.2.6.4.2. By Component
      • 9.2.6.4.3. By Deployment Mode
      • 9.2.6.4.4. By Application
      • 9.2.6.4.5. By End User
      • 9.2.6.5. Australia & New Zealand
      • 9.2.6.5.1. By Type
      • 9.2.6.5.2. By Component
      • 9.2.6.5.3. By Deployment Mode
      • 9.2.6.5.4. By Application
      • 9.2.6.5.5. By End User
      • 9.2.6.6. Indonesia
      • 9.2.6.6.1. By Type
      • 9.2.6.6.2. By Component
      • 9.2.6.6.3. By Deployment Mode
      • 9.2.6.6.4. By Application
      • 9.2.6.6.5. By End User
      • 9.2.6.7. Malaysia
      • 9.2.6.7.1. By Type
      • 9.2.6.7.2. By Component
      • 9.2.6.7.3. By Deployment Mode
      • 9.2.6.7.4. By Application
      • 9.2.6.7.5. By End User
      • 9.2.6.8. Singapore
      • 9.2.6.8.1. By Type
      • 9.2.6.8.2. By Component
      • 9.2.6.8.3. By Deployment Mode
      • 9.2.6.8.4. By Application
      • 9.2.6.8.5. By End User
      • 9.2.6.9. Vietnam
      • 9.2.6.9.1. By Type
      • 9.2.6.9.2. By Component
      • 9.2.6.9.3. By Deployment Mode
      • 9.2.6.9.4. By Application
      • 9.2.6.9.5. By End User
      • 9.2.6.10. Rest of APAC
      • 9.2.6.10.1. By Type
      • 9.2.6.10.2. By Component
      • 9.2.6.10.3. By Deployment Mode
      • 9.2.6.10.4. By Application
      • 9.2.6.10.5. By End User

10. Latin America Generative AI in Logistics Market

  • 10.1. Market Size & Forecast, 2019-2031
    • 10.1.1. By Value (USD Billion)
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Component
    • 10.2.3. By Deployment Mode
    • 10.2.4. By Application
    • 10.2.5. By End User
    • 10.2.6. By Country
      • 10.2.6.1. Brazil
      • 10.2.6.1.1. By Type
      • 10.2.6.1.2. By Component
      • 10.2.6.1.3. By Deployment Mode
      • 10.2.6.1.4. By Application
      • 10.2.6.1.5. By End User
      • 10.2.6.2. Mexico
      • 10.2.6.2.1. By Type
      • 10.2.6.2.2. By Component
      • 10.2.6.2.3. By Deployment Mode
      • 10.2.6.2.4. By Application
      • 10.2.6.2.5. By End User
      • 10.2.6.3. Argentina
      • 10.2.6.3.1. By Type
      • 10.2.6.3.2. By Component
      • 10.2.6.3.3. By Deployment Mode
      • 10.2.6.3.4. By Application
      • 10.2.6.3.5. By End User
      • 10.2.6.4. Peru
      • 10.2.6.4.1. By Type
      • 10.2.6.4.2. By Component
      • 10.2.6.4.3. By Deployment Mode
      • 10.2.6.4.4. By Application
      • 10.2.6.4.5. By End User
      • 10.2.6.5. Rest of LATAM
      • 10.2.6.5.1. By Type
      • 10.2.6.5.2. By Component
      • 10.2.6.5.3. By Deployment Mode
      • 10.2.6.5.4. By Application
      • 10.2.6.5.5. By End User

11. Middle East & Africa Generative AI in Logistics Market

  • 11.1. Market Size & Forecast, 2019-2031
    • 11.1.1. By Value (USD Billion)
  • 11.2. Market Share & Forecast
    • 11.2.1. By Type
    • 11.2.2. By Component
    • 11.2.3. By Deployment Mode
    • 11.2.4. By Application
    • 11.2.5. By End User
    • 11.2.6. By Country
      • 11.2.6.1. Saudi Arabia
      • 11.2.6.1.1. By Type
      • 11.2.6.1.2. By Component
      • 11.2.6.1.3. By Deployment Mode
      • 11.2.6.1.4. By Application
      • 11.2.6.1.5. By End User
      • 11.2.6.2. UAE
      • 11.2.6.2.1. By Type
      • 11.2.6.2.2. By Component
      • 11.2.6.2.3. By Deployment Mode
      • 11.2.6.2.4. By Application
      • 11.2.6.2.5. By End User
      • 11.2.6.3. Qatar
      • 11.2.6.3.1. By Type
      • 11.2.6.3.2. By Component
      • 11.2.6.3.3. By Deployment Mode
      • 11.2.6.3.4. By Application
      • 11.2.6.3.5. By End User
      • 11.2.6.4. Kuwait
      • 11.2.6.4.1. By Type
      • 11.2.6.4.2. By Component
      • 11.2.6.4.3. By Deployment Mode
      • 11.2.6.4.4. By Application
      • 11.2.6.4.5. By End User
      • 11.2.6.5. South Africa
      • 11.2.6.5.1. By Type
      • 11.2.6.5.2. By Component
      • 11.2.6.5.3. By Deployment Mode
      • 11.2.6.5.4. By Application
      • 11.2.6.5.5. By End User
      • 11.2.6.6. Nigeria
      • 11.2.6.6.1. By Type
      • 11.2.6.6.2. By Component
      • 11.2.6.6.3. By Deployment Mode
      • 11.2.6.6.4. By Application
      • 11.2.6.6.5. By End User
      • 11.2.6.7. Algeria
      • 11.2.6.7.1. By Type
      • 11.2.6.7.2. By Component
      • 11.2.6.7.3. By Deployment Mode
      • 11.2.6.7.4. By Application
      • 11.2.6.7.5. By End User
      • 11.2.6.8. Rest of MEA
      • 11.2.6.8.1. By Type
      • 11.2.6.8.2. By Component
      • 11.2.6.8.3. By Deployment Mode
      • 11.2.6.8.4. By Application
      • 11.2.6.8.5. By End User

12. Competitive Landscape

  • 12.1. List of Key Players and Their Offerings
  • 12.2. Global Generative AI in Logistics Company Market Share Analysis, 2024
  • 12.3. Competitive Benchmarking, By Operating Parameters
  • 12.4. Key Strategic Developments (Mergers, Acquisitions, Partnerships)

13. Impact of Escalating Geopolitical Tensions on Global Generative AI in Logistics Market

14. Company Profile (Company Overview, Financial Matrix, Competitive Landscape, Key Personnel, Key Competitors, Contact Address, Strategic Outlook, SWOT Analysis)

  • 14.1. Blue Yonder
  • 14.2. C. H. Robinson
  • 14.3. FedEx Corp
  • 14.4. Google Cloud
  • 14.5. IBM
  • 14.6. Microsoft
  • 14.7. PackageX
  • 14.8. Salesforce
  • 14.9. Deutsche Post AG
  • 14.10. Schneider Electric
  • 14.11. A.P. Moller - Maersk
  • 14.12. Other Prominent Players

15. Key Strategic Recommendations

16. Research Methodology

  • 16.1. Qualitative Research
    • 16.1.1. Primary & Secondary Research
  • 16.2. Quantitative Research
  • 16.3. Market Breakdown & Data Triangulation
    • 16.3.1. Secondary Research
    • 16.3.2. Primary Research
  • 16.4. Breakdown of Primary Research Respondents, By Region
  • 16.5. Assumptions & Limitations

*Financial information of non-listed companies can be provided as per availability.

**The segmentation and the companies are subject to modifications based on in-depth secondary research for the final deliverable

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제