½ÃÀ庸°í¼­
»óǰÄÚµå
1453738

¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : ±Ô¸ð ¹× ¿¹Ãø - À¯Çüº°, Á¦Ç°º°, ¿ëµµº°, Áö¿ªº° ºÐ¼®(2023-2030³â)

Global Agricultural Robots Market Size Study & Forecast, by Type, By Offering, By Application, and Regional Analysis, 2023-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Bizwit Research & Consulting LLP | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ³ó¾÷¿ë ·Îº¿ ½ÃÀå ±Ô¸ð´Â 2022³â ¾à 115¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ¿¹Ãø ±â°£ µ¿¾È 20.6% ÀÌ»óÀÇ °ßÁ¶ÇÑ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ³ó¾÷¿ë ·Îº¿Àº AI, ¼¾¼­ µî ÷´Ü ±â¼úÀ» žÀçÇØ ³óÀÛ¾÷À» ÀÚµ¿È­ÇÏ´Â Àü¿ë ±â°èÀÔ´Ï´Ù.

³óÀÛ¹°À» ¼öÈ®ÇÏ´Â ¼öÈ® ·Îº¿, ÀâÃʸ¦ Á¦°ÅÇÏ´Â Á¦ÃÊ ·Îº¿, ¾¾¾ÑÀ» Á¤È®ÇÏ°Ô ½É´Â ½É±â ·Îº¿, Åä¾ç°ú ÀÛ¹°ÀÇ »óŸ¦ Æò°¡ÇÏ´Â ¸ð´ÏÅ͸µ ·Îº¿ µî ´Ù¾çÇÑ À¯ÇüÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ·Îº¿Àº ÀΰǺñ¸¦ ÁÙÀ̰í, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸç, ÀÛ¹° ¼öÈ®·®À» Çâ»ó½ÃÄÑ ³ó¾÷ÀÇ È¿À²¼º, »ý»ê¼º ¹× Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. À¯¿£ÀÇ ¿¹Ãø¿¡ µû¸£¸é ¼¼°è Àα¸´Â 2030³â±îÁö 86¾ï ¸í, 2050³â±îÁö 98¾ï ¸í¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ½Ä·® ¾Èº¸¸¦ º¸ÀåÇϱâ À§ÇØ ÀüÅëÀûÀÎ ½Ä·® »ý»ê ¹æ½Ä¿¡ ¾öû³­ ¾Ð·ÂÀ» °¡Çϰí ÀÖ½À´Ï´Ù. ³ó¾÷¿ë ·Îº¿°ú µå·ÐÀº ³ó¹ý¿¡ Çõ¸íÀ» °¡Á®¿Ã ¼ö ÀÖ´Â Á¤È®¼º°ú ÃÖÀûÈ­ ±â´ÉÀ» Á¦°øÇÏ´Â Çõ½ÅÀûÀÎ ±â¼ú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àα¸ Áõ°¡¿Í µµ½Ã·ÎÀÇ ÀÌÁÖ·Î ÀÎÇØ ³ó¾÷ ³ëµ¿·ÂÀÌ °¨¼ÒÇÔ¿¡ µû¶ó ÀÛ¾÷À» ÀÚµ¿È­ÇÏ°í ¼öÀÛ¾÷¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ ³ó¾÷¿ë ·Îº¿ÀÇ µµÀÔÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ³ó¾÷¿ë ·Îº¿ ½ÃÀåÀº ºñ¿ë È¿À²ÀûÀ̰í È¿À²ÀûÀÎ ³ëµ¿ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÇÔ²² ´Ù¾çÇÑ ¿äÀο¡ ´ëÇÑ µ¥ÀÌÅ͸¦ ºÐ¼®Çϱâ À§ÇØ ³óÀå °ü¸®¿Í ¿¬°áµÇ´Â IoT ±â±â Áõ°¡¿Í ÇÔ²² Å« ÆøÀÇ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

¶ÇÇÑ, ³ó¾÷ ºÐ¾ß¿¡¼­ Ç×°ø µ¥ÀÌÅÍ ¼öÁý µµ±¸ÀÇ Ã¤Åà Áõ°¡¿Í µå·Ð ±â¼úÀ» ÅëÇÑ Á¤¹Ð ³ó¾÷ÀÇ °­È­´Â Àü ¼¼°è ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¹«ÀÎÇ×°ø±â(UAV)¶ó°íµµ ºÒ¸®´Â µå·ÐÀº Åä¾ç ¹× ÀÛ¹° ¸ð´ÏÅ͸µ, »ìÆ÷, ½É±â, °ü°³, ¹ç ¸ð´ÏÅ͸µ µî ´Ù¾çÇÑ ³ó¾÷ ºÐ¾ß¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Çö´ëÀÇ ³óºÎµéÀº µ¥ÀÌÅÍ ±â¹Ý Á¢±Ù ¹æ½ÄÀ» Ȱ¿ëÇÏ¿© ºñ·á¿Í ³ó¾à »ç¿ë·®À» ÃÖÀûÈ­Çϰí ÀÛ¹° ¼öÈ®·®À» ´Ã¸®°í ÀÖ½À´Ï´Ù. È¿À²¼ºÀ» Áß½ÃÇÏ´Â ³óºÎµéÀº ÀÛ¹° »ìÆ÷, ¸ð´ÏÅ͸µ, °ü°³ °ü¸®, °¡Ãà °Ç°­ °ËÁø µîÀÇ ÀÛ¾÷¿¡ µå·ÐÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±â»ó Á¶°Ç, Åä¾ç ºñ¿Áµµ, ¿µ¾ç ¼öÁذú °°Àº ¿äÀÎÀ» ºÐ¼®ÇÏ¿© ³óºÎµéÀº ƯÈ÷ °èÀý ÀÛ¹°À̳ª Ư¼ö ÀÛ¹°À» Àû½Ã¿¡ ¼öÈ®ÇÏ´Â µî ¹ç¿¡¼­ÀÇ È°µ¿À» È¿À²ÀûÀ¸·Î °èȹÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ³ó¾÷ ºÐ¾ß¿¡¼­ UAVÀÇ ½ÇÁúÀûÀÎ ¼ºÀå ±âȸ¸¦ º¸¿©ÁÖ°í ÀÖÀ¸¸ç, UAVÀÇ ÀåÁ¡Àº ÀÛ¾÷ È¿À²¼º Çâ»ó, Áö¿¬ ÃÖ¼ÒÈ­, ÃÖÀûÀÇ ÀÚ¿ø ¹èºÐ, ¼ÒÀ¯ ºñ¿ë Àý°¨ µî ÃÖÁ¾ »ç¿ëÀÚµé »çÀÌ¿¡¼­ Å« ½ÃÀå ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àεµ Á¤ºÎ´Â 2022³â ÁÖ¸³ ³ó¾÷ ´ëÇÐ, ³ó±â°è ±³À° ¹× ½ÃÇè ±â°ü, ICAR ±â°ü¿¡ 100% º¸Á¶±ÝÀ» Áö±ÞÇÒ °ÍÀ» Á¦¾ÈÇß½À´Ï´Ù. µû¶ó¼­ ¾Õ¼­ ¾ð±ÞÇÑ ¿äÀεéÀº ¿¹Ãø ±â°£ µ¿¾È ³ó¾÷¿ë ·Îº¿ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ³ó¾÷¿ë ·Îº¿ÀÇ Àüµ¿È­ Áõ°¡¿Í ½º¸¶Æ®ÆùÀ» ÅëÇÑ ³ó¾÷¿ë ¼ÒÇÁÆ®¿þ¾îÀÇ »ç¿ë È®´ë´Â ¿¹Ãø ±â°£ µ¿¾È ´Ù¾çÇÑ À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÒ °ÍÀÔ´Ï´Ù. ±×·¯³ª ¼Ò±Ô¸ð ³óÀåÀÇ ³ôÀº ÀÚµ¿È­ ºñ¿ë°ú ³ó¾÷¿ë ·Îº¿ ±â¼úÀÇ Ç¥ÁØÈ­ ºÎÁ·Àº 2023-2030³âÀÇ ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀå¿¡ °É¸²µ¹ÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå Á¶»ç¿¡¼­ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÔ´Ï´Ù. ºÏ¹Ì´Â ³ëµ¿·Â ºÎÁ·°ú ³ôÀº ÀΰǺñ¿¡ ´ëÀÀÇϱâ À§ÇÑ Ã·´Ü ±â¼ú äÅÃÀÌ Áõ°¡Çϰí, ÀÌ Áö¿ªÀÇ 1ÀÎ´ç °¡Ã³ºÐ ¼ÒµæÀÌ Áõ°¡ÇÔ¿¡ µû¶ó 2022³â °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÏ¸ç ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ³ó¾÷ ±¸»óÀÇ ÀÏȯÀ¸·Î ¹«ÀÎÇ×°ø±â, ¹«ÀÎ Æ®·¢ÅÍ µî ³ó¾÷¿ë ·Îº¿ µµÀÔ¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ½ÃÀåÀÇ ±â¾÷µéÀº ³ó°¡ÀÇ ºñ¿ëÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¼öÈ®·®À» ´Ã¸®±â À§ÇØ ºñ¿ë È¿À²ÀûÀÌ°í °íÈ¿À²ÀûÀÎ ·Îº¿À» °³¹ßÇϱâ À§ÇØ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, »êŸ¸ð´ÏÄ«¿¡ º»»ç¸¦ µÐ ǻó ¿¡ÀÌÄ¿½º(Future Acres)´Â 2021³â Æ÷µµ ¼öÈ® Àü¿ë ·Îº¿ ij¸®(Carry)¸¦ Ãâ½ÃÇßÀ¸¸ç, AI ±â¼úÀ» Ȱ¿ëÇÏ¿© Àΰ£ ÀÛ¾÷ÀÚ¿Í ¿øÈ°ÇÏ°Ô Çù·ÂÇÏ¿© ³ëµ¿·Â ºÎÁ·À» ÇØ°áÇÏ°í ³ó°¡ÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿¡ ¸Â´Â ¼Ö·ç¼ÇÀ» µµÀÔÇÕ´Ï´Ù. ¼Ö·ç¼ÇÀ» µµÀÔÇÕ´Ï´Ù. ³ëµ¿·Â ¹®Á¦¸¦ ÇØ°áÇϰí Çõ½ÅÀûÀÎ Á¦Ç°À» µµÀÔÇϱâ À§ÇÑ ÀÌ·¯ÇÑ °øµ¿ÀÇ ³ë·ÂÀº ºÏ¹Ì ³ó¾÷¿ë ·Îº¿ ½ÃÀåÀÇ °ý¸ñÇÒ¸¸ÇÑ ¼ºÀå ±Ëµµ¸¦ °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ³ëµ¿·Â ºÎÁ·°ú ÀΰǺñ »ó½ÂÀ̶ó´Â ¹®Á¦¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, º¸´Ù ºñ¿ë È¿À²ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ã´Â ³óºÎµé¿¡°Ô ·Îº¿¿¡ ´ëÇÑ ÅõÀÚ´Â ¸Å·ÂÀûÀÎ Àü¸ÁÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ °­·ÂÇÑ Áö¿ø°ú ´Ù¾çÇÑ ³ó¾÷ ȯ°æÀº ÀÌ Áö¿ª Àüü¿¡¼­ ³ó¾÷¿ë ·Îº¿¿¡ ´ëÇÑ ¼ö¿ä¸¦ Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀÌ Á¶»çÀÇ ¸ñÀûÀº ÃÖ±Ù ¸î ³âµ¿¾È ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ ½ÃÀå ±Ô¸ð¸¦ ÆÄ¾ÇÇϰí ÇâÈÄ ¸î ³âµ¿¾È ½ÃÀå °¡Ä¡¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ º¸°í¼­´Â Á¶»ç ´ë»ó ±¹°¡ÀÇ »ê¾÷ÀÇ ÁúÀû ¹× ¾çÀû Ãø¸éÀ» Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.

¶ÇÇÑ, ÇâÈÄ ½ÃÀå ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀΰú µµÀü °úÁ¦ µî Áß¿äÇÑ Ãø¸é¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÁÖ¿ä ±â¾÷µé°æÀï ±¸µµ¿Í Á¦Ç° Á¦°ø¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚµéÀÌ ÅõÀÚÇÒ ¼ö ÀÖ´Â ¹Ì½ÃÀû ½ÃÀå¿¡¼­ÀÇ ÀáÀçÀû ±âȸµµ Æ÷ÇÔÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§

  • Á¶»ç ¸ñÀû
  • ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§
    • »ê¾÷ ¹ßÀü
    • Á¶»ç ¹üÀ§
  • Á¶»ç ´ë»ó³â
  • ÅëÈ­ ȯ»êÀ²

Á¦3Àå ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå ¿ªÇÐ

  • ³ó¾÷¿ë ·Îº¿ ½ÃÀå ¿µÇ⠺м®(2020³â-2030³â)
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
    • ½ÃÀå ±âȸ

Á¦4Àå ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå »ê¾÷ ºÐ¼®

  • Porter's Five Forces ¸ðµ¨
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ¹ÙÀ̾îÀÇ ±³¼··Â
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • Porter's Five ForcesÀÇ ¿µÇ⠺м®
  • PEST ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ȯ°æ
    • ¹ý·ü
  • ÁÖ¿ä ÅõÀÚ ±âȸ
  • ÁÖ¿ä ¼º°ø Àü·«
  • COVID-19ÀÇ ¿µÇ⠺м®
  • ÆÄ±«Àû µ¿Çâ
  • ¾÷°è Àü¹®°¡ÀÇ °ßÇØ
  • ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð ¹× Á¦¾È

Á¦5Àå ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : À¯Çüº°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : À¯Çüº°, ½ÇÀû-°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : À¯Çüº°, ÃßÁ¤¡¤¿¹Ãø(2020³â-2030³â)
  • ³ó¾÷¿ë ·Îº¿ ½ÃÀå : ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ¹«ÀÎ Æ®·¢ÅÍ
    • UAV
    • ³«³ó ·Îº¿
    • ÀÚÀç °ü¸®

Á¦6Àå ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : Á¦°øº°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : Á¦°øº°, ½ÇÀû-°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : Á¦°øº°, ÃßÁ¤¡¤¿¹Ãø(2020³â-2030³â)
  • ³ó¾÷¿ë ·Îº¿ ½ÃÀå : ÇÏÀ§ ºÎ¹® ºÐ¼®
    • Çϵå¿þ¾î
    • ¼ÒÇÁÆ®¿þ¾î
    • ¼­ºñ½º

Á¦7Àå ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : ¿ëµµº°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : ¿ëµµº°, ½ÇÀû-°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : ¿ëµµº°, ÃßÁ¤¡¤¿¹Ãø(2020³â-2030³â)
  • ³ó¾÷¿ë ·Îº¿ ½ÃÀå : ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ¸ð½É±â ¹× ÆÄÁ¾ °ü¸®
    • »ìÆ÷ °ü¸®
    • ÂøÀ¯
    • °¨½Ã ¹× ¸ð´ÏÅ͸µ
    • ¼öÈ® °ü¸®
    • °¡Ãà ¸ð´ÏÅ͸µ
    • ±âŸ

Á¦8Àå ¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : Áö¿ª ºÐ¼®

  • ÁÖ¿ä ±¹°¡
  • ÁÖ¿ä ½ÅÈï ±¹°¡
  • ³ó¾÷¿ë ·Îº¿ ½ÃÀå : Áö¿ª ½ÃÀå ÇöȲ
  • ºÏ¹Ì
    • ¹Ì±¹
      • À¯Çü ÃßÁ¤¡¤¿¹Ãø(2020³â-2030³â)
      • Á¦°ø ÃßÁ¤¡¤¿¹Ãø(2020³â-2030³â)
      • ¿ëµµ ÃßÁ¤¡¤¿¹Ãø(2020³â-2030³â)
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå °æÀï Á¤º¸

  • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®
  • ÁÖ¿ä ½ÃÀå Àü·«
  • ±â¾÷ °³¿ä
    • Blue River Technology
    • Harvest Automation
    • AGCO Corporation
    • Lely Industries
    • Naio Technologies
    • Precision Hawk
    • Deere & Company
    • AG Eagle LLC
    • Agribotix LLC
    • IBM Corporation

Á¦10Àå Á¶»ç °úÁ¤

  • Á¶»ç °úÁ¤
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ºÐ¼®
    • ½ÃÀå ÃßÁ¤
    • °ËÁõ
    • ÃâÆÇ
  • Á¶»ç ¼Ó¼º
  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç
LSH 24.04.02

Global Agricultural Robots Market is valued approximately at USD 11.57 billion in 2022 and is anticipated to grow with a healthy growth rate of more than 20.6% over the forecast period 2023-2030. Agricultural robots are specialized machines equipped with advanced technologies such as AI and sensors to automate tasks in farming. They encompass various types including harvesting robots for picking crops, weeding robots for removing weeds, planting robots for precise seed placement, and monitoring robots for assessing soil and crop conditions. These robots aim to enhance efficiency, productivity, and sustainability in agriculture by reducing labor costs, minimizing environmental impact, and improving crop yields. According to United Nations projections, the global population is expected to reach 8.6 billion by 2030 and 9.8 billion by 2050, placing immense pressure on traditional food production methods to ensure food security. Agricultural robots and drones are emerging as transformative technologies, offering precision and optimization capabilities that revolutionize farming practices. Moreover, with fewer farm laborers due to population growth and urban migration, agricultural robots are increasingly adopted to automate tasks and reduce reliance on manual labor. The agricultural robot's market is positioned for substantial growth as the demand for cost-effective and efficient labor solutions escalates, coupled with the increase in IoT devices connected with farm management to analyze data on various factors.

In addition, the rise in adoption of aerial data collection tools in agriculture and enhanced Precision farming through drone technology is exhibiting a positive influence on the market growth across the globe. Drones, also known as Unmanned Aerial Vehicles (UAVs), are increasingly employed across various agricultural applications including soil and crop monitoring, spraying, planting, irrigation, and field surveillance. Modern farmers are leveraging data-driven approaches to optimize fertilizer and pesticide usage, thereby enhancing crop yields. With a focus on efficiency, farmers utilize drones for tasks such as crop spraying, monitoring, irrigation management, and livestock health assessments. By analyzing factors like weather conditions, soil fertility, and nutrient levels, farmers efficiently plan field activities, including timely crop harvesting, particularly for seasonal and specialty crops. This trend presents substantial growth opportunities for UAVs within the agricultural sector. The benefits of UAVs include enhanced operational efficiency, minimized delays, optimal resource allocation, and lower ownership costs, driving significant market demand among end users. in 2022, For instance the Indian government proposed to provide 100% subsidiary to state agriculture colleges, farm machinery training and testing institutes, and ICAR institutes. Thus, these aforementioned factors are propelling the growth of Agricultural Robots Market during the estimated period. Moreover, the surge in use of electrification in agricultural robots, as well as growing use of agricultural-based software via smartphones present various lucrative opportunities over the forecast years. However, the high cost of automation for small farms and the lack of standardization of agricultural robot technologies are challenging the market growth throughout the forecast period of 2023-2030.

The key regions considered for the Global Agricultural Robots Market study include Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America dominated the market in 2022 with largest market share owing to the rise in adoption of advanced technology in response to labor shortages and high labor costs, coupled with the region's elevated per-capita disposable income. Moreover, government support for the implementation of agricultural robots, such as unmanned aerial vehicles and driverless tractors, as part of smart farming initiatives, is further propelling market expansion. Also, players within this market are making substantial investments in the development of cost-effective and highly efficient robots aimed at enhancing yields while minimizing costs for farmers. For instance, in 2021, Santa Monica-based Future Acres unveiled its inaugural robot, Carry, designed specifically for grape picking. Utilizing AI technology, Carry collaborates seamlessly with human workers, addressing labor shortages and introducing tailored solutions to meet the evolving needs of farmers. This concerted effort to address labor challenges and introduce innovative products underscores the significant growth trajectory of the agricultural robotics market in North America. Whereas, Asia Pacific is expected to grow at the highest CAGR over the forecast years. The region faces issues of labor shortages and increasing wage costs, making investments in robotics an appealing prospect for farmers seeking more cost-effective and sustainable solutions. Robust government backing, coupled with the diverse agricultural landscape are significantly propelling the demand for agriculture robotic across the region.

Major market players included in this report are:

  • Blue River Technology
  • Harvest Automation
  • AGCO Corporation
  • Lely Industries
  • Naio Technologies
  • Precision Hawk
  • Deere & Company
  • AG Eagle LLC
  • Agribotix LLC
  • IBM Corporation

Recent Developments in the Market:

  • In June 2022, Small Robot Company (SRC), a pioneering British startup in agricultural robotics, unveiled its ambitious initiative to deploy its cutting-edge robots across approximately 50 farms throughout the upcoming 2022-2023 growing season.
  • In February 2022, Verdant Robotics introduced its innovative robot-as-a-service (RaaS) model, aimed at broadening access for specialty crop farmers, enabling them to adopt more sustainable and lucrative cultivation methods to meet their evolving needs.
  • In January 2022, John Deere showcased a fully autonomous tractor, primed for widespread production. The system integrates a Deere 8R tractor, a TruSet-enabled chisel plow, an advanced GPS navigation system, and other state-of-the-art technologies.

Global Agricultural Robots Market Report Scope:

  • Historical Data - 2020 - 2021
  • Base Year for Estimation - 2022
  • Forecast period - 2023-2030
  • Report Coverage - Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Segments Covered - Type, Offering, Application, Region
  • Regional Scope - North America; Europe; Asia Pacific; Latin America; Middle East & Africa
  • Customization Scope - Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players. The detailed segments and sub-segment of the market are explained below:

By Type:

  • Driverless Tractors
  • UAVs
  • Dairy Robots
  • Material Management

By Offering:

  • Hardware
  • Software
  • Services

By Application:

  • Planting & Seeding Management
  • Spraying Management
  • Milking
  • Monitoring & Surveillance
  • Harvest Management
  • Livestock Monitoring
  • Others

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • ROE
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • RoAPAC
  • Latin America
  • Brazil
  • Mexico
  • Middle East & Africa
  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Table of Contents

Chapter 1.Executive Summary

  • 1.1.Market Snapshot
  • 1.2.Global & Segmental Market Estimates & Forecasts, 2020-2030 (USD Billion)
    • 1.2.1.Agricultural Robots Market, by region, 2020-2030 (USD Billion)
    • 1.2.2.Agricultural Robots Market, by Type, 2020-2030 (USD Billion)
    • 1.2.3.Agricultural Robots Market, by Offering, 2020-2030 (USD Billion)
    • 1.2.4.Agricultural Robots Market, by Application, 2020-2030 (USD Billion)
  • 1.3.Key Trends
  • 1.4.Estimation Methodology
  • 1.5.Research Assumption

Chapter 2.Global Agricultural Robots Market Definition and Scope

  • 2.1.Objective of the Study
  • 2.2.Market Definition & Scope
    • 2.2.1.Industry Evolution
    • 2.2.2.Scope of the Study
  • 2.3.Years Considered for the Study
  • 2.4.Currency Conversion Rates

Chapter 3.Global Agricultural Robots Market Dynamics

  • 3.1.Agricultural Robots Market Impact Analysis (2020-2030)
    • 3.1.1.Market Drivers
      • 3.1.1.1.Increasing IoT devices connected with farm management to analyse data
      • 3.1.1.2.Rising adoption of aerial data collection tools
    • 3.1.2.Market Challenges
      • 3.1.2.1.High cost of automation for small farms
      • 3.1.2.2.Lack of standardization of agricultural robot technologies
    • 3.1.3.Market Opportunities
      • 3.1.3.1.Surge in use of electrification in agricultural robots
      • 3.1.3.2.Growing use of agricultural-based software via smartphones

Chapter 4.Global Agricultural Robots Market: Industry Analysis

  • 4.1.Porter's 5 Force Model
    • 4.1.1.Bargaining Power of Suppliers
    • 4.1.2.Bargaining Power of Buyers
    • 4.1.3.Threat of New Entrants
    • 4.1.4.Threat of Substitutes
    • 4.1.5.Competitive Rivalry
  • 4.2.Porter's 5 Force Impact Analysis
  • 4.3.PEST Analysis
    • 4.3.1.Political
    • 4.3.2.Economic
    • 4.3.3.Social
    • 4.3.4.Technological
    • 4.3.5.Environmental
    • 4.3.6.Legal
  • 4.4.Top investment opportunity
  • 4.5.Top winning strategies
  • 4.6.COVID-19 Impact Analysis
  • 4.7.Disruptive Trends
  • 4.8.Industry Expert Perspective
  • 4.9.Analyst Recommendation & Conclusion

Chapter 5.Global Agricultural Robots Market, by Type

  • 5.1.Market Snapshot
  • 5.2.Global Agricultural Robots Market by Type, Performance - Potential Analysis
  • 5.3.Global Agricultural Robots Market Estimates & Forecasts by Type 2020-2030 (USD Billion)
  • 5.4.Agricultural Robots Market, Sub Segment Analysis
    • 5.4.1.Driverless Tractors
    • 5.4.2.UAVs
    • 5.4.3.Dairy Robots
    • 5.4.4.Material Management

Chapter 6.Global Agricultural Robots Market, by Offering

  • 6.1.Market Snapshot
  • 6.2.Global Agricultural Robots Market by Offering, Performance - Potential Analysis
  • 6.3.Global Agricultural Robots Market Estimates & Forecasts by Offering 2020-2030 (USD Billion)
  • 6.4.Agricultural Robots Market, Sub Segment Analysis
    • 6.4.1.Hardware
    • 6.4.2.Software
    • 6.4.3.Services

Chapter 7.Global Agricultural Robots Market, by Application

  • 7.1.Market Snapshot
  • 7.2.Global Agricultural Robots Market by Application, Performance - Potential Analysis
  • 7.3.Global Agricultural Robots Market Estimates & Forecasts by Application 2020-2030 (USD Billion)
  • 7.4.Agricultural Robots Market, Sub Segment Analysis
    • 7.4.1.Planting & Seeding Management
    • 7.4.2.Spraying Management
    • 7.4.3.Milking
    • 7.4.4.Monitoring & Surveillance
    • 7.4.5.Harvest Management
    • 7.4.6.Livestock Monitoring
    • 7.4.7.Others

Chapter 8.Global Agricultural Robots Market, Regional Analysis

  • 8.1.Top Leading Countries
  • 8.2.Top Emerging Countries
  • 8.3.Agricultural Robots Market, Regional Market Snapshot
  • 8.4.North America Agricultural Robots Market
    • 8.4.1.U.S. Agricultural Robots Market
      • 8.4.1.1.Type breakdown estimates & forecasts, 2020-2030
      • 8.4.1.2.Offering breakdown estimates & forecasts, 2020-2030
      • 8.4.1.3.Application breakdown estimates & forecasts, 2020-2030
    • 8.4.2.Canada Agricultural Robots Market
  • 8.5.Europe Agricultural Robots Market Snapshot
    • 8.5.1.U.K. Agricultural Robots Market
    • 8.5.2.Germany Agricultural Robots Market
    • 8.5.3.France Agricultural Robots Market
    • 8.5.4.Spain Agricultural Robots Market
    • 8.5.5.Italy Agricultural Robots Market
    • 8.5.6.Rest of Europe Agricultural Robots Market
  • 8.6.Asia-Pacific Agricultural Robots Market Snapshot
    • 8.6.1.China Agricultural Robots Market
    • 8.6.2.India Agricultural Robots Market
    • 8.6.3.Japan Agricultural Robots Market
    • 8.6.4.Australia Agricultural Robots Market
    • 8.6.5.South Korea Agricultural Robots Market
    • 8.6.6.Rest of Asia Pacific Agricultural Robots Market
  • 8.7.Latin America Agricultural Robots Market Snapshot
    • 8.7.1.Brazil Agricultural Robots Market
    • 8.7.2.Mexico Agricultural Robots Market
  • 8.8.Middle East & Africa Agricultural Robots Market
    • 8.8.1.Saudi Arabia Agricultural Robots Market
    • 8.8.2.South Africa Agricultural Robots Market
    • 8.8.3.Rest of Middle East & Africa Agricultural Robots Market

Chapter 9.Competitive Intelligence

  • 9.1.Key Company SWOT Analysis
    • 9.1.1.Company 1
    • 9.1.2.Company 2
    • 9.1.3.Company 3
  • 9.2.Top Market Strategies
  • 9.3.Company Profiles
    • 9.3.1. Blue River Technology
      • 9.3.1.1.Key Information
      • 9.3.1.2.Overview
      • 9.3.1.3.Financial (Subject to Data Availability)
      • 9.3.1.4.Product Summary
      • 9.3.1.5.Recent Developments
    • 9.3.2.Harvest Automation
    • 9.3.3.AGCO Corporation
    • 9.3.4.Lely Industries
    • 9.3.5.Naio Technologies
    • 9.3.6.Precision Hawk
    • 9.3.7.Deere & Company
    • 9.3.8.AG Eagle LLC
    • 9.3.9.Agribotix LLC
    • 9.3.10.IBM Corporation

Chapter 10.Research Process

  • 10.1.Research Process
    • 10.1.1.Data Mining
    • 10.1.2.Analysis
    • 10.1.3.Market Estimation
    • 10.1.4.Validation
    • 10.1.5.Publishing
  • 10.2.Research Attributes
  • 10.3.Research Assumption
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦