½ÃÀ庸°í¼­
»óǰÄÚµå
1602492

¼¼°èÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå : À¯Çüº°, ¿ëµµº° ¿¹Ãø(2025-2030³â)

Agriculture Robots Market by Type (Automated Harvesting Systems, Driverless Tractors, Milking Robot), Application (Animal Management, Crop Management, Dairy Farm Management) - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 198 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

³ó¾÷¿ë ·Îº¿ ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 134¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 158¾ï 9,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 18.20%·Î ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 434¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

³ó¾÷¿ë ·Îº¿, Áï ¾Æ±×¸®º¿Àº ³ó¾÷ ºÎ¹®ÀÇ ºñÈ¿À²°ú ³ëµ¿·Â ºÎÁ·¿¡ ´ëóÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÑ Çö´ë ³ó¾÷¿¡¼­ÀÇ º¯È­ÀÇ ÆÄµµ¸¦ »ó¡ÇÏ´Â °ÍÀÔ´Ï´Ù., °¨½Ã µîÀÇ ÀÛ¾÷À» ½Ç½ÃÇÏ¿© »ý»ê¼º°ú Á¤¹Ðµµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ³óÀÛ¹°°ú °¡Ãà °ü¸®¿¡¼­ Åä¾ç ºÐ¼® ¹× ȯ°æ ¸ð´ÏÅ͸µ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ³ó¾÷ Ȱµ¿¿¡ Àû¿ëµÇ¸ç ¼Ò±Ô¸ð¿¡¼­ ´ë±Ô¸ð ³ó¾÷ »ç¾÷¿¡ ¸ðµÎ ±â¿©ÇÕ´Ï´Ù. Çå½ÅÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ÃÖÁ¾ ¿ëµµ ¹üÀ§´Â ½Äǰ »ý»ê, ¿ø¿¹, Ãà»ê µîÀÇ »ê¾÷¿¡ ÆÛÁ® ÀÖ½À´Ï´Ù. ÅõÀÚ Áõ°¡, À¯±â³ó»ê¹°°ú ½Å¼±³ó»ê¹°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡ µîÀÌ ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ°¡ ź»ýÇß½À´Ï´Ù. ±×·¯³ª ½ÃÀå ¼ºÀåÀº Ãʱâ ÅõÀÚ ºñ¿ë, ¼÷·ÃµÈ ¿î¿µÀÚÀÇ Çʿ伺 ¹× ½º¸¶Æ® ³ó¾÷ ½Ã½ºÅÛ¿¡¼­ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í »çÀ̹ö º¸¾È¿¡ ´ëÇÑ ¿ì·Á¿Í °°Àº Á¦¾à¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ³ô°í ÀûÀÀ¼ºÀÌ ÀÖ°í »ç¿ëÇϱ⠽¬¿î ·Îº¿ ½Ã½ºÅÛ °³¹ß¿¡ ÁßÁ¡À» µÑ ¼ö ÀÖ½À´Ï´Ù.¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ·Îº¿°ú ´Ù¾çÇÑ È¯°æ Á¶°ÇÀ» ºÐ¼®Çϰí ÀûÀÀÇÒ ¼ö ÀÖ´Â ±â¼ú¿¡ ´ëÇÑ Á¶»ç´Â Ãß°¡ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ °­·ÂÇÑ AI ±¸µ¿ ÅøÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù. ³Ê½ÊÀ» ¸Î°í Áö¿ª ƯȭµÈ ¼Ö·ç¼Ç¿¡ ÁÖ·ÂÇÏ°í ·Îº¿ ¿î¿µ ±³À° ÇÁ·Î±×·¥¿¡ ÅõÀÚÇÔÀ¸·Î½á µµÀÔ·üÀ» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª Áö¼ÓÀûÀÎ ¼ºÀåÀ» À§Çؼ­´Â ½ÃÀåÀÇ °úÁ¦¸¦ ½ÅÁßÇÏ°Ô ±Øº¹ÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 134¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 158¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 434¾ï ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 18.20%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â ³ó¾÷¿ë ·Îº¿ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

³ó¾÷¿ë ·Îº¿ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾ò´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ÀÌ´Â Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÇöÀçÀÇ °æÀÛÁö·ÎºÎÅÍÀÇ °í»ý»ê¼º¿¡ ¼ö¿äÀÇ °íÁ¶.
    • Àα¸ Áõ°¡·Î ÀÎÇÑ ½Ä·® ¼ö¿ä
    • ±âÁ¸ÀÇ ³ó¾÷ ±â¼úÀÇ Áøº¸¿¡ ¼ö¹ÝÇÏ´Â Á¤¹Ð ³ó¾÷ÀÇ Çʿ伺
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • »ó¾÷ Àü°³¿¡ À־ÀÇ ³ó¾÷¿ë ·Îº¿ÀÇ ºñÀÌ¿ë °¡´É¼º
  • ½ÃÀå ±âȸ
    • »õ·Î¿î ³ó¾÷ ±â¼ú °³¹ß
    • ÀÌÁ¾ Ç÷§ÆûÀ» ¸¸µå´Â °øÁß Â÷·®°ú Áö»ó Â÷·®ÀÇ ÅëÇÕ
  • ½ÃÀåÀÇ °úÁ¦
    • º¸¾È ¹× °³ÀÎÁ¤º¸ º¸È£ ¹®Á¦

Porter's Five Forces : ³ó¾÷¿ë ·Îº¿ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù./p>

PESTLE ºÐ¼® : ³ó¾÷¿ë ·Îº¿ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ³ó¾÷¿ë ·Îº¿ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ °¡´ÉÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ³ó¾÷¿ë ·Îº¿ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

³ó¾÷¿ë ·Îº¿ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ³ó¾÷¿ë ·Îº¿ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ³ó¾÷¿ë ·Îº¿ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ ³ó¾÷¿ë ·Îº¿ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

³ó¾÷¿ë ·Îº¿ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ÇöÀçÀÇ °æÀÛÁö·ÎºÎÅÍÀÇ °í»ý»ê¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
      • Áõ°¡ÇÏ´Â Àα¸¿¡ ÀÇÇÑ ½Ä·® ¼ö¿ä
      • ±âÁ¸ ³ó¾÷±â¼úÀÇ Áøº¸¿Í Á¤¹Ð³ó¾÷ÀÇ Çʿ伺
    • ¾ïÁ¦¿äÀÎ
      • ³ó¾÷¿ë ·Îº¿Àº »ó¿ë Àü°³¿¡¼­´Â ÀÌ¿ëÇÒ ¼ö ¾ø½À´Ï´Ù
    • ±âȸ
      • »õ·Î¿î ³ó¾÷ ±â¼ú °³¹ß
      • Ç×°ø±â¿Í Áö»ó Â÷·®ÀÇ ÅëÇÕ¿¡ ÀÇÇÑ À̱âÁ¾ Ç÷§ÆûÀÇ ±¸Ãà
    • °úÁ¦
      • º¸¾È ¹× °³ÀÎÁ¤º¸ º¸È£ ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ³ó¾÷¿ë ·Îº¿ ½ÃÀå : À¯Çüº°

  • ÀÚµ¿ ¼öÈ® ½Ã½ºÅÛ
  • ¹«ÀÎ Æ®·¢ÅÍ
  • ÂøÀ¯ ·Îº¿
  • ¹«ÀÎ Ç×°ø±â(UAV)/µå·Ð

Á¦7Àå ³ó¾÷¿ë ·Îº¿ ½ÃÀå : ¿ëµµº°

  • µ¿¹° °ü¸®
  • ÀÛ¹° °ü¸®
  • ³«³ó°æ¿µ
  • ¹ç¿¡¼­ÀÇ ³ó¾÷
  • ¼öÈ® °ü¸®
  • Á¤¸Æ Á¢±Ù
  • Àç°í °ü¸®
  • °ü°³ °ü¸®
  • Åä¾ç °ü¸®
  • ±â»ó ÃßÀû ¹× °¨½Ã

Á¦8Àå ¾Æ¸Þ¸®Ä«ÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ³ó¾÷¿ë ·Îº¿ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • AG Leader Technology
  • AgEagle Aerial Systems
  • Agjunction, Inc.
  • Anmar Co.
  • Autonomous Tractor Corporation
  • BouMatic Robotics BV
  • Cnh Industrial NV
  • Deepfield Robotics
  • Deere & Company
  • DeLaval Inc.
  • Ecorobotix SA
  • Harvest Automation, Inc.
  • Kubota Corporation
  • Lely Holding SARL
  • SZ DJI Technology Co., Ltd.
  • Topcon Positioning Systems, Inc.
  • Trimble Inc.
BJH 24.12.11

The Agriculture Robots Market was valued at USD 13.45 billion in 2023, expected to reach USD 15.89 billion in 2024, and is projected to grow at a CAGR of 18.20%, to USD 43.40 billion by 2030.

Agriculture robots, or agribots, represent a transformative wave in modern farming, aimed at addressing inefficiencies and labor shortages in the agriculture sector. These robots perform tasks such as planting, watering, harvesting, and monitoring, thus enhancing productivity and precision. The necessity of agriculture robots stems from the growing global population, climate change impacts, and the increasing demand for sustainable farming practices. They are applied in diverse agricultural activities, from crop and livestock management to soil analysis and environmental monitoring, serving both small-scale and large-scale agribusinesses. The market's end-use scope extends to industries like food production, horticulture, and livestock farming. Key growth drivers include technological advancements in artificial intelligence and machine learning, increased investment in agritech, and heightened consumer demand for organic and fresh produce. Emerging opportunities are seen in developing regions where agricultural modernization is accelerating, and through collaborative efforts between agritech startups and traditional farming entities. However, market growth faces constraints such as high initial investment costs, the need for skillful operators, and concerns around data privacy and cybersecurity in smart farming systems. Moreover, the variability of agricultural environments can be a significant hurdle for standardized robotic solutions. To tackle these challenges, innovation could focus on developing cost-effective, adaptable, and easy-to-use robotic systems. Research into energy-efficient robots and technology that can analyze and adapt to varied environmental conditions could spur further growth. The market is increasingly competitive, with established agribusinesses and tech startups pioneering robust AI-driven tools. For businesses, engaging in strategic partnerships, focusing on localized solutions, and investing in training programs for robot operation could maximize adoption rates. Overall, while agriculture robots present promising potential, careful navigation of market challenges is paramount for sustained growth.

KEY MARKET STATISTICS
Base Year [2023] USD 13.45 billion
Estimated Year [2024] USD 15.89 billion
Forecast Year [2030] USD 43.40 billion
CAGR (%) 18.20%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Agriculture Robots Market

The Agriculture Robots Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising demand for high productivity from current arable areas
    • Demand for food from the increasing population
    • Need for precision farming coupled with advances in existing agricultural techniques
  • Market Restraints
    • Non-availability of agriculture robots in commercial deployment
  • Market Opportunities
    • Development of novel agricultural technologies
    • Integration of aerial and ground-based vehicles creating heterogeneous platforms
  • Market Challenges
    • Issues pertinent to security and privacy

Porter's Five Forces: A Strategic Tool for Navigating the Agriculture Robots Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Agriculture Robots Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Agriculture Robots Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Agriculture Robots Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Agriculture Robots Market

A detailed market share analysis in the Agriculture Robots Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Agriculture Robots Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Agriculture Robots Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Agriculture Robots Market

A strategic analysis of the Agriculture Robots Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Agriculture Robots Market, highlighting leading vendors and their innovative profiles. These include AG Leader Technology, AgEagle Aerial Systems, Agjunction, Inc., Anmar Co., Autonomous Tractor Corporation, BouMatic Robotics B.V., Cnh Industrial N.V., Deepfield Robotics, Deere & Company, DeLaval Inc., Ecorobotix SA, Harvest Automation, Inc., Kubota Corporation, Lely Holding S.A.R.L, SZ DJI Technology Co., Ltd., Topcon Positioning Systems, Inc., and Trimble Inc..

Market Segmentation & Coverage

This research report categorizes the Agriculture Robots Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Automated Harvesting Systems, Driverless Tractors, Milking Robot, and Unmanned Aerial Vehicles (UAV)/Drones.
  • Based on Application, market is studied across Animal Management, Crop Management, Dairy Farm Management, Field Farming, Harvest Management, Intravenous Access, Inventory Management, Irrigation Management, Soil management, and Weather Tracking & Monitoring.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising demand for high productivity from current arable areas
      • 5.1.1.2. Demand for food from the increasing population
      • 5.1.1.3. Need for precision farming coupled with advances in existing agricultural techniques
    • 5.1.2. Restraints
      • 5.1.2.1. Non-availability of agriculture robots in commercial deployment
    • 5.1.3. Opportunities
      • 5.1.3.1. Development of novel agricultural technologies
      • 5.1.3.2. Integration of aerial and ground-based vehicles creating heterogeneous platforms
    • 5.1.4. Challenges
      • 5.1.4.1. Issues pertinent to security and privacy
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Agriculture Robots Market, by Type

  • 6.1. Introduction
  • 6.2. Automated Harvesting Systems
  • 6.3. Driverless Tractors
  • 6.4. Milking Robot
  • 6.5. Unmanned Aerial Vehicles (UAV)/Drones

7. Agriculture Robots Market, by Application

  • 7.1. Introduction
  • 7.2. Animal Management
  • 7.3. Crop Management
  • 7.4. Dairy Farm Management
  • 7.5. Field Farming
  • 7.6. Harvest Management
  • 7.7. Intravenous Access
  • 7.8. Inventory Management
  • 7.9. Irrigation Management
  • 7.10. Soil management
  • 7.11. Weather Tracking & Monitoring

8. Americas Agriculture Robots Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Agriculture Robots Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Agriculture Robots Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. AG Leader Technology
  • 2. AgEagle Aerial Systems
  • 3. Agjunction, Inc.
  • 4. Anmar Co.
  • 5. Autonomous Tractor Corporation
  • 6. BouMatic Robotics B.V.
  • 7. Cnh Industrial N.V.
  • 8. Deepfield Robotics
  • 9. Deere & Company
  • 10. DeLaval Inc.
  • 11. Ecorobotix SA
  • 12. Harvest Automation, Inc.
  • 13. Kubota Corporation
  • 14. Lely Holding S.A.R.L
  • 15. SZ DJI Technology Co., Ltd.
  • 16. Topcon Positioning Systems, Inc.
  • 17. Trimble Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦