½ÃÀ庸°í¼­
»óǰÄÚµå
1517434

¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ±Ô¸ð Á¶»ç : ¼¾¼­ À¯Çüº°, Â÷·® À¯Çüº°, ÀÚµ¿È­ ¼öÁغ°, ¿ëµµº°, Áö¿ªº° ¿¹Ãø(2022-2032³â)

Global Autonomous Vehicle Sensors Market Size study, by Type of Sensor, by Vehicle Type, by Level of Automation, by Application and Regional Forecasts 2022-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Bizwit Research & Consulting LLP | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ¼¼°è ½ÃÀåÀº 2023³â ¾à 88¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³âºÎÅÍ 2032³â±îÁö ¿¹Ãø ±â°£ µ¿¾È 12.70%ÀÇ ³î¶ó¿î CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

LiDAR, RADAR, ÃÊÀ½ÆÄ, Ä«¸Þ¶ó µî ´Ù¾çÇÑ À¯ÇüÀÇ ÀÚÀ² ÁÖÇà Â÷·®¿ë ¼¾¼­´Â ´Ù¾çÇÑ Â÷·® ¸Å°³º¯¼ö¸¦ ¸ð´ÏÅ͸µÇϰí Á¦¾îÇÏ¿© ÃÖÀûÀÇ ¼º´É°ú ¾ÈÀü¼ºÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â Àå¾Ö¹° °¨Áö ¹× Ãæµ¹ ¹æÁöºÎÅÍ ³»ºñ°ÔÀÌ¼Ç ¹× ȯ°æ °¨Áö±îÁö ¸ðµç °ÍÀ» °ü¸®ÇÏ´Â Çö´ë ÀÚµ¿Â÷¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

½ÃÀå ¼ºÀåÀº ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¸¦ Àǹ«È­ÇÏ´Â ¾ö°ÝÇÑ Á¤ºÎ ±ÔÁ¦¸¦ Æ÷ÇÔÇÑ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â °íµµÀÇ Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î ÅëÇÕÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚÀ²ÁÖÇàÂ÷ÀÇ ½ÇÇö °¡´É¼ºÀ» µÞ¹ÞħÇÒ ¼ö ÀÖ´Â Áö¿øÀûÀÎ ±â¼ú ȯ°æÀÇ Á¸Àçµµ ½ÃÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÇÁ¶óÀ̹ö½Ã ¹®Á¦, Ç¥ÁØÈ­ ºÎÁ· µîÀÇ ¹®Á¦°¡ ÀáÀçÀûÀÎ Àå¾Ö¹°ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí, Àü·«Àû ÆÄÆ®³Ê½Ê Áõ°¡¿Í ¼¾¼­ ±â¼úÀÇ ±â¼úÀû ¹ßÀüÀº ½ÃÀå È®´ë¿¡ À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀåÀÇ ¿ªµ¿ÀûÀÎ »óȲÀº °íÇØ»óµµ 3D ¸ÅÇÎ ±â´ÉÀ» °®Ãá LiDAR ºÎ¹®ÀÌ 2023³â Áö¹èÀûÀÎ À§Ä¡¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½Â¿ëÂ÷ ºÎ¹®Àº °­È­µÈ ¾ÈÀü ±â´É¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä¿¡ ÈûÀÔ¾î Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ·¹º§ 3 ÀÚµ¿È­ ºÐ¾ß´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ±â¼ú ±â¾÷, ¼¾¼­ Á¦Á¶¾÷ü °£ÀÇ Çù·ÂÀ¸·Î ÀÎÇØ »ó´çÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. À¯·´Àº ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦¿Í ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ Á¸Àç·Î ÀÎÇØ ½ÃÀå Á¡À¯À²ÀÌ µÎµå·¯Áú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚµ¿Â÷ ´ÙÀÌ³ë ¼¼°è ½ÃÀå Á¶»ç¿¡¼­ ÁÖ¿ä Áö¿ªÀ¸·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«°¡ ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ÀÚµ¿Â÷ ´ÙÀÌ³ë ¼¼°è ½ÃÀå¿¡¼­ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ´Â Áö¿ªÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿ìÀ§´Â ÁÖ·Î ¼¼°è À¯¼öÀÇ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ¿¬±¸ ±â°üÀ» Æ÷ÇÔÇÑ ÀÌ Áö¿ªÀÇ ÅºÅºÇÑ ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ±âÀÎÇÕ´Ï´Ù. ÀÌ Áö¿ªÀÇ Ã·´Ü ±â¼ú ÀÎÇÁ¶ó´Â Â÷·® Å×½ºÆ® ¹× ¼º´É Æò°¡¿¡ ÇʼöÀûÀÎ Á¤±³ÇÑ µ¿·Â°è ½Ã½ºÅÛÀÇ °³¹ß ¹× äÅÃÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì´Â ÀÚµ¿Â÷ ¹è±â°¡½º ¹× ¿¬ºñ °ü·Ã ±ÔÁ¦°¡ ¾ö°ÝÇϱ⠶§¹®¿¡ Á¤¹ÐÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Å×½ºÆ® Àåºñ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç¿Í R&D¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ´Â ÀÌ Áö¿ªÀÇ ÀÚµ¿Â÷ µ¿·Â°è ½ÃÀå¿¡¼­ÀÇ ¼±µµÀû ÁöÀ§¸¦ ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀº 2024³âºÎÅÍ 2032³â±îÁö ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ ¼Óµµ·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ÁÖ¿ä ¿ä¾à

  • ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø(2022-2032³â)
  • Áö¿ªº° °³¿ä
  • ºÎ¹®º° °³¿ä
  • ÁÖ¿ä µ¿Çâ
  • °æ±âÈÄÅðÀÇ ¿µÇâ
  • ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð ¹× Á¦¾È

Á¦2Àå ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ¼¼°è ½ÃÀå Á¤ÀÇ¿Í Á¶»çÀÇ ÀüÁ¦Á¶°Ç

  • Á¶»ç ¸ñÀû
  • ½ÃÀåÀÇ Á¤ÀÇ
  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç
    • Æ÷ÇÔ°ú Á¦¿Ü
    • Á¦ÇÑ »çÇ×
    • °ø±ÞÃø ºÐ¼®
      • °¡¿ë¼º
      • ÀÎÇÁ¶ó
      • ±ÔÁ¦ ȯ°æ
      • ½ÃÀå °æÀï
      • °æÁ¦¼º(¼ÒºñÀÚ ½ÃÁ¡)
    • ¼ö¿äÃø ºÐ¼®
      • ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©
      • ±â¼ú Áøº¸
      • ģȯ°æ
      • ¼ÒºñÀÚ Àǽİú ¼ö¿ë
  • Á¶»ç ¹æ¹ý
  • Á¶»ç ´ë»ó³âµµ
  • ÅëÈ­ ȯ»êÀ²

Á¦3Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
  • ½ÃÀå ±âȸ

Á¦4Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå »ê¾÷ ºÐ¼®

  • Porter's Five Forces ¸ðµ¨
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ¹ÙÀ̾îÀÇ ±³¼··Â
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
    • Porter's Five Forces ¸ðµ¨¿¡ ´ëÇÑ ¹Ì·¡Àû Á¢±Ù
    • Porter's Five ForcesÀÇ ¿µÇ⠺м®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ȯ°æ
    • ¹ý·ü
  • ÁÖ¿ä ÅõÀÚ ±âȸ
  • ÁÖ¿ä ¼º°ø Àü·«
  • ÆÄ±«Àû µ¿Çâ
  • ¾÷°è Àü¹®°¡ÀÇ °ßÇØ
  • ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð ¹× Á¦¾È

Á¦5Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : ¼¾¼­ À¯Çüº°, 2022³â-2032³â

  • ºÎ¹® ´ë½Ãº¸µå
  • ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ¸ÅÃâ µ¿Ç⠺м®, 2022³â¡¤2032³â
    • ·¹ÀÌ´õ
    • LiDAR
    • ÃÊÀ½ÆÄ
    • Ä«¸Þ¶ó
    • ±âŸ

Á¦6Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : Â÷·® À¯Çüº°, 2022³â-2032³â

  • ºÎ¹® ´ë½Ãº¸µå
  • ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ¸ÅÃâ µ¿Ç⠺м®, 2022³â¡¤2032³â
    • ½Â¿ëÂ÷
    • »ó¿ëÂ÷

Á¦7Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : ÀÚµ¿È­ ·¹º§º°, 2022³â-2032³â

  • ºÎ¹® ´ë½Ãº¸µå
  • ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ¸ÅÃâ µ¿Ç⠺м®, 2022³â¡¤2032³â
    • ·¹º§ 1
    • ·¹º§ 2
    • ·¹º§ 3
    • ·¹º§ 4
    • ·¹º§ 5

Á¦8Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : ¿ëµµº°, 2022³â-2032³â

  • ºÎ¹® ´ë½Ãº¸µå
  • ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ¸ÅÃâ µ¿Ç⠺м®, 2022³â¡¤2032³â
    • Àå¾Ö¹° ŽÁö
    • ³»ºñ°ÔÀ̼Ç
    • Ãæµ¹ ȸÇÇ
    • ±âŸ

Á¦9Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : Áö¿ªº°, 2022³â-2032³â

  • ºÏ¹Ì ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ¹Ì±¹ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ij³ª´Ù ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
  • À¯·´ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ¿µ±¹ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • µ¶ÀÏ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ÇÁ¶û½º ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ½ºÆäÀÎ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ÀÌÅ»¸®¾Æ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ±âŸ À¯·´ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
  • ¾Æ½Ã¾ÆÅÂÆò¾ç ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • Áß±¹ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • Àεµ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ÀϺ» ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • È£ÁÖ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • Çѱ¹ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
  • ¶óƾ¾Æ¸Þ¸®Ä« ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ºê¶óÁú ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ¸ß½ÃÄÚ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä« ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • »ç¿ìµð¾Æ¶óºñ¾Æ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹ ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ÀÚÀ²ÁÖÇàÂ÷ ¿ë¼¾¼­ ½ÃÀå

Á¦10Àå °æÀï Á¤º¸

  • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®
  • ÁÖ¿ä ½ÃÀå Àü·«
  • ±â¾÷ °³¿ä
    • BorgWarner Inc.
      • ÁÖ¿ä Á¤º¸
      • °³¿ä
      • À繫(µ¥ÀÌÅÍ ÀÔ¼ö°¡ °¡´ÉÇÑ °æ¿ì)
      • Á¦Ç° °³¿ä
      • ½ÃÀå Àü·«
    • Fujitsu
    • NXP Semiconductors
    • Asahi Kasei Corporation
    • Lumentum Operations LLC
    • Valeo
    • Continental AG
    • Brigade Electronics
    • Navtech Radar
    • Teledyne Geospatial
    • Innoviz Technologies Ltd.
    • Mobileye
    • Ambarella, Inc.
    • Hesai Technology
    • LeddarTech(R)

Á¦11Àå Á¶»ç °úÁ¤

  • Á¶»ç °úÁ¤
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ºÐ¼®
    • ½ÃÀå ÃßÁ¤
    • °ËÁõ
    • ÃâÆÇ
  • Á¶»ç ¼Ó¼º
LSH 24.08.05

The Global Autonomous Vehicle Sensors Market was valued at approximately USD 8.87 billion in 2023 and is expected to grow at a remarkable CAGR of 12.70% during the forecast period from 2024 to 2032. Autonomous vehicle sensors, encompassing a variety of types such as LiDAR, RADAR, ultrasound, and cameras, play a crucial role in the monitoring and control of various vehicle parameters, ensuring optimal performance and safety. These sensors have become indispensable in modern vehicles, managing everything from obstacle detection and collision avoidance to navigation and environmental sensing.

The market's growth is driven by multiple factors, including stringent government regulations mandating advanced driver-assistance systems (ADAS), which necessitate the integration of sophisticated hardware and software. The presence of a supportive technological environment also underpins the feasibility of autonomous vehicles, further propelling the market. However, challenges such as privacy concerns and the lack of standardization pose potential hindrances. Nevertheless, the increasing number of strategic partnerships and technological advancements in sensor technologies are expected to offer lucrative opportunities for market expansion.

The autonomous vehicle sensors market's dynamic landscape is marked by the dominant position of the LiDAR segment in 2023, attributed to its high-resolution, 3D mapping capabilities. The passenger vehicle segment is anticipated to capture a significant market share, driven by consumer demand for enhanced safety features. The Level 3 automation segment is expected to see substantial growth, fueled by collaborations among automakers, technology firms, and sensor manufacturers. The European region is projected to maintain a prominent market share, supported by stringent safety regulations and the presence of leading automakers.

Key regions considered in the Global Automotive Dyno Market study include North America, Europe, Asia Pacific, Latin America, and the Middle East & Africa. North America is the dominating region in the Global Automotive Dyno Market. This dominance is primarily due to the region's well-established automotive industry, which includes some of the world's leading automotive manufacturers and research institutions. The region's advanced technological infrastructure supports the development and adoption of sophisticated dynamometer systems essential for vehicle testing and performance evaluation. Additionally, North America's stringent regulatory environment regarding vehicle emissions and fuel efficiency drives the demand for precise and reliable testing equipment. The presence of key market players and significant investments in research and development further bolster the region's leading position in the automotive dyno market. Moreover, Asia Pacific is projected to grow at a fastest rate during the projected period 2024-2032.

Major market players included in this report are:

  • BorgWarner Inc.
  • Fujitsu
  • NXP Semiconductors
  • Asahi Kasei Corporation
  • Lumentum Operations LLC
  • Valeo
  • Continental AG
  • Brigade Electronics
  • Navtech Radar
  • Teledyne Geospatial
  • Innoviz Technologies Ltd.
  • Mobileye
  • Ambarella, Inc.
  • Hesai Technology
  • LeddarTech(R)

The detailed segments and sub-segment of the market are explained below:

By Type of Sensor:

  • RADAR
  • LiDAR
  • Ultrasound
  • Camera
  • Others

By Vehicle Type:

  • Passenger
  • Commercial

By Level of Automation:

  • Level 1
  • Level 2
  • Level 3
  • Level 4
  • Level 5

By Application:

  • Obstacle Detection
  • Navigation
  • Collision Avoidance
  • Others

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • ROE
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • RoAPAC
  • Latin America
  • Brazil
  • Mexico
  • Rest of Latin America
  • Middle East & Africa
  • Saudi Arabia
  • South Africa
  • RoMEA

Years considered for the study are as follows:

  • Historical year - 2022
  • Base year - 2023
  • Forecast period - 2024 to 2032

Key Takeaways:

  • Market Estimates & Forecast for 10 years from 2022 to 2032.
  • Annualized revenues and regional level analysis for each market segment.
  • Detailed analysis of geographical landscape with Country level analysis of major regions.
  • Competitive landscape with information on major players in the market.
  • Analysis of key business strategies and recommendations on future market approach.
  • Analysis of competitive structure of the market.
  • Demand side and supply side analysis of the market.

Table of Contents

Chapter 1. Global Autonomous Vehicle Sensors Market Executive Summary

  • 1.1. Global Autonomous Vehicle Sensors Market Size & Forecast (2022-2032)
  • 1.2. Regional Summary
  • 1.3. Segmental Summary
    • 1.3.1. By Type of Sensor
    • 1.3.2. By Vehicle Type
    • 1.3.3. By Level of Automation
    • 1.3.4. By Application
  • 1.4. Key Trends
  • 1.5. Recession Impact
  • 1.6. Analyst Recommendation & Conclusion

Chapter 2. Global Autonomous Vehicle Sensors Market Definition and Research Assumptions

  • 2.1. Research Objective
  • 2.2. Market Definition
  • 2.3. Research Assumptions
    • 2.3.1. Inclusion & Exclusion
    • 2.3.2. Limitations
    • 2.3.3. Supply Side Analysis
      • 2.3.3.1. Availability
      • 2.3.3.2. Infrastructure
      • 2.3.3.3. Regulatory Environment
      • 2.3.3.4. Market Competition
      • 2.3.3.5. Economic Viability (Consumer's Perspective)
    • 2.3.4. Demand Side Analysis
      • 2.3.4.1. Regulatory Frameworks
      • 2.3.4.2. Technological Advancements
      • 2.3.4.3. Environmental Considerations
      • 2.3.4.4. Consumer Awareness & Acceptance
  • 2.4. Estimation Methodology
  • 2.5. Years Considered for the Study
  • 2.6. Currency Conversion Rates

Chapter 3. Global Autonomous Vehicle Sensors Market Dynamics

  • 3.1. Market Drivers
    • 3.1.1. Utilizing LiDAR sensors for road asset management
    • 3.1.2. Government regulations and ADAS requirements
    • 3.1.3. Advancements in autonomous vehicle technology
  • 3.2. Market Challenges
    • 3.2.1. Privacy concerns and data security
    • 3.2.2. Lack of standardization
  • 3.3. Market Opportunities
    • 3.3.1. Growing partnerships and collaborations
    • 3.3.2. Technological advancements in sensor technologies
    • 3.3.3. Increasing consumer demand for safety features

Chapter 4. Global Autonomous Vehicle Sensors Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
    • 4.1.6. Futuristic Approach to Porter's 5 Force Model
    • 4.1.7. Porter's 5 Force Impact Analysis
  • 4.2. PESTEL Analysis
    • 4.2.1. Political
    • 4.2.2. Economical
    • 4.2.3. Social
    • 4.2.4. Technological
    • 4.2.5. Environmental
    • 4.2.6. Legal
  • 4.3. Top investment opportunity
  • 4.4. Top winning strategies
  • 4.5. Disruptive Trends
  • 4.6. Industry Expert Perspective
  • 4.7. Analyst Recommendation & Conclusion

Chapter 5. Global Autonomous Vehicle Sensors Market Size & Forecasts by Type of Sensor 2022-2032

  • 5.1. Segment Dashboard
  • 5.2. Global Autonomous Vehicle Sensors Market: Type of Sensor Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 5.2.1. RADAR
    • 5.2.2. LiDAR
    • 5.2.3. Ultrasound
    • 5.2.4. Camera
    • 5.2.5. Others

Chapter 6. Global Autonomous Vehicle Sensors Market Size & Forecasts by Vehicle Type 2022-2032

  • 6.1. Segment Dashboard
  • 6.2. Global Autonomous Vehicle Sensors Market: Vehicle Type Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 6.2.1. Passenger
    • 6.2.2. Commercial

Chapter 7. Global Autonomous Vehicle Sensors Market Size & Forecasts by Level of Automation 2022-2032

  • 7.1. Segment Dashboard
  • 7.2. Global Autonomous Vehicle Sensors Market: Level of Automation Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 7.2.1. Level 1
    • 7.2.2. Level 2
    • 7.2.3. Level 3
    • 7.2.4. Level 4
    • 7.2.5. Level 5

Chapter 8. Global Autonomous Vehicle Sensors Market Size & Forecasts by Application 2022-2032

  • 8.1. Segment Dashboard
  • 8.2. Global Autonomous Vehicle Sensors Market: Application Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 8.2.1. Obstacle Detection
    • 8.2.2. Navigation
    • 8.2.3. Collision Avoidance
    • 8.2.4. Others

Chapter 9. Global Autonomous Vehicle Sensors Market Size & Forecasts by Region 2022-2032

  • 9.1. North America Autonomous Vehicle Sensors Market
    • 9.1.1. U.S. Autonomous Vehicle Sensors Market
      • 9.1.1.1. Type of Sensor breakdown size & forecasts, 2022-2032
      • 9.1.1.2. Vehicle Type breakdown size & forecasts, 2022-2032
      • 9.1.1.3. Level of Automation breakdown size & forecasts, 2022-2032
      • 9.1.1.4. Application breakdown size & forecasts, 2022-2032
    • 9.1.2. Canada Autonomous Vehicle Sensors Market
      • 9.1.2.1. Type of Sensor breakdown size & forecasts, 2022-2032
      • 9.1.2.2. Vehicle Type breakdown size & forecasts, 2022-2032
      • 9.1.2.3. Level of Automation breakdown size & forecasts, 2022-2032
      • 9.1.2.4. Application breakdown size & forecasts, 2022-2032
  • 9.2. Europe Autonomous Vehicle Sensors Market
    • 9.2.1. U.K. Autonomous Vehicle Sensors Market
    • 9.2.2. Germany Autonomous Vehicle Sensors Market
    • 9.2.3. France Autonomous Vehicle Sensors Market
    • 9.2.4. Spain Autonomous Vehicle Sensors Market
    • 9.2.5. Italy Autonomous Vehicle Sensors Market
    • 9.2.6. Rest of Europe Autonomous Vehicle Sensors Market
  • 9.3. Asia-Pacific Autonomous Vehicle Sensors Market
    • 9.3.1. China Autonomous Vehicle Sensors Market
    • 9.3.2. India Autonomous Vehicle Sensors Market
    • 9.3.3. Japan Autonomous Vehicle Sensors Market
    • 9.3.4. Australia Autonomous Vehicle Sensors Market
    • 9.3.5. South Korea Autonomous Vehicle Sensors Market
    • 9.3.6. Rest of Asia Pacific Autonomous Vehicle Sensors Market
  • 9.4. Latin America Autonomous Vehicle Sensors Market
    • 9.4.1. Brazil Autonomous Vehicle Sensors Market
    • 9.4.2. Mexico Autonomous Vehicle Sensors Market
    • 9.4.3. Rest of Latin America Autonomous Vehicle Sensors Market
  • 9.5. Middle East & Africa Autonomous Vehicle Sensors Market
    • 9.5.1. Saudi Arabia Autonomous Vehicle Sensors Market
    • 9.5.2. South Africa Autonomous Vehicle Sensors Market
    • 9.5.3. Rest of Middle East & Africa Autonomous Vehicle Sensors Market

Chapter 10. Competitive Intelligence

  • 10.1. Key Company SWOT Analysis
  • 10.2. Top Market Strategies
  • 10.3. Company Profiles
    • 10.3.1. BorgWarner Inc.
      • 10.3.1.1. Key Information
      • 10.3.1.2. Overview
      • 10.3.1.3. Financial (Subject to Data Availability)
      • 10.3.1.4. Product Summary
      • 10.3.1.5. Market Strategies
    • 10.3.2. Fujitsu
    • 10.3.3. NXP Semiconductors
    • 10.3.4. Asahi Kasei Corporation
    • 10.3.5. Lumentum Operations LLC
    • 10.3.6. Valeo
    • 10.3.7. Continental AG
    • 10.3.8. Brigade Electronics
    • 10.3.9. Navtech Radar
    • 10.3.10. Teledyne Geospatial
    • 10.3.11. Innoviz Technologies Ltd.
    • 10.3.12. Mobileye
    • 10.3.13. Ambarella, Inc.
    • 10.3.14. Hesai Technology
    • 10.3.15. LeddarTech(R)

Chapter 11. Research Process

  • 11.1. Research Process
    • 11.1.1. Data Mining
    • 11.1.2. Analysis
    • 11.1.3. Market Estimation
    • 11.1.4. Validation
    • 11.1.5. Publishing
  • 11.2. Research Attributes
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦