½ÃÀ庸°í¼­
»óǰÄÚµå
1662736

ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå ¿¹Ãø( -2030³â) : ¼¾¼­ À¯Çüº°, Â÷Á¾º°, ÀÚµ¿È­ ·¹º§º°, ÃøÁ¤ ¹üÀ§º°, ¼¾¼­ ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

Autonomous Vehicle Sensors Market Forecasts to 2030 - Global Analysis By Sensor Type, Vehicle Type, Level of Automation, Range, Sensor Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ¼¼°è ½ÃÀåÀº 2024³â 103¾ï 7,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 14.5%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 233¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­´Â ÀÚÀ²ÁÖÇàÂ÷°¡ ¾ÈÀüÇÏ°Ô Ç×ÇØÇϰí ÁÖº¯ ȯ°æ¿¡ °ü¿©Çϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ·¹ÀÌ´õ ¼¾¼­´Â ¾ÇõÈÄ¿¡¼­µµ ¹°Ã¼ÀÇ °Å¸®¿Í ¼Óµµ¸¦ ÆÇ´ÜÇÏ´Â µ¥ »ç¿ëµÇ¸ç, LiDAR ¼¾¼­´Â ÁÖº¯ÀÇ °íÇØ»óµµ 3Â÷¿ø Áöµµ¸¦ »ý¼ºÇϰí, Ä«¸Þ¶ó´Â ½Ã°¢ Á¤º¸¸¦ ±â·ÏÇÏ¿© ±³Åë ½ÅÈ£¸¦ °¨ÁöÇÏ°í ¹°Ã¼¸¦ ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, ÃÊÀ½ÆÄ ¼¾¼­´Â ±Ù°Å¸® °¨Áö, ƯÈ÷ ÁÖÂ÷ ¹× Àú¼Ó ±âµ¿ ½Ã¿¡´Â ÃÊÀ½ÆÄ ¼¾¼­°¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­ÀÇ Á¶ÇÕÀ» ÅëÇØ ÀÚÀ²ÁÖÇàÂ÷´Â Àå¾Ö¹°À» ½Äº°Çϰí, Á¤È®ÇÑ Ç×¹ý ÆÇ´ÜÀ» ³»¸®°í, º¸ÇàÀÚ¿Í µ¿½ÂÀÚ¸¦ º¸È£ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼¼°èº¸°Ç±â±¸(WHO)°¡ ¹ßÇ¥ÇÑ '±³Åë¾ÈÀü¿¡ °üÇÑ ¼¼°èÇöȲº¸°í¼­ 2018'¿¡ µû¸£¸é 2018³â ¿¬°£ ±³Åë»ç°í »ç¸ÁÀÚ ¼ö´Â 135¸¸ ¸í¿¡ ´ÞÇÕ´Ï´Ù. ±³Åë»ç°í »ç¸ÁÀº ÇöÀç 5-29¼¼ »ç¸Á¿øÀÎ 1À§·Î ²ÅÈ÷°í ÀÖ½À´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷ ¿¬±¸°³¹ßºñ Áõ°¡

ÀÚµ¿Â÷ »ê¾÷°ú ±â¼ú »ê¾÷ÀÌ AVÀÇ °¡´É¼ºÀ» °è¼Ó Á¶»çÇϰí ÀÖ´Â °¡¿îµ¥, ÀÚÀ²ÁÖÇàÂ÷(AV) ±â¼ú âÃâ°ú »ó¿ëÈ­¸¦ ¾Õ´ç±â±â À§ÇÑ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÀÚ±ÝÀÌ ÅõÀԵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â ¼¾¼­ ÀÚüÀÇ °³¼±°ú ÇÔ²² ¿©·¯ ¼¾¼­ÀÇ Á¤º¸¸¦ ÅëÇÕÇÏ¿© Â÷·® ÁÖº¯ÀÇ º¸´Ù »ó¼¼Çϰí Á¤È®ÇÑ À̹ÌÁö¸¦ »ý¼ºÇÏ´Â ¼¾¼­ À¶ÇÕ ±â¼úÀÇ °³¼±À» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, LiDAR, ·¹ÀÌ´õ µî ¼¾¼­ÀÇ ±â¼ú Çõ½Å°ú ºñ¿ë Àý°¨À» ÅëÇØ º¸´Ù °æÁ¦ÀûÀ̰í È¿°úÀûÀÎ ¼Ö·ç¼ÇÀÌ °³¹ßµÇ°í ÀÖ¾î ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀÌ ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

¹ÌÈíÇÑ ÀÚÀ²ÁÖÇàÂ÷ ÀÎÇÁ¶ó

ÀÚÀ²ÁÖÇàÂ÷ÀÇ ¼º°ø ¿©ºÎ´Â Â÷·® ÀÚü»Ó¸¸ ¾Æ´Ï¶ó ÁÖº¯ ÀÎÇÁ¶ó¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶»çµé¿¡°Ô °¡Àå Å« ¹®Á¦´Â ¸¹Àº µµ½Ã¿Í µµ·Î°¡ ÀÚÀ²ÁÖÇà¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Á¤ºñµÇ¾î ÀÖÁö ¾Ê´Ù´Â Á¡ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, Â÷¼± Ç¥½Ã°¡ ºÒºÐ¸íÇÑ µµ·Î, Á¶ÀâÇÑ ±³Â÷·Î, ºÒÃæºÐÇÑ Ç¥ÁöÆÇ µîÀº ¼¾¼­ ½Ã½ºÅÛÀ» È¥¶õ½º·´°Ô ÇÏ°í ±× È¿À²¼ºÀ» ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚÀ²ÁÖÇàÂ÷¿Í µµ·Î ÀÎÇÁ¶ó´Â Åë½ÅÇÒ ¼ö ¾ø±â ¶§¹®¿¡ AV´Â Â÷·®¿¡ ÀåÂøµÈ ¼¾¼­·Î ¸ðµç ÆÇ´ÜÀ» ³»·Á¾ß Çϸç, »óȲ¿¡ µû¶ó¼­´Â ¼º´ÉÀÇ ÇѰ谡 ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.

V2X ±â¼ú°ú 5G ±â¼úÀÇ À¶ÇÕ

5G ±â¼úÀÇ Ã¤ÅÃÀº V2X(Vehicle-to-Everything) Åë½Å(ÀÚµ¿Â÷¿Í ÀÎÇÁ¶ó °£ÀÇ º¸´Ù ºü¸£°í ¾ÈÁ¤ÀûÀÎ Åë½Å)À» ÃËÁøÇÔÀ¸·Î½á ÀÚÀ²ÁÖÇàÂ÷¿¡ »õ·Î¿î °¡´É¼ºÀ» °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚÀ²ÁÖÇàÂ÷, ½ÅÈ£µî, µµ·Î Ç¥ÁöÆÇ, µµ·Î À§ÀÇ ´Ù¸¥ Â÷·®µéÀº 5GÀÇ ÀúÁö¿¬, °í¼Ó ¿¬°á¼ºÀ» ÅëÇØ ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ ±³È¯ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Åë½ÅÀÇ °³¼±À¸·Î AV´Â ´õ ºü¸¥ ÀÇ»ç°áÁ¤À» ³»¸®°í, ¾ÈÀü¼ºÀ» ³ôÀ̰í, ¾î·Á¿î ȯ°æÀ» ´õ È¿°úÀûÀ¸·Î Ž»öÇÒ ¼ö ÀÖÀ¸¸ç, V2X ±â¼ú°ú ÇÔ²² ¼¾¼­ ½Ã½ºÅÛÀº »ç°í, ±³Åë üÁõ, µµ·Î »óȲ¿¡ ´ëÇÑ Á¤º¸¸¦ ½Ç½Ã°£À¸·Î Á¦°øÇÏ¿© »óȲ ÀνÄÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. »óȲÀνÄÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

»çÀ̹ö º¸¾È ¹× µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦¿¡ ´ëÇÑ À§Ç輺

ÀÚÀ²ÁÖÇàÂ÷(AV)´Â ÁÖ·Î ¼¾¼­, Ä¿³ØÆ¼ºñƼ, ¼ÒÇÁÆ®¿þ¾î¿¡ ÀÇÁ¸ÇÏ¿© ÀÛµ¿Çϱ⠶§¹®¿¡ ÇØÅ· ½Ãµµ¿Í »çÀ̹ö °ø°Ý¿¡ Ãë¾àÇÕ´Ï´Ù. ¾ÇÀÇÀûÀÎ ÇàÀ§Àڴ ÷´Ü ¼¾¼­¿Í V2X Åë½Å ½Ã½ºÅÛÀÇ ÅëÇÕÀ¸·Î ÀÎÇÑ Â÷·® ³×Æ®¿öÅ©ÀÇ ¾àÁ¡À» ÀÌ¿ëÇϱâ À§ÇØ AV¸¦ Ç¥ÀûÀ¸·Î »ïÀ» ¼ö ÀÖ½À´Ï´Ù. »çÀ̹ö °ø°ÝÀÌ ¼º°øÇϸé ÀÚÀ²ÁÖÇàÂ÷ÀÇ ¾ÈÀü¼ºÀÌ ÈÑ¼ÕµÇ¾î »ç°í³ª °³ÀÎÁ¤º¸ µµ³­À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼¾¼­ Á¦Á¶»çµéÀº EUÀÇ GDPR°ú °°Àº ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸È£ ±ÔÁ¦ÀÇ Àû¿ëÀ» ¹ÞÀ» ¼ö ÀÖÀ¸¸ç, °­·ÂÇÑ »çÀ̹ö º¸¾È°ú µ¥ÀÌÅÍ ¾Ïȣȭ ±â¹ý¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¸¦ ÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀåÀº COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ Àη ºÎÁ·, °ø±Þ¸Á Áß´Ü, °øÀå Æó¼â·Î ÀÎÇØ ÀÚÀ²ÁÖÇàÂ÷ °³¹ß, Å×½ºÆ®, ¹èÄ¡°¡ Áö¿¬µÇ´Â µî Å« Ÿ°ÝÀ» ÀÔ¾ú½À´Ï´Ù. ¼¾¼­ °³¹ßÀ» Æ÷ÇÔÇÑ ÀÚÀ²ÁÖÇàÂ÷ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ´Â ¸¹Àº ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ´çÀåÀÇ »ýÁ¸À» ¿ì¼±½ÃÇϸ鼭 °æ±â ħü±â¿¡ °¨¼ÒÇß½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ »ê¾÷ÀÌ µÐÈ­µÇ°í, ·Ï´Ù¿î ±â°£ µ¿¾È ÀÚµ¿Â÷ ¼ö¿ä°¡ °¨¼ÒÇÔ¿¡ µû¶ó ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ µµÀÔÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª ¼¼°è °æÁ¦°¡ ²ÙÁØÈ÷ È£ÀüµÇ¸é¼­ ºñÁ¢ÃË ±â¼ú°ú ¹«ÀÎ ±â¼úÀÌ ´Ù½Ã ÁÖ¸ñ¹Þ±â ½ÃÀÛÇß°í, ¾ÈÀüÇÑ ¿î¼ÛÀ» À§ÇÑ ¼¾¼­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È LiDAR(±¤°ËÃâ ¹× °Å¸®ÃøÁ¤) ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

LiDAR(Light Detection and ranging) ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, LiDAR ¼¾¼­°¡ Á¦°øÇÏ´Â Â÷·® ȯ°æÀÇ Á¤È®ÇÑ °íÇØ»óµµ ¸ÅÇÎÀº ¹°Ã¼, Àå¾Ö¹°, µµ·Î »óȲÀ» Á¤È®ÇÏ°Ô °¨ÁöÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÚÀ²ÁÖÇà Â÷·®ÀÇ ¾ÈÀü ¿îÀü¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ ¼¾¼­µéÀº °Å¸®¸¦ ÃøÁ¤ÇÏ°í ·¹ÀÌÀú ±¤¼±À» ÀÌ¿ëÇÏ¿© »ó¼¼ÇÑ 3Â÷¿ø Áöµµ¸¦ »ý¼ºÇÔÀ¸·Î½á Â÷·®ÀÌ ÁÖº¯ »óȲÀ» öÀúÈ÷ ÀνÄÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ, LiDAR´Â ºñ±³Àû °í°¡ÀÓ¿¡µµ ºÒ±¸ÇÏ°í ¿ÏÀüÇÑ ÀÚÀ²¼ºÀ» ½ÇÇöÇϱâ À§ÇÑ Áß¿äÇÑ ¿ä¼ÒÀ̸ç, ¼º´É°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ·¹ÀÌ´õ, Ä«¸Þ¶ó µî ´Ù¸¥ ¼¾¼­ ±â¼ú°ú °áÇյǴ °æ¿ì°¡ ¸¹½À´Ï´Ù.

·¹º§ 3(Á¶°ÇºÎ ÀÚµ¿È­) ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ·¹º§ 3(Á¶°ÇºÎ ÀÚµ¿È­) ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ¼öÁØÀÇ ÀÚµ¿È­¿¡¼­ ÀÚµ¿Â÷´Â ¿îÀü ¾÷¹«ÀÇ ´ëºÎºÐÀ» ½º½º·Î °ü¸®ÇÒ ¼ö ÀÖÁö¸¸, º¹ÀâÇÑ µµ·Î »óȲÀ̳ª ¿¹ÃøÇÒ ¼ö ¾ø´Â µµ·Î »óȲ°ú °°ÀÌ Àΰ£ÀÇ °³ÀÔÀÌ ÇÊ¿äÇÑ »óȲ¿¡¼­´Â LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó µî º¸´Ù ¾ÈÀüÇÑ ±â´É°ú º¸´Ù Á¤È®ÇÑ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÏ´Â ¼¾¼­ ±â¼úÀÇ °³¹ßÀÌ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÎ¹®ÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ Á¶°ÇºÎ ÀÚµ¿È­¸¦ Ãß±¸Çϸ鼭 ¿îÀüÀÚÀÇ »ó½Ã ¸ð´ÏÅ͸µ ¾øÀÌ ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ, ±ä±Þ Á¦µ¿, Â÷¼± À¯Áö µîÀÇ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ´Â ¼¾¼­ ¹× ÀΰøÁö´É(AI) ½Ã½ºÅÛ¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ¹Ì±¹¿¡¼­´Â ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ±â¼ú ±â¾÷, ¼¾¼­ °ø±Þ¾÷üµéÀÌ °­·ÂÇÑ ÀÔÁö¸¦ ±¸ÃàÇϰí ÀÖ´Â °ÍÀÌ ÀÌ Áö¿ªÀÇ ¿ìÀ§¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó µî ¼¾¼­ ±â¼ú ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÚÀ²ÁÖÇàÂ÷ °³¹ß ¹× Å×½ºÆ®ÀÇ ¼±µÎÁÖÀÚ·Î ÀÚ¸®¸Å±èÇϰí ÀÖÀ¸¸ç, Tesla, Waymo, Uber µî ÀÚÀ²ÁÖÇàÂ÷ Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ´Â ¼ö¸¹Àº À¯¸í ±â¾÷µéÀÌ ¹Ì±¹¿¡ ±â¹ÝÀ» µÎ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÇ Æø¹ßÀûÀÎ ¼ºÀå, ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹ µî ÀÚÀ²ÁÖÇà ±â¼ú °³¹ßÀÌ Å©°Ô °¡¼ÓÈ­µÇ°í ÀÖ´Â ±¹°¡µéÀÌ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß±¹Àº âÀǼºÀ» ÃËÁøÇÏ´Â Á¤Ã¥ ¹× ¹ý·ü¿¡ ÈûÀÔ¾î ÀÚÀ²ÁÖÇàÂ÷ ¹× ½º¸¶Æ® ¸ðºô¸®Æ¼ ¼Ö·ç¼Ç °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àü±âÀÚµ¿Â÷¿Í ¹«ÀÎÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ »ý»ê ¹× ¹èÄ¡ÀÇ ÁÖ¿ä °ÅÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ¼Ò°³
    • Ãß°¡ ½ÃÀå ÁøÀÔ ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ¼¾¼­ À¯Çüº°

  • ¼Ò°³
  • LiDAR(±¤°ËÃâ°ú Ãø°Å)
  • ·¹ÀÌ´õ ¼¾¼­
  • ÃÊÀ½ÆÄ ¼¾¼­
  • ¿­¼¾¼­
  • Ä«¸Þ¶ó ¼¾¼­

Á¦6Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : Â÷Á¾º°

  • ¼Ò°³
  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷

Á¦7Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ÀÚµ¿È­ ·¹º§º°

  • ¼Ò°³
  • ·¹º§ 2(ºÎºÐÀûÀÎ ÀÚµ¿È­)
  • ·¹º§ 3(Á¶°ÇºÎ ÀÚµ¿È­)
  • ·¹º§ 4(÷´Ü ÀÚµ¿È­)
  • ·¹º§ 5(¿ÏÀü ÀÚµ¿È­)

Á¦8Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ÃøÁ¤ ¹üÀ§º°

  • ¼Ò°³
  • ´Ü°Å¸® ¼¾¼­
  • Á߰Ÿ® ¼¾¼­
  • Àå°Å¸® ¼¾¼­

Á¦9Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ¼¾¼­ ±â¼úº°

  • ¼Ò°³
  • ¾×Ƽºê ¼¾¼­
  • ÆÐ½Ãºê ¼¾¼­

Á¦10Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ
  • Ãæµ¹ °ËÃâ°ú ȸÇÇ
  • Â÷¼±ÀÌÅ»°æ°í
  • ÁÖÂ÷ º¸Á¶
  • ÀÚÀ² Ç×Çà

Á¦11Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷ ¼¾¼­ ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä °³¹ß

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ °³¿ä

  • Velodyne Lidar
  • Luminar Technologies
  • Aeva Technologies
  • Innoviz Technologies
  • Ouster
  • Hesai Group
  • Mobileye Global Inc.
  • Robert Bosch GmbH
  • Continental AG
  • Valeo
  • Aptiv
  • ZF Friedrichshafen AG
  • Magna International
  • Denso Corporation
  • Quanergy Systems
  • Horizon Robotics
ksm 25.03.20

According to Stratistics MRC, the Global Autonomous Vehicle Sensors Market is accounted for $10.37 billion in 2024 and is expected to reach $23.37 billion by 2030 growing at a CAGR of 14.5% during the forecast period. Autonomous vehicle sensors are essential for allowing self-driving cars to safely navigate and engage with their surroundings. Radar sensors are used to determine an object's distance and speed, even in bad weather. While LiDAR sensors produce high-resolution three-dimensional maps of the surroundings, cameras record visual information to help detect traffic signals and identify objects. Moreover, for close-range detection, especially when parking or making low-speed maneuvers, ultrasonic sensors are frequently used. By combining these sensors, autonomous cars are able to identify obstructions, make accurate navigational decisions, and protect pedestrians and passengers.

According to the Global Status Report on Road Safety 2018, published by the World Health Organization (WHO), the number of annual road traffic deaths reached 1.35 million in 2018. Road traffic injuries are now the leading killer of people aged 5-29 years.

Market Dynamics:

Driver:

Increasing R&D spending on autonomous vehicles

Large sums of money are being spent on research and development to hasten the creation and commercialization of autonomous vehicle (AV) technologies as the automotive and technology industries continue to investigate the possibilities of AVs. Along with improving the sensors themselves, these investments are also aimed at improving sensor fusion technologies, which integrate information from several sensors to produce a more thorough and precise picture of the vehicle's surroundings. Additionally, the market for sensors for autonomous vehicles is expected to grow as a result of the push for innovation and cost reduction in sensors, such as LiDAR and radar, which are producing more economical and effective solutions.

Restraint:

Inadequate autonomous vehicle infrastructure

Autonomous vehicle deployment success depends on the surrounding infrastructure in addition to the vehicles themselves. A major problem for manufacturers is that many cities and roads are not set up to accommodate autonomous driving. Roads with unclear lane markings, shoddy intersections, or insufficient signage, for instance, can confuse sensor systems and reduce their efficiency. Furthermore, because autonomous vehicles and road infrastructure cannot communicate, AVs must make all of their decisions using onboard sensors, which may result in performance limitations in some situations.

Opportunity:

Fusion of V2X and 5G technologies

The introduction of 5G technology is creating new possibilities for self-driving cars by facilitating Vehicle-to-Everything (V2X) communication-faster, more dependable communication between cars and infrastructure. Moreover, autonomous vehicles, traffic lights, road signs, and other vehicles on the road can all exchange data in real time owing to 5G's low latency and fast connectivity. Because of this improved communication, AVs can make decisions more quickly, increase safety, and navigate challenging environments more effectively. Together with V2X technologies, sensor systems can enhance situational awareness by providing real-time information about accidents, traffic jams, and road conditions.

Threat:

Risks to cybersecurity and data privacy issues

Autonomous vehicles (AVs) are susceptible to hacking attempts and cyber attacks since they mainly depend on sensors, connectivity, and software to function. Malicious actors may target AVs in an attempt to take advantage of weaknesses in vehicle networks due to the integration of sophisticated sensors and V2X communication systems. Autonomous vehicle safety could be jeopardized by a successful cyber attack, which could result in mishaps or the theft of private information. Additionally, sensor manufacturers may be subject to stringent data protection regulations, such as the GDPR in the EU, which would compel them to make significant investments in strong cybersecurity and data encryption methods.

Covid-19 Impact:

The market for autonomous vehicle sensors was greatly impacted by the COVID-19 pandemic, which resulted in labor shortages, supply chain disruptions, and factory closures that delayed the development, testing, and deployment of autonomous vehicles. Investments in autonomous vehicle technology, including sensor development, were reduced during the economic downturn as many automakers prioritized their immediate survival. Furthermore, the adoption of autonomous systems was delayed as a result of the slowdown in the automotive industry and the decreased demand for vehicles during lockdowns. But as the world economy steadily improved, contactless and driverless technologies gained attention again, which sparked interest in sensors for secure transportation.

The LiDAR (Light Detection and Ranging) segment is expected to be the largest during the forecast period

The LiDAR (Light Detection and Ranging) segment is expected to account for the largest market share during the forecast period. The precise and high-resolution mapping of the vehicle's environment made possible by LiDAR sensors is crucial for the safe operation of autonomous vehicles because it enables the precise detection of objects, obstacles, and road conditions. These sensors give the car a thorough awareness of its surroundings by measuring distances and producing a detailed three-dimensional map of the area using laser beams. Moreover, LiDAR is still a crucial component of complete autonomy despite its comparatively high cost, and it is frequently combined with other sensor technologies like radar and cameras to improve performance and safety.

The Level 3 (Conditional Automation) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the Level 3 (Conditional Automation) segment is predicted to witness the highest growth rate. At this degree of automation, cars can manage the majority of driving duties on their own, but in some circumstances-like complicated or unpredictable road conditions-human intervention is necessary. The development of sensor technologies like LiDAR, radar, and cameras, which allow for safer features and more precise decision-making, is what is driving this segment's growth. Additionally, major investments are being made in sensors and artificial intelligence (AI) systems that can carry out tasks like adaptive cruise control, emergency braking, and lane-keeping without constant driver supervision as automakers strive toward conditional automation.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. Strong presences of significant automakers, tech firms, and sensor suppliers-especially in the US-are what propel the region's dominance. North America has made significant investments in research and development for sensor technologies like LiDAR, radar, and cameras, positioning it as a leader in the creation and testing of autonomous vehicles. Numerous well-known businesses that are leading the way in autonomous vehicle innovation are based in the United States, including Tesla, Waymo, and Uber.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. The automotive industry's explosive growth, particularly in nations like China, Japan, and South Korea where developments in autonomous driving technologies are accelerating significantly, is the main driver of this expansion. China, in particular, is making significant investments in the development of autonomous vehicles and smart mobility solutions, aided by policies and laws that promote creativity. Moreover, the Asia Pacific region is becoming a major hub for the production and deployment of autonomous vehicle sensors as consumer demand for electric and driverless vehicles increases.

Key players in the market

Some of the key players in Autonomous Vehicle Sensors market include Velodyne Lidar, Luminar Technologies, Aeva Technologies, Innoviz Technologies, Ouster, Hesai Group, Mobileye Global Inc., Robert Bosch GmbH, Continental AG, Valeo, Aptiv, ZF Friedrichshafen AG, Magna International, Denso Corporation, Quanergy Systems and Horizon Robotics.

Key Developments:

In September 2024, Continental and Vitesco Technologies have reached an agreement based on their corporate separation agreement regarding the appropriate allocation of costs and liabilities from the investigations in connection with the supply of engine control units and engine control software.

In August 2024, DENSO Corporation announced that it has signed a manufacturing license agreement with Ceres Power Holdings (CWR.L), a leading developer of solid oxide cell stack technology. DENSO aims to advance the early practical application of Solid Oxide Electrolysis Cells (SOECs)*1 that produce hydrogen through water electrolysis.

In February 2023, Self-driving sensor maker Luminar Technologies Inc announced an expanded partnership with Mercedes-Benz Group on Wednesday to enable fully automated driving for its next-generation vehicles. Automakers from Tesla Inc to General Motors are focusing on autonomous vehicles, but technological and regulatory hurdles remain.

Sensor Types Covered:

  • LiDAR (Light Detection and Ranging)
  • Radar Sensors
  • Ultrasonic Sensors
  • Thermal Sensors
  • Camera Sensors

Vehicle Types Covered:

  • Passenger Vehicles
  • Commercial Vehicles

Level of Automations Covered:

  • Level 2 (Partial Automation)
  • Level 3 (Conditional Automation)
  • Level 4 (High Automation)
  • Level 5 (Full Automation)

Ranges Covered:

  • Short-Range Sensors
  • Medium-Range Sensors
  • Long-Range Sensors

Sensor Technologies Covered:

  • Active Sensors
  • Passive Sensors

Applications Covered:

  • Adaptive Cruise Control
  • Collision Detection and Avoidance
  • Lane Departure Warning
  • Parking Assistance
  • Autonomous Navigation

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Autonomous Vehicle Sensors Market, By Sensor Type

  • 5.1 Introduction
  • 5.2 LiDAR (Light Detection and Ranging)
  • 5.3 Radar Sensors
  • 5.4 Ultrasonic Sensors
  • 5.5 Thermal Sensors
  • 5.6 Camera Sensors

6 Global Autonomous Vehicle Sensors Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Passenger Vehicles
  • 6.3 Commercial Vehicles

7 Global Autonomous Vehicle Sensors Market, By Level of Automation

  • 7.1 Introduction
  • 7.2 Level 2 (Partial Automation)
  • 7.3 Level 3 (Conditional Automation)
  • 7.4 Level 4 (High Automation)
  • 7.5 Level 5 (Full Automation)

8 Global Autonomous Vehicle Sensors Market, By Range

  • 8.1 Introduction
  • 8.2 Short-Range Sensors
  • 8.3 Medium-Range Sensors
  • 8.4 Long-Range Sensors

9 Global Autonomous Vehicle Sensors Market, By Sensor Technology

  • 9.1 Introduction
  • 9.2 Active Sensors
  • 9.3 Passive Sensors

10 Global Autonomous Vehicle Sensors Market, By Application

  • 10.1 Introduction
  • 10.2 Adaptive Cruise Control
  • 10.3 Collision Detection and Avoidance
  • 10.4 Lane Departure Warning
  • 10.5 Parking Assistance
  • 10.6 Autonomous Navigation

11 Global Autonomous Vehicle Sensors Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Velodyne Lidar
  • 13.2 Luminar Technologies
  • 13.3 Aeva Technologies
  • 13.4 Innoviz Technologies
  • 13.5 Ouster
  • 13.6 Hesai Group
  • 13.7 Mobileye Global Inc.
  • 13.8 Robert Bosch GmbH
  • 13.9 Continental AG
  • 13.10 Valeo
  • 13.11 Aptiv
  • 13.12 ZF Friedrichshafen AG
  • 13.13 Magna International
  • 13.14 Denso Corporation
  • 13.15 Quanergy Systems
  • 13.16 Horizon Robotics
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦