![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1707459
¼¼°èÀÇ DNA ³ª³ë±â¼ú ½ÃÀå : À¯Çüº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°Global DNA Nanotechnology Market, By Type, By Application, By End User, By Geography |
¼¼°è DNA ³ª³ë±â¼ú ½ÃÀåÀº 2025³â 44¾ï ´Þ·¯·Î ÃßÁ¤µÇ¸ç, 2032³â¿¡´Â 212¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2025³âºÎÅÍ 2032³â±îÁö ¿¬Æò±Õ ¼ºÀå·ü(CAGR)Àº 25.2%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
º¸°í¼ ¹üÀ§ | º¸°í¼ »ó¼¼ | ||
---|---|---|---|
±âÁØ ¿¬µµ | 2024³â | 2025³â ½ÃÀå ±Ô¸ð | 44¾ï ´Þ·¯ |
½ÇÀû µ¥ÀÌÅÍ | 2020-2024³â | ¿¹Ãø ±â°£ | 2025-2032³â |
¿¹Ãø ±â°£ : 2025-2032³â CAGR: | 25.20% | 2032³â °¡Ä¡ ¿¹Ãø | 212¾ï 3,000¸¸ ´Þ·¯ |
DNA ³ª³ë±â¼úÀº DNAÀÇ °íÀ¯ÇÑ Æ¯¼ºÀ» ÀÌ¿ëÇÏ¿© DNAÀÇ »õ·Î¿î ¹è¿À» ¼³°èÇϰí, DNA ¿°±â½ÖÀÇ °íµµ·Î ƯÀÌÀûÀÎ °áÇÕ Æ¯¼ºÀ» ÀÌ¿ëÇÏ¿© DNA ³ª³ë±â¼úÀº °úÇÐÀÚµéÀÌ DNA¿Í ´Ù¸¥ ¹°Áú·ÎºÎÅÍ ¿ªµ¿ÀûÀÎ ÀåÄ¡¿Í ±¸Á¶¸¦ ±¸ÃàÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. DNA ³ª³ë±â¼úÀº ÇコÄɾî, ÀüÀÚ, Àç·á µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ ÀÀ¿ëµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, DNA ³ª³ë±â¼úÀº DNA ¹× ±âŸ ÇÙ»êÀÇ ºÐÀÚ ÀÎ½Ä ¹× ÀÚ±âÁ¶Á÷È ´É·ÂÀ» ÅëÇØ ÇÁ·Î±×·¡¹ÖÀÌ °¡´ÉÇϰí ÁÖ¼Ò ÁöÁ¤ÀÌ °¡´ÉÇÑ ³ª³ë½ºÄÉÀÏ ±¸Á¶, DNA ¹× ±âŸ ÇÙ»êÀÇ ºÐÀÚ ÀÎ½Ä ¹× ÀÚ±âÁ¶Á÷È ´É·ÂÀ» ÅëÇØ DNA Á¾ÀÌÁ¢±â ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿¬±¸ÀÚµéÀº ÀÌÁ¦ DNAÀÇ ±ä ´ÜÀÏ °¡´ÚÀ» ³ª³ë ±Ô¸ð·Î ¹Ì¸® Á¤ÀÇµÈ 2Â÷¿ø ¶Ç´Â 3Â÷¿ø ¸ð¾çÀ¸·Î Á¢À» ¼ö ÀÖÀ¸¸ç, DNA ³ª³ë±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ¾à¹°Àü´Þ, ÇÕ¼º»ý¹°ÇÐ, ¾à¹°Àü´Þ, ÇÕ¼º»ý¹°ÇÐ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ ÀÀ¿ëµÉ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ¾à¹°Àü´Þ, ÇÕ¼º»ý¹°ÇÐ, ³ª³ëÀüÀÚ µîÀÇ ºÐ¾ß¿¡ Çõ¸íÀ» °¡Á®¿Ã Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.
³ª³ë±â¼ú ±â¹Ý Áø´Ü ±â¼ú¿¡ ´ëÇÑ °ü½É Áõ°¡, Ç¥Àû ¾à¹°Àü´Þ ¹æ¹ý °³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡ ´ëÇÑ DNA ³ª³ë±â¼úÀÇ Ã¤Åà Áõ°¡ µîÀÇ ½ÃÀå ÃËÁø¿äÀÎÀÌ DNA ³ª³ë±â¼ú ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª DNA ³ª³ë±â¼ú ¿¬±¸¿Í °ü·ÃµÈ ³ôÀº ºñ¿ë°ú DNA Á¾ÀÌÁ¢±â Á¦Á¶¿Í °ü·ÃµÈ ±â¼úÀû ÇѰè´Â ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇÑÆí, »õ·Î¿î ºñÁî´Ï½º ±âȸ´Â µ¶Æ¯ÇÑ Æ¯¼ºÀ» °¡Áø ±â´É¼º ¼ÒÀ縦 °³¹ßÇϱâ À§ÇÑ Àç·á °úÇп¡ DNA ³ª³ë±â¼úÀ» Àû¿ëÇÏ´Â µ¥¿¡ ÀÖ½À´Ï´Ù. ÀÚµ¿ÈµÈ DNA Á¾ÀÌÁ¢±â ¼³°è, ¸ðµ¨¸µ ¹× Á¦Á¶ÀÇ ¹ßÀüÀº ±âÁ¸ ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀ̸ç ÇâÈÄ ¸î ³â µ¿¾È ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
DNA ³ª³ë±â¼úÀº DNA ¹× ±âŸ ÇÙ»êÀÇ ºÐÀÚ ÀÎ½Ä Æ¯¼ºÀ» ÀÌ¿ëÇÏ¿© ³ª³ë½ºÄÉÀÏ¿¡¼ º¹ÀâÇÑ ÇÁ·Î±×·¥ °¡´ÉÇÑ ±¸Á¶¸¦ »ý¼ºÇϸç, DNA ³ª³ë±â¼úÀº ´Ù¾çÇÑ Áúº´°ú °ü·ÃµÈ ¹ÙÀÌ¿À¸¶Ä¿¸¦ °ËÃâÇϱâ À§ÇÑ °í°¨µµ ¹ÙÀÌ¿À¼¾¼ °³¹ß¿¡ Ȱ¿ëµÇ¾î Áø´Ü ´É·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. DNA ³ª³ë ±¸Á¶´Â ¾à¹° ºÐÀÚ¸¦ Á¦¾îµÈ ¹æ½ÄÀ¸·Î ¿î¹ÝÇÏ°í ¹æÃâÇϵµ·Ï ¼³°èÇÒ ¼ö ÀÖÀ¸¸ç, ƯÁ¤ ¼¼Æ÷³ª Á¶Á÷À» Ç¥ÀûÀ¸·Î »ïÀ» ¼ö ÀÖÀ¸¸ç, DNA ±â¹Ý ³ª³ë ±¸Á¶´Â Á¤¹ÐÇÑ À̹Ì¡ Á¦ ¿ªÇÒÀ» ÇÏ¿© À̹Ì¡ ±â¼úÀÇ ÇØ»óµµ¿Í ƯÀ̼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¾à¹°Àü´Þ»Ó¸¸ ¾Æ´Ï¶ó, DNA ³ª³ë±â¼úÀº À¯ÀüÀÚ Á¶Àý ¿ä¹ýÀ̳ª Ä¡·á ¸ñÀûÀ¸·Î »ýü ½Ã½ºÅÛ°ú »óÈ£ÀÛ¿ëÇÒ ¼ö ÀÖ´Â ³ª³ë½ºÄÉÀÏ ÀåÄ¡¸¦ ±¸ÃàÇÒ ¼ö ÀÖÀ¸¸ç, DNA´Â °í¹Ðµµ µ¥ÀÌÅÍ ÀúÀå ¹× »ý¹°ÇÐÀû ÄÄÇ»ÆÃ ½Ã½ºÅÛ °³¹ßÀ» À§ÇÑ ¸Åü¸¦ Á¦°øÇÔÀ¸·Î½á ÄÄÇ»ÆÃ¿¡ ´ëÇÑ »õ·Î¿î °¡´É¼ºÀ» Á¦½ÃÇÕ´Ï´Ù. DNA ³ª³ë±â¼úÀº ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ ±â´É°ú Ư¼ºÀ» °¡Áø ½Å¼ÒÀ縦 ¸¸µå´Âµ¥ Ȱ¿ëµÇ¸ç, ÀüÀÚ°øÇп¡¼ »ý¸í°øÇп¡ À̸£±â±îÁö ´Ù¾çÇÑ »ê¾÷¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
¿¹¸¦ µé¾î, 2024³â 9¿ù, ¿¹¼ú°úÇдëÇÐÀÇ RNA ¿¬±¸¼Ò´Â ¹Ì±¹ ±¹¸³º¸°Ç¿ø »êÇÏ ±¹¸³Á¾ÇÕÀÇÇבּ¸¼Ò·ÎºÎÅÍ 190¸¸ ´Þ·¯¸¦ Áö¿ø¹Þ¾Æ DNA ³ª³ë±â¼úÀ» »ýÀÇÇÐ ¹× Àç·á°úÇÐ ÀÀ¿ë¿¡ Ȱ¿ëÇÏ´Â ¹æ¹ýÀ» ¸ð»öÇÏ´Â ¿¬±¸¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.
Global DNA Nanotechnology Market is estimated to be valued at USD 4.4 Bn in 2025 and is expected to reach USD 21.23 Bn by 2032, growing at a compound annual growth rate (CAGR) of 25.2% from 2025 to 2032.
Report Coverage | Report Details | ||
---|---|---|---|
Base Year: | 2024 | Market Size in 2025: | USD 4.4 Bn |
Historical Data for: | 2020 To 2024 | Forecast Period: | 2025 To 2032 |
Forecast Period 2025 to 2032 CAGR: | 25.20% | 2032 Value Projection: | USD 21.23 Bn |
DNA nanotechnology is an emerging field that utilizes the unique properties of DNA to engineer novel arrangements of DNA, and manipulate materials at the nanoscale level. By exploiting the highly specific binding properties of DNA base pairs, DNA nanotechnology allows scientists to construct dynamic devices and structures from DNA and other materials. DNA nanotechnology holds significant promise for applications across various industries, including healthcare, electronics, and materials. It enables the development of programmable and addressable nanoscale structures, devices, and systems through the molecular recognition and self-assembly capabilities of DNA and other nucleic acids. Advances in DNA origami techniques now allow researchers to fold long single strands of DNA into predefined two-dimensional and three-dimensional shapes at the nanoscale. Continued progress in DNA nanotechnology is poised to revolutionize fields such as drug delivery, synthetic biology, nanoelectronics, and more.
Drivers such as the growing focus on nanotechnology-based diagnostic techniques, rising investments in the development of targeted drug delivery methods, and increasing adoption of DNA nanotechnology for various applications are fueling the growth of the DNA nanotechnology market. However, high costs associated with DNA nanotechnology research and technical limitations related to DNA origami fabrication are expected to restrain the market growth. Meanwhile, emerging opportunities lie in the application of DNA nanotechnology in material science for developing functional materials with unique properties. Advances in automated DNA origami design, modeling, and fabrication also hold promise to help address existing challenges and further stimulate market growth in the coming years.
DNA nanotechnology utilizes the molecular recognition properties of DNA and other nucleic acids to create complex, programmable structures at the nanoscale. DNA nanotechnology can be used to develop highly sensitive biosensors for the detection of biomarkers associated with various diseases, improving diagnostic capabilities. DNA nanostructures can be designed to carry and release drug molecules in a controlled manner, targeting specific cells or tissues, which has implications for cancer therapy, among other diseases. DNA-based nanostructures can serve as precise imaging agents, enhancing the resolution and specificity of imaging techniques. Beyond drug delivery, DNA nanotechnology may enable gene regulation therapies and the construction of nano-scale devices that can interact with biological systems for therapeutic purposes. DNA has the potential to revolutionize computing by providing a medium for high-density data storage and the development of biological computing systems. DNA nanotechnology is being used to create novel materials with programmable functions and properties, impacting industries from electronics to biotechnology
For instance, in September 2024, RNA Institute in the College of Arts and Sciences, a research institute, received US$1.9 million from the National Institute of General Medical Sciences, a branch of the National Institutes of Health, to support research exploring ways to exploit DNA nanotechnology for biomedical and materials science applications.