½ÃÀ庸°í¼­
»óǰÄÚµå
1325388

¼¼°èÀÇ ½º¸ô¼¿ 5G ³×Æ®¿öÅ© ½ÃÀå(2023-2030³â)

Global Small Cell 5G Network Market - 2023-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: DataM Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 207 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½ÃÀå °³¿ä

¼¼°èÀÇ ½º¸ô¼¿ 5G ³×Æ®¿öÅ©(Small Cell 5G Network) ½ÃÀåÀº 2022³â¿¡ 5¾ï 1,000¸¸ ´Þ·¯¿´À¸¸ç, 2030³â¿¡´Â 25¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ 2023-2030³âÀÇ CAGRÀº 22.4%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù. 5G ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â °í¼Ó ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÀÚ±Ý Á¶´Þ Áõ°¡¿Í ÇÔ²² ¼¼°è ½º¸ô¼¿ 5G ³×Æ®¿öÅ© ½ÃÀå ¼ºÀåÀ» À̲ø °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) ½ÃÀå °³Ã´°ú Ãʰí½Å·Ú¼º¡¤ÀúÁö¿¬ Á¢¼Ó¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõÀÌ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÏ¹ÌÀÇ ½º¸ô¼¿ 5G ³×Æ®¿öÅ© ½ÃÀåÀº Å©°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, 2022³â¿¡´Â ½ÃÀåÀÇ 1/3 ÀÌ»óÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. Ericsson Mobility Report¿¡ µû¸£¸é 2024³â±îÁö ºÏ¹ÌÀÇ ¸ðµç ¸ð¹ÙÀÏ °¡ÀÔÀÚÀÇ 55%¸¦ 5G °¡ÀÔÀÚ°¡ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È »ê¾÷Àº 5G °è¾à ¼ö Áõ°¡·Î ÇýÅÃÀ» ´©¸± °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå ¿ªÇÐ

¸ð¹ÙÀÏ Æ®·¡ÇÈ Áõ°¡¿Í 5G µµÀÔ

½º¸ô¼¿ 5G ³×Æ®¿öÅ©´Â 5G »ýŰè Àüü¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ±× °á°ú 5G ¼ö¿ä Áõ°¡¿Í 5G µ¶¸³Çü ³×Æ®¿öÅ© ÀÎÇÁ¶ó °³¹ß·Î ÀÌ »ê¾÷Àº Å« ¼ºÀå °¡´É¼ºÀ» °®°Ô µË´Ï´Ù. ¶ÇÇÑ ¿øÈ°ÇÑ È­»ó ÅëÈ­, ÃʰíÈ­Áú(UHD)/4K ºñµð¿À, Ŭ¶ó¿ìµå ±â¹Ý VR/AR °ÔÀÓ µî Æø³ÐÀº ¿ëµµ·Î 5G µ¥ÀÌÅÍ ¼­ºñ½º ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

5G ½º¸ô¼¿ ³×Æ®¿öÅ©´Â Àü¹ÝÀûÀÎ ½ÅÈ£ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È µ¥ÀÌÅÍ Áý¾àÀûÀÎ 5G ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½º¸ô¼¿ 5G ³×Æ®¿öÅ© ½ÃÀåÀÇ È®´ë°¡ ÃËÁøµË´Ï´Ù. ¶ÇÇÑ, Cisco VNI Worldwide Mobile Data Traffic Forecast, 2018-2022¿¡ µû¸£¸é ¸ð¹ÙÀÏ µ¥ÀÌÅÍ Æ®·¡ÇÈÀº 2018³â¿¡¼­ 2022³â¿¡ °ÉÃÄ CVGR 46%·Î Áõ°¡ÇßÀ¸¸ç, ÀÌ´Â µ¿±âÈ­ °£ ¼¼°è IP °íÁ¤ Æ®·¡ÇÈ Áõ°¡ÀÇ µÎ ¹è·Î ºü¸¨´Ï´Ù. ÀÔ´Ï´Ù.

IoTÀÇ º¸±Þ

IoT¿¡´Â ¼ö¸¹Àº ÀåÄ¡¿Í ¼¾¼­¸¦ ÀÎÅͳݿ¡ ¿¬°áÇÏ°í ±¤¹üÀ§ÇÑ ºñÁî´Ï½º¿¡¼­ µ¥ÀÌÅ͸¦ ±³È¯Çϰí ÀÚµ¿È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. IoT ÀåÄ¡ÀÇ ¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹æ´ëÇÑ ÀåÄ¡ °£ Åë½ÅÀ» ó¸®Çϱâ À§ÇÑ °ß°íÇÑ ¿¬°á ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½º¸ô¼¿ ³×Æ®¿öÅ©´Â Áö¿ª¿¡ ƯȭµÈ Ä¿¹ö¸®Áö¿Í ¿ë·®À» Á¦°øÇÒ ¼ö ÀÖÀ¸¹Ç·Î ½º¸¶Æ® ½ÃƼ, »ê¾÷ ½Ã¼³, ÇコÄɾî ȯ°æ µî Ư¼ö Áö¿ªÀÇ IoT µð¹ÙÀ̽º°¡ ½Å·Ú¼º ÀÖ°í È¿À²ÀûÀÎ ¹æ½ÄÀ¸·Î ¿¬°áÇÒ ¼ö ÀÖµµ·Ï µË´Ï´Ù.

½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¹× Á¦¾î¸¦ À§ÇØ ¸¹Àº IoT ¿ëµµ´Â ÀúÀü·Â ¿¬°á°ú ³·Àº Áö¿¬À» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ½º¸ô¼¿Àº ÁýÁßÀû ÀÎ Ä¿¹ö¸®Áö¿Í IoT ÀåÄ¡¿¡ ´ëÇÑ ±ÙÁ¢¼ºÀ¸·Î ÀÎÇØ ÇÊ¿äÇÑ ³·Àº Áö¿¬ ¿¬°áÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½º¸ô¼¿Àº Á¼Àº ¹êµå IoT(NB-IoT) ¹× LTE-M°ú °°Àº ÀúÀü·Â ¿¬°áÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¿ëÁö Ãëµæ ¹× ¹éȦ ¿¬°á

½º¸ô¼¿ µµÀÔ¿¡ ÀûÇÕÇÑ ¿ëÁöÀÇ È®º¸³ª ÅëÇà±ÇÀÇ ÃëµæÀº °ï¶õÇÑ °æ¿ì°¡ ÀÖ½À´Ï´Ù. ÅäÁö ¼ÒÀ¯ÀÚ, ÁöÀÚü, Áö¹æ ÀÚÄ¡ ´Üü¿ÍÀÇ ÅäÁö Ãëµæ, Àü¿ø °ø±Þ ¹× ¹éȦ ¿¬°áÀÇ Çù»óÀº µµÀÔ Áö¿¬°ú ºñ¿ë Áõ°¡ÀÇ ¿øÀÎÀ̵˴ϴÙ. °Ô´Ù°¡, ÁÁÀº Ä¿¹ö¸®Áö¿Í ¿ë·®À» ½ÇÇöÇϱâ À§ÇØ, ¹Ì°üÀÇ ¹®Á¦¿Í Áö¿ª»çȸÀÇ ¼ö¿ë¼ºÀ» °í·ÁÇϸ鼭, ½º¸ô¼¿ÀÇ ÀûÀýÇÑ ¼³Ä¡ Àå¼Ò¸¦ ƯÁ¤ÇÏ´Â °Íµµ °úÁ¦°¡ µË´Ï´Ù.

ÄÚ¾î ³×Æ®¿öÅ©·Î µ¥ÀÌÅ͸¦ ¼Û¼ö½ÅÇϱâ À§ÇØ ½º¸ô¼¿Àº ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹éȦ ¿¬°á¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ±×·¯³ª °¢ ½º¸ô¼¿¿¡ ´ë¿ë·®ÀÇ ÀúÁö¿¬ ¹éȦ ¿¬°áÀ» À¯ÁöÇÏ´Â °ÍÀº ƯÈ÷ ±¤¼¶À¯³ª °í¼Ó Á¢¼ÓÀÌ ºÎÁ·ÇÑ °÷¿¡¼­´Â °úÁ¦°¡ µË´Ï´Ù. ±¤¼¶À¯ ¹× ¹«¼± ³×Æ®¿öÅ©¿Í °°Àº ÀûÀýÇÑ ¹éȦ ±â¼úÀÇ ºñ¿ë°ú °¡¿ë¼ºÀº ½º¸ô¼¿ ¹èÆ÷ÀÇ ½ÇÇà °¡´É¼º°ú È®À强¿¡ ¿µÇâÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇ⠺м®

Æó¼â ¹× »çȸÀû °Å¸®ÀÇ Ãà¼Ò Á¶Ä¡·Î »ç¶÷µéÀº ½Ç³»¿¡¼­ º¸³»´Â ½Ã°£ÀÌ ´Ã¾î³ª°í ½Ç³» ¿¬°áÀÇ Á߿伺ÀÌ ºÎ°¢µÇ¾ú½À´Ï´Ù. ½º¸ô¼¿Àº ¼Ò¸Å ¼îÇθô, °æ±âÀå, °øÇ×, »ç¹«½Ç °Ç¹°°ú °°Àº ½Ç³» ȯ°æ¿¡¼­ Áö¿ª Ä¿¹ö¸®Áö¿Í ¿ë·®À» Á¦°øÇÏ´Â µ¥ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ½Ç³» Ä¿¹ö¸®Áö °³¼±¿¡ ´ëÇÑ ¼ö¿ä°¡ ½º¸ô¼¿ÀÇ ¼³Ä¡¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

ÀϺΠ½ÅÈï °æÁ¦ ±¹°¡¿¡¼­´Â Á¤ºÎ°¡ °¢ ºÐ¾ßÀÇ ÀÚµ¿È­ ½Ã½ºÅÛÀ» °³¼±Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖÀ¸¸ç 5G ½º¸ô¼¿ÀÇ Àü°³°¡ ±â´ëµÇ°í ÀÖ½À´Ï´Ù. ű¹¿¡¼­´Â ¸ð¹ÙÀÏ ³×Æ®¿öÅ© Á¦°ø¾÷ü(MNO)°¡ Çù·ÂÇÏ¿© º´¿ø¿¡ 5G ³×Æ®¿öÅ©¸¦ Á¦°øÇÕ´Ï´Ù. ű¹ÀÇ °æÁ¦Æ¯±¸ÀÎ µ¿ºÎ°æÁ¦È¸¶û(EEC)¿¡¼­´Â 2020³â±îÁö Áö¿ªÀÇ ¾à 50%¸¦ 5G·Î Ä¿¹öÇÏ´Â °Í¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

AIÀÇ ¿µÇâ

ÀΰøÁö´ÉÀº ½º¸ô¼¿ 5G ³×Æ®¿öÅ©ÀÇ º¸¾ÈÀ» Å©°Ô Çâ»ó½Ãų °¡´É¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£À¸·Î AI ½Ã½ºÅÛÀº ³×Æ®¿öÅ© Æ®·¡ÇÈ ÆÐÅÏÀ» ºÐ¼®Çϰí, ÀÌ»óÀ» °¨ÁöÇϰí, ÀáÀçÀûÀÎ º¸¾È ¹®Á¦¸¦ ÀνÄÇÒ ¼ö ÀÖ½À´Ï´Ù. AI´Â ¸Ó½Å·¯´× ±â¼úÀ» Ȱ¿ëÇÏ¿© °è¼Ó ÁøÈ­ÇÏ´Â º¸¾È ¸®½ºÅ©¿¡ ´ëÀÀÇÏ°í º¸¾È Ä§ÇØ¸¦ ½Å¼ÓÇÏ°Ô Å½Áö ¹× ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI¸¦ Ȱ¿ëÇÑ ÀÚü Á¶Á÷ ³×Æ®¿öÅ©(SON) ¼Ö·ç¼ÇÀº ½º¸ô¼¿ ³×Æ®¿öÅ©ÀÇ °èȹ, ±¸¼º ¹× ÃÖÀûÈ­¸¦ ÀÚµ¿È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. SON ½Ã½ºÅÛÀº AI ¾Ë°í¸®ÁòÀ» µµÀÔÇÏ¿© º¯È­ÇÏ´Â ³×Æ®¿öÅ© »óȲ¿¡ ÀûÀÀÇϰí, ³×Æ®¿öÅ© ÆÄ¶ó¹ÌÅ͸¦ ÀÚü Á¶Á¤Çϰí, ¹®Á¦¸¦ ½Ç½Ã°£À¸·Î ¼öÁ¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­´Â ¼öµ¿ °³ÀÔÀ» ÇÊ¿ä·Î ÇÏÁö ¾ÊÀ¸¸ç ³×Æ®¿öÅ© ¹èÆ÷°¡ °¡¼ÓÈ­µÇ°í ³×Æ®¿öÅ© È¿À²¼ºÀÌ Çâ»óµË´Ï´Ù.

·¯½Ã¾Æ ¿ìÅ©¶óÀ̳ª ÀüÀïÀÇ ¿µÇâ

ÁöÁ¤ÇÐÀû ±äÀå Áõ°¡´Â ±ÔÁ¦¿Í Á¤Ä¡Àû ºÒÈ®½Ç¼ºÀ¸·Î À̾îÁý´Ï´Ù. ÀÌ·¯ÇÑ ºÒÈ®½Ç¼ºÀº Åë½Å»çÀÇ ÅõÀÚ °áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ¿µÇâÀ» ¹ÞÀº Áö¿ª¿¡¼­ ½º¸ô¼¿ ³×Æ®¿öÅ© ¹èÆ÷ÀÇ Áö¿¬°ú Á¶Á¤À» ÃÊ·¡ÇÕ´Ï´Ù. ¾î´À Á¤´çÀÌ ºÎ°úÇÏ´Â ±ÔÁ¦¿Í Á¦ÇÑÀÇ º¯°æÀº ÀáÀçÀûÀ¸·Î ³×Æ®¿öÅ©ÀÇ °³¹ß°ú ½ÇÇà¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

·¯½Ã¾Æ¿¡ À־ÀÇ 5GÀÇ Àå·¡´Â ÀïÅ»ÀüÀÌ µÇ°í ÀÖ´Â 3.4-3.8GHz´ëÀÇ ±Ç¸®¸¦ ÀεµÇÏ´Â °Í¿¡ ·¯½Ã¾Æ±ºÀÌ ÀúÇ×Çϰí Àֱ⠶§¹®¿¡ ºÒÅõ¸íÇÕ´Ï´Ù. 5G ±â¼úÀº ·¯½Ã¾Æ¿ÍÀÇ ÀüÅõÀÇ ³¯°³¸¦ ´ã´çÇÏ°í ·¯½Ã¾Æ´Â ·¯½Ã¾ÆÀÇ Á¾ÇÕÀû Á¢±ÙÀÎ ¹«¼±ÀüÀÚÀü(radioelektronnaia bor'ba) ¶Ç´Â ÀüÀÚÀü(EW)¿¡ µû¶ó ´ëÇ×ÇÏ·Á°íÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¸¸¾à EWÀÇ Á¢±ÙÀÌ ¼º°øÇϸé, ·¯½Ã¾Æ¿ÍÀÇ ÀüÅõ Áß¿¡ ÀüÀڱ⠽ºÆåÆ®·³Àº 5G ±â¼ú¿¡ ºÒ¸®ÇÑ È¯°æÀÌ µÉÁöµµ ¸ð¸¨´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý ¹× ¹üÀ§

Á¦2Àå Á¤ÀÇ ¹× °³¿ä

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ¿µÇâ ¿äÀÎ
    • ¼ºÀå ÃËÁø ¿äÀÎ
      • ¸ð¹ÙÀÏ Æ®·¡ÇÈ Áõ°¡¿Í 5G º¸±Þ
      • IoTÀÇ º¸±Þ
    • ¾ïÁ¦ ¿äÀÎ
      • ³ôÀº ºñ¿ë°ú ROI
      • »çÀÌÆ® Ãëµæ°ú ¹éȦ Á¢¼Ó
    • ±âȸ
    • ¿µÇ⠺м®

Á¦5Àå »ê¾÷ ºÐ¼®

  • Porter's Five Forces ºÐ¼®
  • °ø±Þ¸Á ºÐ¼®
  • °¡°Ý ºÐ¼®
  • ±ÔÁ¦ ºÐ¼®

Á¦6Àå COVID-19 ºÐ¼®

Á¦7Àå ±¸¼º ¿ä¼Òº°

  • ¼Ö·ç¼Ç
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ
    • ÅëÇÕ¡¤Àü°³
    • ±³À° ¹× Áö¿ø

Á¦8Àå Á֯ļö ´ë¿ªº°

  • Àú´ë¿ª
  • Áߴ뿪
  • ¹Ð¸®¹ÌÅÍÆÄ

Á¦9Àå ¼¿ À¯Çüº°

  • ÇÇÄÚ¼¿
  • ÆèÅ伿
  • ¸¶ÀÌÅ©·Î¼¿

Á¦10Àå µµÀÔ Çüź°

  • ½Ç³»
  • ¿Á¿Ü

Á¦11Àå ¹«¼±±â¼úº°

  • µ¶¸³Çü
  • ºñµ¶¸³Çü

Á¦12Àå ÃÖÁ¾ »ç¿ëÀÚº°

  • Àü±âÅë½Å»ç¾÷ÀÚ
    • °³ÀÎ ¼ÒÀ¯
    • ¸ð¹ÙÀÏ ³×Æ®¿öÅ© »ç¾÷ÀÚ
    • ÇÕÀÛȸ»ç
    • »ç¾÷ÀÚ ¼ÒÀ¯
  • ±â¾÷

Á¦13Àå Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ·¯½Ã¾Æ
    • ±âŸ À¯·´
  • ³²¹Ì
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ ³²¹Ì
  • ¾Æ½Ã¾Æ ÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • ±âŸ ¾Æ½Ã¾Æ ÅÂÆò¾ç
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦14Àå °æÀï ±¸µµ

  • °æÀï ½Ã³ª¸®¿À
  • ½ÃÀå »óȲ/Á¡À¯À² ºÐ¼®
  • M&A ºÐ¼®

Á¦15Àå ±â¾÷ °³¿ä

  • Ericsson
    • ±â¾÷ °³¿ä
    • Á¦Ç° Æ÷Æ®Æú¸®¿À¿Í ¼³¸í
    • À繫 °³¿ä
    • ÃÖ±Ù µ¿Çâ
  • Huawei Technologies Co., Ltd.
  • Nokia Corporation
  • Samsung Electronics Co., Ltd.
  • Airspan Networks
  • Comba Telecom Systems Holdings Ltd.
  • ZTE Corporation
  • Fujitsu Limited
  • CommScope Inc.
  • Baicells Technologies

Á¦16Àå ºÎ·Ï

LYJ 23.09.08

Market Overview

Global Small Cell 5G Network Market reached US$ 0.51 billion in 2022 and is expected to reach US$ 2.5 billion by 2030, growing with a CAGR of 22.4% during the forecast period 2023-2030. Increased investment in 5G infrastructure, combined with increased financing for high-speed networks, is likely to drive the growth of the global small cell 5G network market. The development of the Internet of Things (IoT) and a surge in demand for ultra-reliable, low-latency connections are likely to drive the market growth.

North America small cell 5G network market has grown significantly, accounting for more than 1/3rd of the market in 2022. According to the Ericsson Mobility Report, 5G subscriptions are expected to account for 55% of all mobile subscribers in the North American region by 2024. Over the forecast period, the industry is expected to benefit from a rise in 5G subscriptions.

Market Dynamics

Rising Mobile Traffic and 5G Adoption

Small cell 5G networks are an essential part of the whole 5G ecosystem. As a result, growing 5G demand and the development of 5G standalone network infrastructure will present the industry with significant potential for growth. Furthermore, there is an increasing need for 5G data services for a wide range of applications, including seamless video calling, Ultra-high Definition (UHD)/4K video and cloud-based VR/AR gaming.

The 5G small cell network can improve overall signal performance. During the forecast period, rising demand for data-intensive 5G applications will drive the expansion of the small cell 5G network market. Furthermore, according to Cisco VNI worldwide Mobile Data Traffic Forecast, 2018-2022, mobile data traffic rose at a CVGR of 46% between 2018 and 2022, which is twice as fast as global IP fixed traffic growth during the same period.

Rising Adoption of IoT

IoT includes connecting a large number of devices and sensors to the internet, allowing for data interchange and automation across a wide range of businesses. As the number of IoT devices grows, so will the demand for robust connection infrastructure to handle huge device-to-device communication. Small cell networks can provide localized coverage and capacity, allowing IoT devices in specialized regions like as smart cities, industrial facilities or healthcare environments to connect in a reliable and efficient manner.

For real-time data processing and control, many IoT applications require low-power connectivity and low latency. Small cells can provide the requisite low-latency connections due to their concentrated coverage and proximity to IoT devices. Furthermore, small cells can enable low-power connectivity alternatives like Narrowband IoT (NB-IoT) and LTE-M, which are specifically developed for IoT devices with low power consumption requirements.

Site Acquisition and Backhaul Connectivity

Sourcing suitable sites and obtaining rights of way for small cell deployments can be difficult. Negotiating site access, power supply and backhaul connectivity with property owners, municipalities and local authorities can cause delays and increase implementation costs. Furthermore, identifying appropriate locations for small cell placement to achieve good coverage and capacity while taking aesthetic issues and community acceptance into consideration can be a challenge.

To send data to and from the core network, small cells rely on dependable backhaul connectivity. However, maintaining high-capacity and low-latency backhaul connections for each small cell can be a challenge, especially in places with scarce fiber or high-speed connections. The cost and availability of adequate backhaul technologies, such as fiber optic or wireless networks, can have an impact on the viability and scalability of small cell deployments.

COVID-19 Impact Analysis

Due to lockdowns and social distancing measures, people are spending more time indoors, highlighting the significance of indoor connectivity. Small cells are especially useful for delivering localized coverage and capacity in indoor settings such as retail malls, stadiums, airports and office buildings. The demand for improved indoor coverage may have encouraged the installation of small cells.

Governments in several developing economies are working to improve automation systems in sectors, which is expected to offer prospects for 5G small cell deployment. In Thailand, mobile network providers (MNOs) are working together to supply hospitals with 5G networks. The Eastern Economic Corridor (EEC), Thailand's special economic zone, requires 5G to cover around 50% of the territory by 2020.

AI Impact

AI has the potential to significantly improve the security of small cell 5G networks. In real-time, AI systems can analyze network traffic patterns, detect anomalies and recognize potential security concerns. AI can continuously evolve and adjust to evolving security risks by utilizing machine learning techniques, allowing for prompt detection and reaction to security breaches.

AI-powered self-organizing networks (SON) solutions can automate small cell network planning, configuration and optimization. SON systems are able to adapt to changing network conditions, self-adjust network parameters and fix issues in real time by employing AI algorithms. The automation eliminates the need for manual intervention, accelerates network deployment and improves network efficiency.

Russia- Ukraine War Impact

Increased geopolitical tensions lead to regulatory and political uncertainty. The uncertainty have an impact on telecommunications companies' investment decisions, leading to delays or adjustments in small cell network deployments in affected areas. Changes in regulations or limits imposed by either party potentially have an impact on network development and execution.

The future of 5G in Russia is uncertain due to the Russian military's resistance to hand over its rights to the contested 3.4 to 3.8 GHz band. 5G technologies will play a part in the battle with Russia and Russia will try to counter them in accordance with Russia's comprehensive approach to radioelectronic warfare (radioelektronnaia bor'ba) or electronic warfare (EW). If the EW approaches are successful, the electromagnetic spectrum might become an unfriendly setting for 5G technology during a battle with Russia.

Segment Analysis

The global small cell 5G network market is segmented based on component, frequency band, cell type, deployment, radio technology, end-user and region.

Millimeter Wave Frequency Provides High Bandwidth Capacity

Millimeter wave frequency band is expected to grow at the highest rate and hold about 1/4th of the global small cell 5G network market during the forecast period 2023-2030. The millimeter wave frequency band is a high band frequency that offers a high bandwidth capacity along with very low latency. The frequency bands are especially useful in applications requiring ultra-reliable communication, such as vehicle-to-vehicle (V2V) connectivity and remote patient procedures.

Furthermore, governments in many industrialized economies have made mmWave spectrum bands available in order to expand data services. For example, the Federal Communication Commission (FCC) has issued a number of mmWave frequencies with the purpose of offering ultra-reliable connection for applications like autonomous vehicles and AR/VR applications.

Geographical Analysis

Presence of Strong Players in Asia-Pacific

Asia-Pacific is anticipated to have the highest growth holding around 1/4th of the global small cell 5G network market during the forecast period 2023-2030. High R&D investments by leading industry suppliers, as well as government initiatives that promote the development of 5G networks, will drive demand for small cells 5G networks even further.

In February 2021, ZTE stated its ambitions to collaborate with Chinese mobile operators to build and deploy ATG (air-to-ground) networks in China by 2021. ATG mostly uses matured land mobile communication technologies to provide aircraft with a high-speed mobile network by placing dedicated ground base stations across the sky.

Competitive Landscape

The major global players include Ericsson, Huawei Technologies Co., Ltd., Nokia Corporation, Samsung Electronics Co., Ltd., Airspan Networks, Comba Telecom Systems Holdings Ltd., ZTE Corporation, Fujitsu Limited, CommScope Inc. and Baicells Technologies.

Why Purchase the Report?

  • To visualize the global small cell 5G network market segmentation based on component, frequency band, cell type, deployment, radio technology, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of small cell 5G network market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global small cell 5G network market report would provide approximately 85 tables, 83 figures and 207 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Component
  • 3.2. Snippet by Frequency Band
  • 3.3. Snippet by Cell Type
  • 3.4. Snippet by Deployment
  • 3.5. Snippet by Radio Technology
  • 3.6. Snippet by End-User
  • 3.7. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Mobile Traffic and 5G Adoption
      • 4.1.1.2. Rising Adoption of IoT
    • 4.1.2. Restraints
      • 4.1.2.1. High Costs and ROI
      • 4.1.2.2. Site Acquisition and Backhaul Connectivity
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Component

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 7.1.2. Market Attractiveness Index, By Component
  • 7.2. Solutions*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Services
    • 7.3.1. Consulting
    • 7.3.2. Integration and Deployment
    • 7.3.3. Training and Support

8. By Frequency Band

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 8.1.2. Market Attractiveness Index, By Frequency Band
  • 8.2. Low*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Mid
  • 8.4. Millimeter Wave

9. By Cell Type

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 9.1.2. Market Attractiveness Index, By Cell Type
  • 9.2. Picocells*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Femtocells
  • 9.4. Microcells

10. By Deployment

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 10.1.2. Market Attractiveness Index, By Deployment
  • 10.2. Indoor*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Outdoor

11. By Radio Technology

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Radio Technology
    • 11.1.2. Market Attractiveness Index, By Radio Technology
  • 11.2. Standalone*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Non-Standalone

12. By End-User

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.1.2. Market Attractiveness Index, By End-User
  • 12.2. Telecom Operators*
    • 12.2.1. Introduction
    • 12.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 12.2.3. Private Owned
    • 12.2.4. Mobile Network Operator Owned
    • 12.2.5. Joint Venture
    • 12.2.6. Operator Owned
  • 12.3. Enterprises

13. By Region

  • 13.1. Introduction
    • 13.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 13.1.2. Market Attractiveness Index, By Region
  • 13.2. North America
    • 13.2.1. Introduction
    • 13.2.2. Key Region-Specific Dynamics
    • 13.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 13.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 13.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 13.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 13.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Radio Technology
    • 13.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 13.2.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.2.9.1. U.S.
      • 13.2.9.2. Canada
      • 13.2.9.3. Mexico
  • 13.3. Europe
    • 13.3.1. Introduction
    • 13.3.2. Key Region-Specific Dynamics
    • 13.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 13.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 13.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 13.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 13.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Radio Technology
    • 13.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 13.3.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.3.9.1. Germany
      • 13.3.9.2. UK
      • 13.3.9.3. France
      • 13.3.9.4. Italy
      • 13.3.9.5. Russia
      • 13.3.9.6. Rest of Europe
  • 13.4. South America
    • 13.4.1. Introduction
    • 13.4.2. Key Region-Specific Dynamics
    • 13.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 13.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 13.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 13.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 13.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Radio Technology
    • 13.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 13.4.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.4.9.1. Brazil
      • 13.4.9.2. Argentina
      • 13.4.9.3. Rest of South America
  • 13.5. Asia-Pacific
    • 13.5.1. Introduction
    • 13.5.2. Key Region-Specific Dynamics
    • 13.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 13.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 13.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 13.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 13.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Radio Technology
    • 13.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 13.5.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.5.9.1. China
      • 13.5.9.2. India
      • 13.5.9.3. Japan
      • 13.5.9.4. Australia
      • 13.5.9.5. Rest of Asia-Pacific
  • 13.6. Middle East and Africa
    • 13.6.1. Introduction
    • 13.6.2. Key Region-Specific Dynamics
    • 13.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 13.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Frequency Band
    • 13.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 13.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 13.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Radio Technology
    • 13.6.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

14. Competitive Landscape

  • 14.1. Competitive Scenario
  • 14.2. Market Positioning/Share Analysis
  • 14.3. Mergers and Acquisitions Analysis

15. Company Profiles

    • 15.1.1. Company Overview
    • 15.1.2. Product Portfolio and Description
    • 15.1.3. Financial Overview
    • 15.1.4. Recent Developments
  • 15.2. Huawei Technologies Co., Ltd.
  • 15.3. Nokia Corporation
  • 15.4. Samsung Electronics Co., Ltd.
  • 15.5. Airspan Networks
  • 15.6. Comba Telecom Systems Holdings Ltd.
  • 15.7. ZTE Corporation
  • 15.8. Fujitsu Limited
  • 15.9. CommScope Inc.
  • 15.10. Baicells Technologies

LIST NOT EXHAUSTIVE

16. Appendix

  • 16.1. About Us and Services
  • 16.2. Contact Us
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦