시장보고서
상품코드
1517852

세계의 바이오 포장 시장(2025-2035년)

The Global Market for Biobased Packaging 2025-2035

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 330 Pages, 41 Tables, 62 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

바이오 포장 시장은 환경 지속가능성과 플라스틱 오염에 대한 전 세계적인 우려로 인해 재료 및 기술 혁신이 촉진되면서 급속한 성장과 변화를 보이고 있습니다. 이 부문에는 재생 가능한 생물 자원에서 추출한 다양한 포장 솔루션이 포함되며, 기존의 화석 연료 기반 플라스틱을 대체할 수 있는 대안을 제공합니다.

바이오 포장재에는 폴리유산(PLA), 바이오 폴리에틸렌 테레프탈레이트(바이오 PET), 폴리하이드록시알카노에이트(PHA)와 같은 합성 바이오 폴리머와 셀룰로오스, 전분, 균사체와 같은 천연 소재가 포함됩니다. 이러한 소재들은 플렉서블 필름과 경질 용기부터 코팅 및 배리어 소재에 이르기까지 다양한 용도로 사용되고 있습니다.

친환경 제품에 대한 소비자 수요, 기업의 지속가능성 노력, 플라스틱 폐기물 감소를 위한 정부 규제 등 여러 가지 요인에 의해 시장이 주도되고 있습니다. 식음료 포장이 시장의 대부분을 차지하고 있으며, 생분해성 및 퇴비화 가능한 옵션이 인기를 끌고 있습니다. 다른 주요 응용 분야로는 퍼스널케어 제품, 전자제품, 전자상거래 포장 등이 있습니다. 시장이 발전함에 따라 재활용 및 퇴비화가 쉬운 진정한 순환형 포장 솔루션의 개발에 점점 더 많은 관심이 쏠리고 있습니다. 여기에는 모노머티리얼 포장재를 개발하고 바이오 소재의 사용 후 관리를 개선하기 위한 노력도 포함됩니다. 이 시장의 주요 기업에는 기존 화학 기업과 혁신적인 스타트업이 모두 포함됩니다.

이 보고서는 세계 바이오 포장 시장에 대한 조사 분석을 통해 시장 동향, 성장 촉진요인, 과제 및 기회에 대한 중요한 통찰력을 제공합니다.

목차

제1장 주요 요약

  • 현재의 세계 포장 시장과 재료
  • 시장 동향
  • 포장에서 바이오플라스틱의 최근 성장 촉진요인
  • 바이오 친환경 포장의 과제

제2장 포장에서의 바이오 재료

  • 재료의 혁신
  • 활성포장
  • 단일 재료 포장
  • 포장에 사용되는 기존 폴리머 재료
    • 폴리올레핀 : 폴리프로필렌, 폴리에틸렌
    • PET, 기타 폴리에스테르 폴리머
    • 포장용 재생/바이오 폴리머
    • 합성 화석 기반 폴리머와 바이오 폴리머 비교
    • 포장 바이오플라스틱 프로세스
    • 바이오 친환경 포장에서의 EOL 처리
  • 합성 바이오 포장재료
    • Polylactic acid (Bio-PLA)
    • Polyethylene terephthalate (Bio-PET)
    • Polytrimethylene terephthalate (Bio-PTT)
    • Polyethylene furanoate (Bio-PEF)
    • Bio-PA
    • Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
    • Polybutylene succinate (PBS) and copolymers
    • Polypropylene (Bio-PP)
  • 천연 바이오 포장재료
    • 폴리하이드록시알카노에이트(PHA)
    • 전분 기반 블렌드
    • 셀룰로오스
    • 포장 단백질 기반 바이오플라스틱
    • 포장용 지질 및 왁스
    • 해조 기반 포장
    • 균사체
    • 키토산
    • 바이오 나프타

제3장 시장과 용도

  • 종이 및 판지 포장
  • 식품 포장
    • 바이오 필름 및 트레이
    • 바이오 파우치 및 백
    • 바이오 텍스타일 및 넷
    • 바이오 접착제
    • 배리어 코팅 및 필름
    • 활성/스마트 식품 포장
    • 항균 필름 및 항균제
    • 바이오 잉크및 염료
    • 가식 필름 및 코팅
  • 포장 바이오 필름 및 코팅
    • 바이오 페인트 및 코팅 사용 과제
    • 포장에 사용되는 바이오 코팅과 필름 유형
  • 포장용 탄소 회수 유래 재료
    • 플라스틱 원료에 대한 탄소 이용의 이점
    • CO2 유래 폴리머와 플라스틱
    • CO2 이용 제품

제4장 세계의 바이오 포장 시장 매출

  • 연포장
  • 경질 포장
  • 코팅 및 필름

제5장 기업 개요(210개사 개요)

제6장 조사 방법

제7장 참고 문헌

LSH 24.07.30

The biobased packaging market is experiencing rapid growth and transformation as global concerns about environmental sustainability and plastic pollution drive innovation in materials and technologies. This sector encompasses a wide range of packaging solutions derived from renewable biological resources, offering alternatives to traditional fossil fuel-based plastics.

Biobased packaging materials include synthetic bio-polymers like polylactic acid (PLA), bio-polyethylene terephthalate (Bio-PET), and polyhydroxyalkanoates (PHA), as well as natural materials such as cellulose, starch, and mycelium. These materials are increasingly being used in various applications, from flexible films and rigid containers to coatings and barrier materials.

The market is driven by several factors, including consumer demand for eco-friendly products, corporate sustainability initiatives, and government regulations aimed at reducing plastic waste. Food and beverage packaging represents a significant portion of the market, with biodegradable and compostable options gaining traction. Other key application areas include personal care products, electronics, and e-commerce packaging. As the market evolves, there is increasing focus on creating truly circular packaging solutions that can be easily recycled or composted. This includes efforts to develop monomaterial packaging and improve the end-of-life management of biobased materials. Major players in the market include both established chemical companies and innovative start-ups.

"The Global Market for Biobased Packaging 2025-2035" is a comprehensive analysis of the rapidly evolving biobased and sustainable packaging industry. This in-depth report provides crucial insights into market trends, growth drivers, challenges, and opportunities in the biobased packaging sector, offering valuable information for businesses, investors, and stakeholders looking to capitalize on this expanding market.

Report contents include:

  • Overview of the current global packaging market and materials, highlighting the increasing importance of biobased alternatives.
  • Key market trends, exploring the factors driving recent growth in bioplastics for packaging applications.
  • Challenges faced by the biobased and sustainable packaging industry.
  • Materials innovation, active packaging solutions, and the trend towards monomaterial packaging.
  • Comparison of conventional polymer materials used in packaging with their renewable and biobased counterparts.
  • In-depth analysis of various synthetic bio-based packaging materials, including:
    • Polylactic acid (Bio-PLA)
    • Polyethylene terephthalate (Bio-PET)
    • Polytrimethylene terephthalate (Bio-PTT)
    • Polyethylene furanoate (Bio-PEF)
    • Bio-PA
    • Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    • Polybutylene succinate (PBS) and copolymers
    • Polypropylene (Bio-PP)
  • In-depth analysis of Natural bio-based packaging materials including:
    • Polyhydroxyalkanoates (PHA)
    • Starch-based blends
    • Cellulose and its derivatives (microfibrillated cellulose, nanocellulose)
    • Protein-based bioplastics
    • Lipids and waxes
    • Seaweed-based packaging
    • Mycelium
    • Chitosan
    • Bio-naphtha
  • Production processes, applications, and market potential
  • Analysis of markets and applications for biobased packaging including:
    • Paper and board packaging
    • Food packaging (bio-based films, trays, pouches, bags, textiles, and nets)
    • Bioadhesives
    • Barrier coatings and films
    • Active and smart food packaging
    • Antimicrobial films and agents
    • Bio-based inks and dyes
    • Edible films and coatings
  • Analysis of the market for biobased films and coatings in packaging, discussing challenges, types, and applications of various bio-based coating materials such as polyurethane, acrylate resins, polylactic acid, polyhydroxyalkanoates, cellulose, lignin, and protein-based biomaterials.
  • Use of carbon capture-derived materials for packaging including the benefits of carbon utilization for plastics feedstocks, CO2-derived polymers and plastics, and various CO2 utilization products, offering insights into this emerging field of sustainable packaging.
  • Detailed global market revenue forecasts for bio-based packaging from 2024 to 2035, segmented into flexible packaging, rigid packaging, and coatings and films.
  • Company profiles, featuring over 200 key players in the biobased packaging industry. These profiles offer detailed information on product portfolios, technologies, market positioning, and recent developments, providing a comprehensive overview of the competitive landscape. Companies profiled include Avantium B.V., BASF SE, CJ CheilJedang, Cruz Foam, Danimer Scientific LLC, Kelpi, Lignin Industries AB, NatureWorks LLC, Novamont S.p.A., Neste, Origin Materials, Stora Enso Oyj, TotalEnergies Corbion, traceless, UPM Biochemicals, and Woodly Ltd.

"The Global Market for Biobased Packaging 2025-2035" is an essential resource for:

  • Packaging manufacturers and suppliers
  • Bioplastic and biomaterial producers
  • Food and beverage companies
  • Retail and e-commerce businesses
  • Environmental consultants and sustainability professionals
  • Investors and financial analysts
  • Government agencies and policymakers
  • Research institutions and academia

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Current global packaging market and materials
  • 1.2. Market trends
  • 1.3. Drivers for recent growth in bioplastics in packaging
  • 1.4. Challenges for bio-based and sustainable packaging

2. BIOBASED MATERIALS IN PACKAGING

  • 2.1. Materials innovation
  • 2.2. Active packaging
  • 2.3. Monomaterial packaging
  • 2.4. Conventional polymer materials used in packaging
    • 2.4.1. Polyolefins: Polypropylene and polyethylene
    • 2.4.2. PET and other polyester polymers
    • 2.4.3. Renewable and bio-based polymers for packaging
    • 2.4.4. Comparison of synthetic fossil-based and bio-based polymers
    • 2.4.5. Processes for bioplastics in packaging
    • 2.4.6. End-of-life treatment of bio-based and sustainable packaging
  • 2.5. Synthetic bio-based packaging materials
    • 2.5.1. Polylactic acid (Bio-PLA)
      • 2.5.1.1. Properties
      • 2.5.1.2. Applicaitons
    • 2.5.2. Polyethylene terephthalate (Bio-PET)
      • 2.5.2.1. Properties
      • 2.5.2.2. Applications
      • 2.5.2.3. Advantages of Bio-PET in Packaging
      • 2.5.2.4. Challenges and Limitations
    • 2.5.3. Polytrimethylene terephthalate (Bio-PTT)
      • 2.5.3.1. Production Process
      • 2.5.3.2. Properties
      • 2.5.3.3. Applications
      • 2.5.3.4. Advantages of Bio-PTT in Packaging
      • 2.5.3.5. Challenges and Limitations
    • 2.5.4. Polyethylene furanoate (Bio-PEF)
      • 2.5.4.1. Properties
      • 2.5.4.2. Applications
      • 2.5.4.3. Advantages of Bio-PEF in Packaging
      • 2.5.4.4. Challenges and Limitations
    • 2.5.5. Bio-PA
      • 2.5.5.1. Properties
      • 2.5.5.2. Applications in Packaging
      • 2.5.5.3. Advantages of Bio-PA in Packaging
      • 2.5.5.4. Challenges and Limitations
    • 2.5.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
      • 2.5.6.1. Properties
      • 2.5.6.2. Applications in Packaging
      • 2.5.6.3. Advantages of Bio-PBAT in Packaging
      • 2.5.6.4. Challenges and Limitations
    • 2.5.7. Polybutylene succinate (PBS) and copolymers
      • 2.5.7.1. Properties
      • 2.5.7.2. Applications in Packaging
      • 2.5.7.3. Advantages of Bio-PBS and Co-polymers in Packaging
      • 2.5.7.4. Challenges and Limitations
    • 2.5.8. Polypropylene (Bio-PP)
      • 2.5.8.1. Properties
      • 2.5.8.2. Applications in Packaging
      • 2.5.8.3. Advantages of Bio-PP in Packaging
      • 2.5.8.4. Challenges and Limitations
  • 2.6. Natural bio-based packaging materials
    • 2.6.1. Polyhydroxyalkanoates (PHA)
      • 2.6.1.1. Properties
      • 2.6.1.2. Applications in Packaging
      • 2.6.1.3. Advantages of PHA in Packaging
      • 2.6.1.4. Challenges and Limitations
    • 2.6.2. Starch-based blends
      • 2.6.2.1. Properties
      • 2.6.2.2. Applications in Packaging
      • 2.6.2.3. Advantages of Starch-Based Blends in Packaging
      • 2.6.2.4. Challenges and Limitations
    • 2.6.3. Cellulose
      • 2.6.3.1. Feedstocks
        • 2.6.3.1.1. Wood
        • 2.6.3.1.2. Plant
        • 2.6.3.1.3. Tunicate
        • 2.6.3.1.4. Algae
        • 2.6.3.1.5. Bacteria
      • 2.6.3.2. Microfibrillated cellulose (MFC)
        • 2.6.3.2.1. Properties
      • 2.6.3.3. Nanocellulose
        • 2.6.3.3.1. Cellulose nanocrystals
          • 2.6.3.3.1.1. Applications in packaging
        • 2.6.3.3.2. Cellulose nanofibers
          • 2.6.3.3.2.1. Applications in packaging
        • 2.6.3.3.3. Bacterial Nanocellulose (BNC)
          • 2.6.3.3.3.1. Applications in packaging
    • 2.6.4. Protein-based bioplastics in packaging
    • 2.6.5. Lipids and waxes for packaging
    • 2.6.6. Seaweed-based packaging
      • 2.6.6.1. Production
      • 2.6.6.2. Applications in packaging
      • 2.6.6.3. Producers
    • 2.6.7. Mycelium
      • 2.6.7.1. Applications in packaging
    • 2.6.8. Chitosan
      • 2.6.8.1. Applications in packaging
    • 2.6.9. Bio-naphtha
      • 2.6.9.1. Overview
      • 2.6.9.2. Markets and applications

3. MARKETS AND APPLICATIONS

  • 3.1. Paper and board packaging
  • 3.2. Food packaging
    • 3.2.1. Bio-Based films and trays
    • 3.2.2. Bio-Based pouches and bags
    • 3.2.3. Bio-Based textiles and nets
    • 3.2.4. Bioadhesives
      • 3.2.4.1. Starch
      • 3.2.4.2. Cellulose
      • 3.2.4.3. Protein-Based
    • 3.2.5. Barrier coatings and films
      • 3.2.5.1. Polysaccharides
        • 3.2.5.1.1. Chitin
        • 3.2.5.1.2. Chitosan
        • 3.2.5.1.3. Starch
      • 3.2.5.2. Poly(lactic acid) (PLA)
      • 3.2.5.3. Poly(butylene Succinate)
      • 3.2.5.4. Functional Lipid and Proteins Based Coatings
    • 3.2.6. Active and Smart Food Packaging
      • 3.2.6.1. Active Materials and Packaging Systems
      • 3.2.6.2. Intelligent and Smart Food Packaging
    • 3.2.7. Antimicrobial films and agents
      • 3.2.7.1. Natural
      • 3.2.7.2. Inorganic nanoparticles
      • 3.2.7.3. Biopolymers
    • 3.2.8. Bio-based Inks and Dyes
    • 3.2.9. Edible films and coatings
  • 3.3. Biobased films and coatings in packaging
    • 3.3.1. Challenges using bio-based paints and coatings
    • 3.3.2. Types of bio-based coatings and films in packaging
      • 3.3.2.1. Polyurethane coatings
        • 3.3.2.1.1. Properties
        • 3.3.2.1.2. Bio-based polyurethane coatings
        • 3.3.2.1.3. Products
      • 3.3.2.2. Acrylate resins
        • 3.3.2.2.1. Properties
        • 3.3.2.2.2. Bio-based acrylates
        • 3.3.2.2.3. Products
      • 3.3.2.3. Polylactic acid (Bio-PLA)
        • 3.3.2.3.1. Properties
        • 3.3.2.3.2. Bio-PLA coatings and films
      • 3.3.2.4. Polyhydroxyalkanoates (PHA) coatings
      • 3.3.2.5. Cellulose coatings and films
        • 3.3.2.5.1. Microfibrillated cellulose (MFC)
        • 3.3.2.5.2. Cellulose nanofibers
          • 3.3.2.5.2.1. Properties
          • 3.3.2.5.2.2. Product developers
      • 3.3.2.6. Lignin coatings
      • 3.3.2.7. Protein-based biomaterials for coatings
        • 3.3.2.7.1. Plant derived proteins
        • 3.3.2.7.2. Animal origin proteins
  • 3.4. Carbon capture derived materials for packaging
    • 3.4.1. Benefits of carbon utilization for plastics feedstocks
    • 3.4.2. CO2-derived polymers and plastics
    • 3.4.3. CO2 utilization products

4. GLOBAL MARKET REVENUES FOR BIOBASED PACKAGING

  • 4.1. Flexible packaging
  • 4.2. Rigid packaging
  • 4.3. Coatings and films

5. COMPANY PROFILES (210 company profiles)

6. RESEARCH METHODOLOGY

7. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제