½ÃÀ庸°í¼­
»óǰÄÚµå
1808960

¼¼°èÀÇ »ýÈ­ÇÐ ¹°Áú ½ÃÀå(2026-2036³â)

The Global Biochemicals Market 2026-2036

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Future Markets, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 374 Pages, 141 Tables, 22 Figures | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ »ýÈ­ÇÐ ¹°Áú ½ÃÀåÀº Çö´ëÈ­Çп¡¼­ °¡Àå ¿ªµ¿ÀûÀÌ°í ±Þ¼ÓÇÏ°Ô ÁøÈ­Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀ̸ç, Áö¼Ó°¡´É¼ºÀÇ ¿ä±¸, ±â¼úÀÇ Áøº¸, ¼ÒºñÀÚ ¼±È£ÀÇ º¯È­ µî¿¡ ÀÇÇØ Àü·Ê¾ø´Â ¼ºÀåÀ» ³ªÅ¸³»°í ÀÖ½À´Ï´Ù. »ýÈ­ÇÐ ¹°Áú ½ÃÀåÀº ¿©·¯ »ê¾÷¿¡ °ÉÃÄ ´Ù¾çÇÑ ¿ëµµ¸¦ Æ÷ÇÔÇϰí ÀÖÀ¸¸ç, ±× Áß¿¡¼­µµ Æ÷ÀåÀÌ Áö¹èÀûÀÎ ºÎ¹®ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÇÃ¶ó½ºÆ½ Æó±â¹° °¨Ãà ³ë·Â ¹× ¼øÈ¯ °æÁ¦ ¿øÄ¢¿¡ µÞ¹ÞħµÇ´Â Æ÷Àå ¿ëµµ´Â ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷Àº °æ·®È­ ¿ä±¸¿Í ¾ö°ÝÇÑ Åº¼Ò ¹èÃâ ±ÔÁ¦¸¦ ÁÖ¿ä ¿äÀÎÀ¸·Î »ï¾Æ ¶Ç ÇϳªÀÇ Áß¿äÇÑ ¼ºÀå ºÐ¾ß°¡ µÇ°í ÀÖ½À´Ï´Ù. ¼¶À¯, °Ç¼³, ÀüÀÚ, ¼ÒºñÀç, ³ó¾÷, ÀǾàǰÀº °¢°¢ Å« ½ÃÀå ºÎ¹®¿¡ ±â¿©ÇÏÁö¸¸, ÀǾàǰÀº Àý´ë·®ÀÌ °¡Àå ÀûÀ½¿¡µµ ºÒ±¸ÇÏ°í Æ¯¼ö ǰÁú ¿ä±¸ »çÇ׿¡ µû¶ó ³ôÀº °¡°ÝÀÌ ¼³Á¤µË´Ï´Ù.

º¹¼öÀÇ µ¿ÇâÀÌ ¼ö·ÅÇÏ´Â °ÍÀ¸·Î, °¢ »ê¾÷¿¡¼­ »ýÈ­ÇÐ ¹°ÁúÀÇ Ã¤¿ëÀÌ °¡¼ÓÇÕ´Ï´Ù. Á¤ºÎ¿Í ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Àǹ«È­´Â ¼®À¯È­ÇÐ Á¦Ç°À» ´ëüÇÏ´Â ¹ÙÀÌ¿À ´ëüǰ¿¡ ´ëÇÑ °­ÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÇÕ¼º »ý¹°ÇÐ, ´ë»ç °øÇÐ ¹× ÀÚµ¿È­ ±â¼úÀÇ Áøº¸´Â ´õ º¹ÀâÇϰí, ´õ ³ªÀº Ư¼º°ú ºñ¿ë °æÀï·ÂÀ» °¡Áø »ýÈ­ÇÐ ¹°Áú »ý»êÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼ÒºñÀÚ ¼±È£´Â Á¡Á¡ ´õ ȯ°æ ģȭÀûÀÎ Á¦Ç°À» ¼±È£Çϰí ÀÖÀ¸¸ç Áö¼Ó °¡´ÉÇÑ ´ëüǰ¿¡ ³ôÀº °¡°ÝÀ» ºÎ¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¤Ã¥, Àμ¾Æ¼ºê, ¿¬±¸ ÀÚ±ÝÀ» ÅëÇÑ Á¤ºÎÀÇ Áö¿øÀº ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­½Ãŵ´Ï´Ù.

»ê¾÷Àº ±âÁ¸ÀÇ ¼®À¯È­ÇÐ ´ëüǰ°úÀÇ ºñ¿ë °æÀï·Â, ±â¼úÀû ¼º´É °¸, º¹ÀâÇÑ ±ÔÁ¦ ½ÂÀÎ ÇÁ·Î¼¼½º, »ý»ê ±Ô¸ð È®´ë¿¡ ´ëÇÑ ´ë±Ô¸ð ÀÚº» ¿ä°Ç µî Å« °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. »ý»ê ºñ¿ëÀº Á¦Ç°ÀÇ º¹À⼺°ú ±Ô¸ð¿¡ µû¶ó ´Ù¸£Áö¸¸ ±âÁ¸ÀÇ ´ëüǰÀ» 20-100% ÃʰúÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ±×·¯³ª ¿ëµµ È®´ë, ¿ø·á ´Ù¾çÈ­, ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ ÅëÇÕ, ÁÖ¿ä È­ÇÐ ¼ººÐÀÇ ¹ÙÀÌ¿À ¹öÀü °³¹ß µîÀ» ÅëÇØ Å« ±âȸ°¡ Á¸ÀçÇÕ´Ï´Ù.

»ýÈ­ÇÐ ¹°Áú ½ÃÀå Àü¸ÁÀº ¸Å¿ì À¯¸ÁÇϸç, Áö¼ÓÀûÀÎ ±â¼úÀÇ ¹ßÀüÀ¸·Î º¸´Ù ¿ì¼öÇÑ Æ¯¼ºÀ» Áö´Ñ ±¤¹üÀ§ÇÑ »ýÈ­ÇÐ ¹°Áú »ý»êÀÌ °¡´ÉÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºñ ½Ä·® ¹ÙÀÌ¿À ¸Å½º ¿ø·á·ÎÀÇ ¿ø·á ´Ùº¯È­´Â ¿ø·á ¼±ÅÃÀ» ³ÐÈ÷´Â µ¿½Ã¿¡ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á¸¦ ÇØ°áÇÕ´Ï´Ù. ¼øÈ¯Çü °æÁ¦ÀÇ ¿øÄ¢°úÀÇ ÅëÇÕÀº »ýºÐÇØ¼ºÀ¸·Î ÀçȰ¿ë °¡´ÉÇÑ »ýÈ­ÇÐ ¹°ÁúÀÇ °³¹ßÀ» ÃßÁøÇÕ´Ï´Ù. »ý»ê ±Ô¸ð°¡ È®´ëµÇ°í °øÁ¤ÀÌ º¸´Ù È¿À²ÀûÀÌ µÊ¿¡ µû¶ó ÀáÀçÀûÀΠź¼Ò °¡°ÝÁ¤Ã¥°ú Áö¼Ó°¡´ÉÇÑ Àç·á¿¡ ´ëÇÑ ±ÔÁ¦ ¼±È£¿¡ ÈûÀÔ¾î ¼®À¯È­ÇÐ ´ëüǰ¿¡ ´ëÇÑ ºñ¿ë °æÀï·ÂÀÌ Çâ»óµË´Ï´Ù. ±âÁ¸ ±â¾÷ÀÌ Çõ½ÅÀûÀÎ ±â¼úÀ» ¿ä±¸ÇÏ°í ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷ÀÌ »ó¾÷ ±Ô¸ðÀÇ »ý»ê¿¡ ÇÊ¿äÇÑ ÀÚ¿øÀ» ¿ä±¸Çϰí Àֱ⠶§¹®¿¡ M&A¿¡ ÀÇÇÑ ¾÷°è ÀçÆíÀÌ °¡¼ÓµÇ°í, ÃÖÁ¾ÀûÀ¸·Î´Â ¼¼°èÀÇ È­Çлê¾÷ÀÇ ´ëºÎºÐÀ» »ý¹°ÇÐÀû Á¦Á¶ Ç÷§ÆûÀ¸·Î Àüȯ½Ãų °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°èÀÇ »ýÈ­ÇÐ ¹°Áú ½ÃÀå¿¡ ´ëÇÑ Á¶»ç ºÐ¼®À» ÅëÇØ ½ÃÀå ¿ªÇÐ, ±â¼ú Çõ½Å, °æÀï ±¸µµ, ¹Ì·¡ ¼ºÀå ±âȸ µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

  • °³¿ä
  • À¯Çü

Á¦2Àå ¹ÙÀÌ¿À¸Å´ºÆÑó¸µ

  • ¹Ì»ý¹° ¹ßÈ¿
  • Æ÷À¯·ù ¼¼Æ÷ ¹è¾ç
  • ½Ä¹° ¼¼Æ÷ ¹è¾ç
  • °ïÃæ ¼¼Æ÷ ¹è¾ç
  • À¯ÀüÀÚ º¯Çü µ¿¹°
  • À¯ÀüÀÚ º¯Çü ½Ä¹°
  • ±â¼ú
  • »ý»ê ±Ô¸ð
  • °¡µ¿ ¹æ½Ä
  • ¼÷ÁÖ »ý¹°

Á¦3Àå ±â¼ú ¹× Àç·á ºÐ¼®

  • ¹ÙÀÌ¿À º£À̽º ¿ø·á
  • À¯±â»ê
  • ¾Æ¹Ì³ë»ê
  • ¾ËÄÚ¿Ã
  • °è¸éȰ¼ºÁ¦
  • ¿ëÁ¦
  • Çâ·á
  • ¹ÙÀÌ¿À º£À̽º ¸ð³ë¸Ó Áß°£Ã¼
  • ¹ÙÀÌ¿À º£À̽º Æú¸®¸Ó
  • ¹ÙÀÌ¿À º£À̽º º¹ÇÕÀç·á ¹× È¥ÇÕ¹°
  • ¹Ì¿ë ¹× ÆÛ½º³ÎÄɾî¿ë È­ÇÐÁ¦Ç°
  • Æó±â¹°
  • ¹Ì»ý¹° ¹× ¹Ì³×¶ö¿ø
  • ±âŸ ¹ÙÀÌ¿À¸Å´ºÆÑó¸µ Á¦Ç°

Á¦4Àå ½ÃÀå ºÐ¼®

  • ÁÖ¿ä ±â¾÷ ¹× °æÀï ±¸µµ
  • ½ÃÀåÀÇ ¼ºÀå ¿äÀÎ ¹× µ¿Çâ
  • ±ÔÄ¢
  • ¹ë·ùüÀÎ
  • ¹Ì·¡ Àü¸Á
  • ±â¼ú¼º¼÷µµ(TRL)
  • ´ë»ó ½ÃÀå ±Ô¸ð
  • À§Çè ¹× ±âȸ
  • ÁÖ¿ä ½ÃÀåÀÇ °úÁ¦
  • ±â¼úÀû °úÁ¦
  • ¼¼°è ¼öÀÍ

Á¦5Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 245»çÀÇ ÇÁ·ÎÆÄÀÏ)

Á¦6Àå Âü°í¹®Çå

AJY

The global biochemicals market represents one of the most dynamic and rapidly evolving sectors in modern chemistry, experiencing unprecedented growth driven by sustainability imperatives, technological advances, and shifting consumer preferences. The biochemicals market encompasses diverse applications across multiple industries, with packaging leading as the dominant sector. Packaging applications, driven by plastic waste reduction initiatives and circular economy principles, account for the largest market share. The automotive industry represents another significant growth area, primarily driven by lightweighting requirements and stringent carbon emission regulations. Textiles, construction, electronics, consumer goods, agriculture, and pharmaceuticals each contribute substantial market segments, with pharmaceuticals commanding premium pricing due to specialized quality requirements despite representing the smallest absolute volumes.

Multiple convergent trends accelerate biochemicals adoption across industries. Sustainability mandates from governments and corporations create strong demand for bio-based alternatives to petrochemicals. Technological advancements in synthetic biology, metabolic engineering, and automation enable production of increasingly complex biochemicals with enhanced properties and improved cost competitiveness. Consumer preferences increasingly favour environmentally responsible products, supporting premium pricing for sustainable alternatives. Government support through policies, incentives, and research funding further accelerates market development.

The industry confronts significant challenges including cost competitiveness with established petrochemical alternatives, technical performance gaps, complex regulatory approval processes, and substantial capital requirements for scaling production. Production costs often exceed conventional alternatives by 20-100%, depending on product complexity and scale. However, substantial opportunities exist through expanding applications, feedstock diversification, circular economy integration, and development of bio-based versions of key chemical building blocks.

The biochemicals market's future appears exceptionally promising, with continued technological advancement expected to enable production of wider ranges of biochemicals with enhanced properties. Feedstock diversification toward non-food biomass sources will address sustainability concerns while expanding raw material options. Integration with circular economy principles will drive development of biodegradable and recyclable biochemicals. As production scales increase and processes become more efficient, cost competitiveness with petrochemical alternatives will improve, supported by potential carbon pricing mechanisms and regulatory preferences for sustainable materials. Industry consolidation through mergers and acquisitions will likely accelerate as established companies seek innovative technologies and biotechnology firms require resources for commercial-scale production, ultimately transforming large segments of the global chemical industry toward biological manufacturing platforms.

"The Global Biochemicals Market 2026-2036" represents the definitive strategic intelligence resource for understanding one of the world's fastest-growing industrial sectors. This comprehensive market analysis provides critical insights into the biotechnology revolution transforming chemical manufacturing, offering detailed coverage of market dynamics, technological innovations, competitive landscapes, and future growth opportunities across the global biochemicals ecosystem.

As sustainability imperatives reshape industrial priorities and biotechnology capabilities advance rapidly, the biochemicals market emerges as a cornerstone of the circular economy transition. This report delivers essential intelligence for investors, manufacturers, technology developers, and strategic decision-makers seeking to capitalize on the unprecedented growth opportunities within bio-based chemical production. From organic acids and platform chemicals to specialty biopolymers and precision fermentation products, our analysis covers the complete spectrum of biochemical applications driving market transformation.

The report combines quantitative market forecasts with qualitative strategic analysis, providing revenue projections through 2036 across multiple segmentation frameworks including product types, applications, regional markets, and technology readiness levels. Our comprehensive company profiling section examines over 245 key market participants, from established chemical giants to innovative biotechnology start-ups, offering unparalleled visibility into competitive positioning and strategic initiatives shaping market evolution.

Report contents include:

  • Comprehensive biochemical market landscape analysis and growth trajectory assessment
  • Market size projections and revenue forecasts by product category (2026-2036)
  • Key market drivers, challenges, and opportunities across global biochemicals ecosystem
  • Strategic implications for industry stakeholders and investment priorities
  • Biomanufacturing Technologies and Production Systems
    • Detailed analysis of microbial fermentation, mammalian cell culture, and plant-based production
    • Advanced biomanufacturing technologies including synthetic biology tools and CRISPR-Cas9 systems
    • Production scale analysis from laboratory to commercial-scale operations
    • Process optimization strategies and automation applications in biotechnology
    • Alternative feedstock utilization including C1/C2 feedstocks and lignocellulosic biomass
    • Comprehensive coverage of host organisms and cell factory platforms
  • Technology and Materials Analysis
    • In-depth examination of over 50 biochemical product categories and applications
    • Organic acids market analysis including lactic acid, succinic acid, and citric acid production
    • Amino acids and vitamins produced through biotechnology processes
    • Bio-based alcohols, surfactants, and specialty solvents market assessment
    • Comprehensive coverage of flavors, fragrances, and bio-manufactured aromatics
    • Bio-based monomers, intermediates, and polymer production technologies
    • Beauty and personal care biochemicals including hyaluronic acid and collagen
    • Waste-to-chemicals conversion technologies and circular economy applications
  • Market Analysis and Strategic Intelligence
    • Competitive landscape analysis and key player positioning strategies
    • Market growth drivers and biotechnology trends shaping industry evolution
    • Government support mechanisms and regulatory framework assessment
    • Value chain analysis and economic viability factors
    • Technology readiness levels and commercialization pathways
    • Addressable market size analysis across multiple industry segments
    • Risk assessment and opportunity identification framework
    • Major market challenges and technical hurdle mitigation strategies
    • Global revenue forecasts by type, application, and regional markets
  • Regional Market Dynamics
    • Comprehensive geographic analysis covering North America, Europe, Asia-Pacific markets
    • Regional production capacity assessments and supply chain considerations
    • Government policy impacts and regulatory environment variations
    • Market penetration strategies and regional growth opportunities
  • Industry Applications and End-Use Markets
    • Packaging industry transformation through sustainable biochemical solutions
    • Automotive sector adoption of bio-based materials and lightweighting strategies
    • Textile industry integration of biochemical fibers and processing chemicals
    • Construction industry utilization of bio-based building materials
    • Electronics sector applications and miniaturization technology requirements
    • Consumer goods market penetration and brand positioning strategies
    • Company Profiles. This report features comprehensive profiles of 245+ leading companies shaping the global biochemicals market, including: Aanika Biosciences, Absci Corp, Aemetis Inc, AEP Polymers, Afyren, AGAE Technologies LLC, Again Bio, AgBiome, AgriSea NZ Seaweed Ltd, Agrivida, AIO, Algal Bio Co Ltd, Algenol, AlgiKnit, Alginor ASA, Allied Carbon Solutions, Alpha Biofuels Singapore Pte Ltd, Allonnia LLC, Allozymes, Alt.Leather, Amano Enzyme Inc, AmphiStar, Anellotech Inc, Anqing He Xing Chemical Co Ltd, Apeel Sciences, Aralez Bio, Archer Daniel Midland Company (ADM), Ardra Bio, Arzeda Corp, AVA Biochem AG, Avantium BV, Ayas Renewables Inc, Azolla, BASF, BBCA Biochemical & GALACTIC Lactic Acid Co Ltd, Benefuel Inc, Biocatalysts Ltd, Bioextrax AB, Biokemik, BIOLO, Biomason Inc, BioSmart Nano, Biosyntia, Biotensidion GmbH, Biotic Circular Technologies Ltd, Bioweg, BJ BIOCHEM Inc, Bloom Biorenewables SA, BluCon Biotech GmbH, Blue BioFuels Inc, Bluepha Beijing Lanjing Microbiology Technology Co Ltd, Boreal Bioproducts, Bosk Bioproducts Inc, Bowil Biotech Sp z oo, Braskem SA, Brightseed, Bucha Bio Inc, C16 Biosciences, C1 Green Chemicals AG, CABIO Biotech Wuhan Co Ltd, Calysta, Capra Biosciences, Cargill, Catalyxx, Cathay Industrial Biotech Ltd, ChainCraft, Chempolis Oy, Chitose Bio Evolution Pte Ltd, Chongqing Bofei Biochemical Products Co Ltd, CIMV, CinderBio, Circa Group, Circe, CJ Biomaterials Inc, Clariant, Clean Food Group, Colorifix, Colipi, Conagen, Croda International PLC, CyanoCapture, Cysbio, Debut Biotechnology, Deep Branch Biotechnology, Demetrix, Dispersa, Domsjo Fabriker AB, Dongying Hebang Chemical Corp, DuPont, Ecovative Design LLC, Eco Fuel Technology Inc, Eden Brew, EggPlant Srl, Elemental Enzymes Inc, Emerging Fuels Technology (EFT), enaDyne GmbH, EnginZyme AB, eniferBio, Eni SpA, Enzymaster, Enzymit, Enzyan Biocatalysis GmbH, Epoch Biodesign, Eversyn, Evonik Industries AG, EV Biotech, FabricNano, Fermentalg, Fermelanta, FlexSea, Fortum, FP Innovations, Futerro, Future Fields, Futurity Bio-Ventures Ltd, Gaiamer Biotechnologies, Gen3Bio, Genecis Bioindustries Inc, Geno, Gevo Inc, Ginkgo Bioworks, Givaudan SA, Green Earth Institute, plus over 150 additional companies spanning the complete biochemicals value chain from feedstock suppliers to end-use applications.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Overview
  • 1.2. Types
    • 1.2.1. Organic Acids
      • 1.2.1.1. Lactic Acid
      • 1.2.1.2. Citric Acid
      • 1.2.1.3. Succinic Acid
    • 1.2.2. Platform Chemicals
      • 1.2.2.1. 1,4-Butanediol
      • 1.2.2.2. 1,3-Propanediol
      • 1.2.2.3. Glycerol
    • 1.2.3. Alcohols
      • 1.2.3.1. Bioethanol
      • 1.2.3.2. Butanol
    • 1.2.4. Natural Products
      • 1.2.4.1. Terpenes
      • 1.2.4.2. Polyphenols
    • 1.2.5. Proteins/Enzymes
      • 1.2.5.1. Industrial Enzymes
      • 1.2.5.2. Therapeutic Proteins
    • 1.2.6. Specialty Chemicals
      • 1.2.6.1. Natural Dyes
      • 1.2.6.2. Biosurfactants
      • 1.2.6.3. Biopolymers

2. BIOMANUFACTURING

  • 2.1. Microbial Fermentation
  • 2.2. Mammalian Cell Culture
  • 2.3. Plant Cell Culture
  • 2.4. Insect Cell Culture
  • 2.5. Transgenic Animals
  • 2.6. Transgenic Plants
  • 2.7. Technologies
    • 2.7.1. Upstream Processing
      • 2.7.1.1. Cell Culture
    • 2.7.2. Fermentation
      • 2.7.2.1. Overview
    • 2.7.3. Downstream Processing
      • 2.7.3.1. Purification
    • 2.7.4. Formulation
      • 2.7.4.1. Overview
    • 2.7.5. Bioprocess Development
      • 2.7.5.1. Scale-up
      • 2.7.5.2. Optimization
    • 2.7.6. Analytical Methods
      • 2.7.6.1. Quality Control
      • 2.7.6.2. Characterization
    • 2.7.7. Synthetic Biology Tools and Techniques
      • 2.7.7.1. DNA synthesis
      • 2.7.7.2. CRISPR-Cas9 systems
      • 2.7.7.3. Protein/enzyme engineering
      • 2.7.7.4. Computer-aided design
      • 2.7.7.5. Strain construction and optimization
      • 2.7.7.6. Robotics and automation
      • 2.7.7.7. Artificial intelligence and machine learning
    • 2.7.8. Alternative Feedstocks and Sustainability
      • 2.7.8.1. C1 feedstocks: Metabolic pathways
      • 2.7.8.2. C2 feedstocks
      • 2.7.8.3. Lignocellulosic biomass feedstocks
      • 2.7.8.4. Blue biotechnology feedstocks
      • 2.7.8.5. Routes for carbon capture in biotechnology
  • 2.8. Scale of Production
    • 2.8.1. Laboratory Scale
      • 2.8.1.1. Overview
      • 2.8.1.2. Scale and Equipment
      • 2.8.1.3. Advantages
      • 2.8.1.4. Disadvantages
    • 2.8.2. Pilot Scale
      • 2.8.2.1. Overview
      • 2.8.2.2. Scale and Equipment
      • 2.8.2.3. Advantages
      • 2.8.2.4. Disadvantages
    • 2.8.3. Commercial Scale
      • 2.8.3.1. Overview
      • 2.8.3.2. Scale and Equipment
      • 2.8.3.3. Advantages
      • 2.8.3.4. Disadvantages
  • 2.9. Mode of Operation
    • 2.9.1. Batch Production
      • 2.9.1.1. Overview
      • 2.9.1.2. Advantages
      • 2.9.1.3. Disadvantages
      • 2.9.1.4. Applications
    • 2.9.2. Fed-batch Production
      • 2.9.2.1. Overview
      • 2.9.2.2. Advantages
      • 2.9.2.3. Disadvantages
      • 2.9.2.4. Applications
    • 2.9.3. Continuous Production
      • 2.9.3.1. Overview
      • 2.9.3.2. Advantages
      • 2.9.3.3. Disadvantages
      • 2.9.3.4. Applications
      • 2.9.3.5. Key fermentation parameter comparison
    • 2.9.4. Cell factories for biomanufacturing
      • 2.9.4.1. Range of organisms
      • 2.9.4.2. Escherichia coli (E.coli)
      • 2.9.4.3. Corynebacterium glutamicum (C. glutamicum)
      • 2.9.4.4. Bacillus subtilis (B. subtilis)
      • 2.9.4.5. Saccharomyces cerevisiae (S. cerevisiae)
      • 2.9.4.6. Yarrowia lipolytica (Y. lipolytica)
      • 2.9.4.7. Non-model organisms
    • 2.9.5. Perfusion Culture
      • 2.9.5.1. Overview
      • 2.9.5.2. Advantages
      • 2.9.5.3. Disadvantages
      • 2.9.5.4. Applications
      • 2.9.5.5. Perfusion bioreactors
    • 2.9.6. Other Modes of Operation
      • 2.9.6.1. Immobilized Cell Culture
      • 2.9.6.2. Two-Stage Production
      • 2.9.6.3. Hybrid Systems
  • 2.10. Host Organisms

3. TECHNOLOGY/MATERIALS ANALYSIS

  • 3.1. Bio-based feedstocks
    • 3.1.1. Plant-based feedstocks
    • 3.1.2. Waste-based feedstocks
    • 3.1.3. Microbial and mineral-based feedstocks
  • 3.2. Organic acids
    • 3.2.1. Lactic acid
      • 3.2.1.1. D-lactic acid
      • 3.2.1.2. L-lactic acid
    • 3.2.2. Succinic acid
    • 3.2.3. Itaconic acid
    • 3.2.4. Citric acid
    • 3.2.5. Acetic acid
  • 3.3. Amino acids
    • 3.3.1. Glutamic acid
    • 3.3.2. Lysine
    • 3.3.3. Threonine
    • 3.3.4. Methionine
    • 3.3.5. Vitamins produced using biotechnology
      • 3.3.5.1. Vitamin B2 (Riboflavin)
      • 3.3.5.2. Vitamin B12 (Cobalamin)
      • 3.3.5.3. Vitamin C (Ascorbic Acid)
      • 3.3.5.4. Vitamin B7 (Biotin)
      • 3.3.5.5. Vitamin B3 (Niacin / Nicotinic Acid)
      • 3.3.5.6. Vitamin B9 (Folic Acid / Folate)
  • 3.4. Alcohols
    • 3.4.1. Ethanol
    • 3.4.2. Butanol
    • 3.4.3. Isobutanol
    • 3.4.4. Propanediol
  • 3.5. Surfactants
    • 3.5.1. Biosurfactants (e.g., rhamnolipids, sophorolipids)
      • 3.5.1.1. Rhamnolipids
      • 3.5.1.2. Sophorolipids
      • 3.5.1.3. Mannosylerythritol lipids (MELs)
      • 3.5.1.4. Cellobiose lipids
      • 3.5.1.5. Designer glycolipids and lipopeptides via synthetic biology
    • 3.5.2. Alkyl polyglucosides (APGs)
  • 3.6. Solvents
    • 3.6.1. Ethyl lactate
    • 3.6.2. Dimethyl carbonate
    • 3.6.3. Glycerol
  • 3.7. Flavours and fragrances
    • 3.7.1. Vanillin
    • 3.7.2. Nootkatone
    • 3.7.3. Limonene
    • 3.7.4. Bio-manufactured fragrances and aromatics
    • 3.7.5. Biotech-derived fragrance precursors
    • 3.7.6. Ambroxan
    • 3.7.7. Flavour enhancers
    • 3.7.8. Disodium Inosinate (IMP)
    • 3.7.9. Disodium Guanylate (GMP)
    • 3.7.10. Monatin
  • 3.8. Bio-based monomers and intermediates
    • 3.8.1. Succinic acid
    • 3.8.2. 1,4-Butanediol (BDO)
    • 3.8.3. Isoprene
    • 3.8.4. Ethylene
    • 3.8.5. Propylene
    • 3.8.6. Adipic acid
    • 3.8.7. Acrylic acid
    • 3.8.8. Sebacic acid
  • 3.9. Bio-based polymers
    • 3.9.1. Polybutylene succinate (PBS)
    • 3.9.2. Polyamides (nylons)
    • 3.9.3. Polyethylene furanoate (PEF)
    • 3.9.4. Polytrimethylene terephthalate (PTT)
    • 3.9.5. Polyethylene isosorbide terephthalate (PEIT)
  • 3.10. Bio-based composites and blends
    • 3.10.1. Wood-plastic composites (WPCs)
    • 3.10.2. Biofiller-reinforced plastics
    • 3.10.3. Biofiber-reinforced plastics
    • 3.10.4. Polymer blends with bio-based components
  • 3.11. Beauty and Personal Care Chemicals
    • 3.11.1. Hyaluronic acid production
    • 3.11.2. Squalene and Squalane alternatives
    • 3.11.3. Collagen
    • 3.11.4. Bio-based UV filters and photoprotective compounds
    • 3.11.5. Melanin
    • 3.11.6. Emollients
  • 3.12. Waste
    • 3.12.1. Food waste
    • 3.12.2. Agricultural waste
    • 3.12.3. Forestry waste
    • 3.12.4. Aquaculture/fishing waste
    • 3.12.5. Municipal solid waste
    • 3.12.6. Industrial waste
    • 3.12.7. Waste oils
  • 3.13. Microbial and Mineral Sources
    • 3.13.1. Microalgae
    • 3.13.2. Macroalgae
    • 3.13.3. Cyanobacteria
    • 3.13.4. Mineral sources
  • 3.14. Other Bio-manufactured Products
    • 3.14.1. Cement alternatives from biomanufacturing
    • 3.14.2. Precision fermentation products

4. MARKET ANALYSIS

  • 4.1. Key players and competitive landscape
    • 4.1.1. Company landscape in specialty chemicals biotechnology
    • 4.1.2. Bio-manufactured beauty ingredient production capacities
  • 4.2. Market Growth Drivers and Trends
    • 4.2.1. Trends and drivers in biotechnology
    • 4.2.2. Government support of biotechnology
    • 4.2.3. Carbon taxes
  • 4.3. Regulations
  • 4.4. Value chain
    • 4.4.1. Economic viability factors
    • 4.4.2. Effect of feedstock prices
    • 4.4.3. Scale-up effects on cost
  • 4.5. Future outlook
  • 4.6. Technology Readiness Level (TRL)
  • 4.7. Addressable Market Size
  • 4.8. Risks and Opportunities
  • 4.9. Major market challenges
  • 4.10. Technical challenges
  • 4.11. Global revenues
    • 4.11.1. By type
    • 4.11.2. By application market
    • 4.11.3. By regional market

5. COMPANY PROFILES(245 company profiles)

6. REFERENCES

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦