시장보고서
상품코드
1803888

세계의 탄소 포집, 활용, 저장(CCUS) 시장(2026-2046년)

The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 764 Pages, 277 Tables, 160 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 탄소 포집, 활용, 저장(CCUS) 시장은 시급한 기후변화 대응과 기술 발전으로 인해 청정에너지 전환에서 가장 빠르게 성장하고 있는 분야 중 하나입니다. 시장의 확대는 기본적으로 엄격한 배출 기준과 규제, 그리고 탈탄소화를 달성하기 위한 막대한 투자에 의해 이루어지고 있습니다. 기업의 순 제로에 대한 약속도 마찬가지로 중요하며, 기업의 순 제로에 대한 약속은 민간 부문의 투자를 촉진하고, 탄소 가격 메커니즘의 강화는 CCUS 프로젝트에 새로운 수익원을 창출하고 있습니다.

발전이 가장 큰 응용 분야이며, 석유 및 가스 사업이 그 뒤를 잇고 있습니다. 석유 및 가스 산업에서는 석유포집증진(EOR) 프로젝트에 CCUS 기술을 활용하는 사례가 증가하고 있습니다. 산업 용도는 시멘트, 철강, 화학, 석유화학 등 다양하며, CCUS가 탈탄소화의 첫 번째 경로를 제공하는 배출량 감축이 어려운 부문입니다.

유망한 성장 궤도에도 불구하고 CCUS 시장은 큰 도전에 직면해 있습니다. 특히 재정적 제약에 직면한 산업에서는 높은 초기 비용과 운영비용이 경제적 생존 가능성을 크게 위협합니다. 빠르게 진화하는 프레임워크와 함께 불확실한 규제 환경은 투자와 안정적 성장의 장벽이 되고 있습니다. 수익의 흐름이 확립되지 않았기 때문에 비즈니스 케이스가 어렵습니다. CCUS 시장은 기술적 성숙도, 규제적 지원, 기후변화에 대한 시급성이 수렴하면서 전 세계 다양한 산업 부문에서 전례 없는 성장 기회를 창출하는 변곡점에 서 있습니다.

본 보고서에서는 전 세계 탄소 포집, 활용, 저장(CCUS)에 대해 조사 분석합니다. 또한, 상세한 시장 예측, 직접 공기 포집, 연소 후 시스템, CO2 활용 경로에 대한 기술 평가 및 에너지 경영자, 기후변화 투자자, 산업계 의사결정권자를 위한 전략적 인사이트를 제공합니다.

목차

제1장 주요 요약

  • 이산화탄소 배출의 주요 발생원
  • 상품으로서의 CO2
  • 기후 목표 달성
  • 시장 촉진요인 및 동향
  • 현재 시장과 향후 전망
  • CCUS 산업 발전(2020-2025년)
  • CCUS 투자
  • 정부의 CCUS 구상 및 정책 환경
  • 시장 지도
  • 상업용 CCUS 시설 및 프로젝트
  • CCUS 프로젝트의 경제성
  • CCUS 가치사슬
  • CCUS의 주요 시장 장벽
  • CCUS와 에너지 트릴레마
  • CUS의 성장 시장
  • 탄소 가격 책정
  • 세계 시장 예측

제2장 소개

  • CCUS란?
  • CO2 수송
  • 비용
  • 탄소배출권
  • CCUS 기술 수명주기 평가(LCA)
  • 환경 영향 평가
  • 사회적 수용과 대중의 인식
  • CO2의 운명

제3장 이산화탄소 포집

  • 과거 CO2 포집
  • CO2 포집 기술
  • 기술 성숙도
  • 기술 선택
  • 포집률
  • CO2 포집제의 성능
  • 에너지 소비
  • TRL
  • 전 세계 탄소 포집 시설의 파이프라인 - 현재 및 계획 중
  • 점원으로부터의 CO2 포집
  • 주요 탄소 포집 공정
  • 탄소 분리 기술
  • 기회와 장벽
  • CO2 포집 비용
  • CO2 포집 능력
  • 직접 공기 포집(DAC)
  • 하이브리드 포집 시스템
  • 탄소 포집에 있어서의 AI
  • 재생에너지 시스템과의 통합
  • 이동식 탄소 포집 솔루션
  • 탄소 포집 개조
  • 산업에서의 탄소 포집

제4장 이산화탄소 제거

  • 육상에서의 기존 CDR
  • 기술적 CDR 솔루션
  • 주요 CDR 기법
  • 새로운 CDR 기법
  • 가치사슬
  • 이산화탄소 제거 기술 개발
  • 기술성숙도 수준(TRL) : 이산화탄소 제거 기법
  • 탄소배출권
  • 모니터링, 보고, 검증
  • 정부 정책
  • 탄소 제거 및 저장을 수반하는 바이오 에너지(BiCRS)
  • BECCS
  • 광물화 기반 CDR
  • 조림/재조림
  • 해양 기반 CDR

제5장 이산화탄소 활용

  • 개요
  • 다른 저탄소 기술과의 경쟁
  • 탄소 활용 비즈니스 모델
  • CO2 활용 경로
  • 변환 과정
  • 연료에서의 CO2 활용
  • 화학에서의 CO2 활용
  • 건설 및 건축자재에서의 CO2 활용
  • 생물학적 수확량 증가에 CO2 활용
  • 석유포집증진에서 CO2 활용
  • 광물화 촉진
  • 탄소 활용의 디지털 솔루션과 IoT
  • 탄소 거래에 블록체인의 적용
  • 데이터센터에서의 탄소 활용
  • 스마트 시티 인프라와의 통합
  • 새로운 용도

제6장 이산화탄소 저장

  • 소개
  • CO2 저장소
  • CO2 누출
  • 전 세계 CO2 저장 용량
  • CO2 저장 프로젝트
  • CO2-EOR
  • 비용
  • 과제
  • 저류 모니터링 기술
  • 지하 수소 저장의 시너지 효과
  • 고급 모델링 및 시뮬레이션
  • 저수지 선정 기준
  • 리스크 평가 및 관리

제7장 이산화탄소 수송

  • 소개
  • CO2 수송 방법과 조건
  • 파이프라인을 통한 CO2 수송
  • 선박을 통한 CO2 수송
  • 철도 및 트럭을 활용한 CO2 수송
  • 각 방법의 비용 분석
  • 스마트 파이프라인 네트워크
  • 교통 허브 및 인프라
  • 안전 시스템, 모니터링
  • 미래의 운송 기술
  • 기업

제8장 기업 프로파일(374개 기업 프로파일)

제9장 부록

제10장 참고 문헌

KSM 25.09.09

The global carbon capture, utilization and storage (CCUS) market represents one of the most rapidly expanding sectors in the clean energy transition, driven by urgent climate commitments and technological advancement. The market's expansion is fundamentally driven by stringent emission criteria and regulations coupled with significant investments to achieve decarbonization. Corporate commitments are equally significant, with corporate net-zero commitments driving private sector investment and strengthening carbon pricing mechanisms creating additional revenue streams for CCUS projects.

Power generation represents the largest application segment, followed by oil and gas operations. The oil and gas industry utilizes CCUS technologies increasingly for enhanced oil recovery (EOR) projects. Industrial applications span cement, steel, chemicals, and petrochemicals, representing hard-to-abate sectors where CCUS provides the primary decarbonization pathway.

Despite promising growth trajectories, the CCUS market faces substantial challenges. High upfront costs and operational expenses pose significant threats to economic viability, especially in industries facing financial constraints. Uncertain regulatory landscapes with rapidly evolving frameworks create barriers to investment and stable market development. Revenue streams are not well established, making business cases challenging, as most projects currently rely on specific policy enablement. The CCUS market stands at an inflection point where technological maturity, regulatory support, and climate urgency are converging to create unprecedented growth opportunities across multiple industrial sectors globally.

"The Global Carbon Capture, Utilization and Storage (CCUS) Market 2026-2046" provides the definitive analysis of the CCUS industry. This comprehensive 750-page plus report features detailed market forecasts, technology assessments across direct air capture, post-combustion systems, and CO2 utilization pathways, plus strategic insights for energy executives, climate investors, and industrial decision-makers. Includes granular segmentation by application (power generation, oil & gas, cement, steel, chemicals), regional analysis covering North America, Europe, and Asia-Pacific markets, regulatory landscape evolution, carbon pricing mechanisms, and exclusive profiles of 370+ leading companies. Essential intelligence on project pipelines, investment opportunities, emerging technologies, and competitive positioning in the transformative CCUS sector driving global decarbonization through 2046.

Report contents include:

  • Main sources of carbon dioxide emissions and global impact analysis
  • CO2 as a commodity: market dynamics and value chain development
  • Climate targets alignment and CCUS role in net-zero commitments
  • Key market drivers, trends, and growth catalysts (2026-2046)
  • Current market status and comprehensive future outlook projections
  • Industry developments timeline and major milestones (2020-2025)
  • Investment landscape analysis including venture capital funding trends
  • Government initiatives and policy environment across key regions
  • Commercial CCUS facilities mapping: operational and under development
  • Economics of CCUS projects and cost-benefit analysis
  • Value chain structure and key market barriers identification
  • Carbon pricing mechanisms and business model frameworks
  • Global market forecasts with capacity and revenue projections
  • Carbon Dioxide Capture Technologies
    • Comprehensive analysis of 90%+ and 99% capture rate technologies
    • Point source capture from power plants, industrial facilities, and transportation
    • Blue hydrogen production pathways and market integration
    • Cement industry CCUS applications and sector-specific challenges
    • Maritime carbon capture solutions and implementation strategies
    • Post-combustion, oxy-fuel, and pre-combustion capture processes
    • Advanced separation technologies: absorption, adsorption, and membranes
    • Direct air capture (DAC) technologies, deployment scenarios, and cost analysis
    • Hybrid capture systems and AI integration opportunities
    • Mobile carbon capture solutions and retrofitting strategies
    • Carbon Dioxide Removal (CDR) Methods
    • Conventional land-based CDR: wetland restoration and agroforestry
    • Technological CDR solutions and deployment strategies
    • BECCS (Bioenergy with Carbon Capture and Storage) implementation
    • Mineralization-based CDR including enhanced weathering
    • Afforestation/reforestation programs and soil carbon sequestration
    • Biochar production, applications, and carbon credit generation
    • Ocean-based CDR methods and marine carbon management
    • Monitoring, reporting, and verification (MRV) frameworks
  • Carbon Dioxide Utilization Applications
    • CO2 conversion to fuels: e-methanol, synthetic diesel, and aviation fuels
    • Chemical production pathways and polymer manufacturing
    • Construction materials: concrete carbonation and building applications
    • Biological yield-boosting in greenhouses and algae cultivation
    • Enhanced oil recovery (EOR) integration and optimization
    • Digital solutions, IoT integration, and blockchain applications
    • Novel applications: 3D printing materials and energy storage
  • Storage & Transportation Infrastructure
    • Geological storage site selection and capacity assessment
    • Pipeline networks, shipping solutions, and multimodal transport
    • Safety systems, monitoring technologies, and risk management
    • Cost analysis across different transportation methods
    • Smart infrastructure development and hub strategies
  • Regional Market Analysis
  • Company Profiles
    • Detailed analysis of 370+ companies across the CCUS value chain
    • Technology developers, equipment manufacturers, and service providers
    • Financial performance, strategic partnerships, and competitive positioning
    • Innovation pipelines, patent landscapes, and market strategies

This comprehensive report features detailed strategic analysis of over 370 leading companies spanning the entire CCUS ecosystem. The extensive company portfolio encompasses major industrial emitters and technology pioneers including 3R-BioPhosphate, Adaptavate, Again, Aeroborn B.V., Aether Diamonds, AirCapture LLC, Aircela Inc, Airco Process Technology, Air Company, Air Liquide S.A., Air Products and Chemicals Inc., Air Protein, Airex Energy, AirHive, Airovation Technologies, Algal Bio Co. Ltd., Algenol, Algiecel ApS, Andes Ag Inc., Aqualung Carbon Capture, Arborea, Arca, Arkeon Biotechnologies, Asahi Kasei, AspiraDAC Pty Ltd., Aspiring Materials, Atoco, Avantium N.V., Avnos Inc., Aymium, Axens SA, Azolla, Barton Blakeley Technologies Ltd., BASF Group, BC Biocarbon, BP PLC, Biochar Now, Bio-Logica Carbon Ltd., Biomacon GmbH, Biosorra, Blue Planet Systems Corporation, Blusink Ltd., Boomitra, Brineworks, BluSky Inc., Breathe Applied Sciences, Bright Renewables, Brilliant Planet Systems, bse Methanol GmbH, C-Capture, C4X Technologies Inc., C2CNT LLC, Calcin8 Technologies Limited, Cambridge Carbon Capture Ltd., Capchar Ltd., Captura Corporation, Captur Tower, Capture6, Carba, CarbiCrete, Carbfix, Carboclave, Carbo Culture, Carbofex Oy, Carbominer, Carbonade, Carbonaide Oy, Carbonaught Pty Ltd., CarbonFree, Carbonova, CarbonScape Ltd., Carbon8 Systems, Carbon Blade, Carbon Blue, CarbonBuilt, Carbon CANTONNE, Carbon Capture Inc., Carbon Capture Machine UK, Carbon Centric AS, Carbon Clean Solutions Limited, Carbon Collect Limited, CarbonCure Technologies Inc., Carbon Geocapture Corp, Carbon Engineering Ltd., Carbon Infinity Limited, Carbon Limit, Carbon Neutral Fuels, Carbon Recycling International, Carbon Re, Carbon Reform Inc., Carbon Ridge Inc., Carbon Sink LLC, CarbonStar Systems, Carbon Upcycling Technologies, Carbonfree Chemicals, CarbonMeta Research Ltd, CarbonOrO Products B.V., CarbonQuest, Carbon-Zero US LLC, Carbyon BV, Cella Mineral Storage, Cemvita Factory Inc., CERT Systems Inc., CFOAM Limited, Charm Industrial, Chevron Corporation, Chiyoda Corporation, China Energy Investment Corporation, Citroniq Chemicals LLC, Clairity Technology, Climeworks, CNF Biofuel AS, CO2 Capsol, CO280, CO2Rail Company, CO2CirculAir B.V., Compact Carbon Capture AS, Concrete4Change, Cool Planet Energy Systems, CORMETECH, Coval Energy B.V., Covestro AG, C-Quester Inc., C-Questra, Cquestr8 Limited, CREW Carbon, CyanoCapture, D-CRBN, Decarbontek LLC, Deep Branch Biotechnology, Deep Sky, Denbury Inc., Dimensional Energy, Dioxide Materials, Dioxycle, Drax, 8Rivers, Earth RepAIR, Ebb Carbon, Ecocera, ecoLocked GmbH, EDAC Labs, Eion Carbon, Econic Technologies Ltd, EcoClosure LLC, Electrochaea GmbH, Emerging Fuels Technology, Empower Materials Inc., Enerkem Inc., enaDyne GmbH, Entropy Inc., E-Quester, Equatic, Equinor ASA, Evonik Industries AG, Exomad Green, ExxonMobil, 44.01, Fairbrics, Fervo Energy, Fluor Corporation, Fortera Corporation, Framergy Inc., Freres Biochar, FuelCell Energy Inc., Funga, GE Gas Power, Giammarco Vetrocoke, GigaBlue, Giner Inc., Global Algae Innovations, Global Thermostat LLC, Graphyte, Grassroots Biochar AB, Graviky Labs, GreenCap Solutions AS, Greenlyte Carbon Technologies, Greeniron H2 AB, Green Sequest, Gulf Coast Sequestration, greenSand, Hago Energetics, Haldor Topsoe, Heimdal CCU, Heirloom Carbon Technologies, High Hopes Labs, Holcim Group, Holocene, Holy Grail Inc., Honeywell, Oy Hydrocell Ltd., Hyvegeo, 1point8, IHI Corporation, Immaterial Ltd, Ineratec GmbH, Infinitree LLC, Innovator Energy, InnoSepra LLC, Inplanet GmbH, InterEarth, ION Clean Energy Inc., Japan CCS Co. Ltd., Jupiter Oxygen Corporation, Kawasaki Heavy Industries Ltd., KC8 Capture Technologies, Krajete GmbH, LanzaJet Inc., Lanzatech, Lectrolyst LLC, Levidian Nanosystems, Limenet, The Linde Group, Liquid Wind AB, Lithos Carbon, Living Carbon, Loam Bio, Low Carbon Korea, Low Carbon Materials, Made of Air GmbH, Mango Materials Inc., Mantel Capture, Mars Materials, Mattershift, MCI Carbon, Mercurius Biorefining, Minera Systems, Mineral Carbonation International Carbon, Mission Zero Technologies, Mitsui Chemicals Inc., Mitsubishi Heavy Industries Ltd., MOFWORX, Molten Industries Inc., Mosaic Materials Inc., Mote, Myno Carbon, Nanyang Zhongju Tianguan Low Carbon Technology Company, NEG8 Carbon, NeoCarbon, Net Power LLC, NetZero, Neustark AG, Nevel AB, Newlight Technologies LLC, New Sky Energy, Njord Carbon, Norsk e-Fuel AS, Novocarbo GmbH, novoMOF AG and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Main sources of carbon dioxide emissions
  • 1.2. CO2 as a commodity
  • 1.3. Meeting climate targets
  • 1.4. Market drivers and trends
  • 1.5. The current market and future outlook
  • 1.6. CCUS Industry developments 2020-2025
  • 1.7. CCUS investments
    • 1.7.1. Venture Capital Funding
      • 1.7.1.1. 2010-2024
      • 1.7.1.2. CCUS VC deals 2022-2025
  • 1.8. Government CCUS initiatives and policy environment
    • 1.8.1. North America
    • 1.8.2. Europe
    • 1.8.3. Asia
      • 1.8.3.1. Japan
      • 1.8.3.2. Singapore
      • 1.8.3.3. China
  • 1.9. Market map
  • 1.10. Commercial CCUS facilities and projects
    • 1.10.1. Facilities
      • 1.10.1.1. Operational
      • 1.10.1.2. Under development/construction
  • 1.11. Economics of CCUS projects
    • 1.11.1. CAPEX Reduction Strategies
    • 1.11.2. OPEX Reduction Approaches
    • 1.11.3. Emerging Technology Solutions
  • 1.12. CCUS Value Chain
  • 1.13. Key market barriers for CCUS
  • 1.14. CCUS and the energy trilemma
  • 1.15. Growth markets for CUS
  • 1.16. Carbon pricing
    • 1.16.1. Compliance Carbon Pricing Mechanisms
    • 1.16.2. Alternative to Carbon Pricing: 45Q Tax Credits
    • 1.16.3. Business models
      • 1.16.3.1. Full chain
      • 1.16.3.2. Networks and hub model
      • 1.16.3.3. Partial-chain
      • 1.16.3.4. Carbon dioxide utilization business model
    • 1.16.4. The European Union Emission Trading Scheme (EU ETS)
    • 1.16.5. Carbon Pricing in the US
    • 1.16.6. Carbon Pricing in China
    • 1.16.7. Voluntary Carbon Markets
    • 1.16.8. Challenges with Carbon Pricing
  • 1.17. Global market forecasts
    • 1.17.1. CCUS capture capacity forecast by end point
    • 1.17.2. Capture capacity by region to 2046, Mtpa
    • 1.17.3. Revenues
    • 1.17.4. CCUS capacity forecast by capture type
    • 1.17.5. Cost projections 2025-2046

2. INTRODUCTION

  • 2.1. What is CCUS?
    • 2.1.1. Carbon Capture
      • 2.1.1.1. Source Characterization
      • 2.1.1.2. Purification
      • 2.1.1.3. CO2 capture technologies
    • 2.1.2. Carbon Utilization
      • 2.1.2.1. CO2 utilization pathways
    • 2.1.3. Carbon storage
      • 2.1.3.1. Passive storage
      • 2.1.3.2. Enhanced oil recovery
  • 2.2. Transporting CO2
    • 2.2.1. Methods of CO2 transport
      • 2.2.1.1. Pipeline
      • 2.2.1.2. Ship
      • 2.2.1.3. Road
      • 2.2.1.4. Rail
    • 2.2.2. Safety
  • 2.3. Costs
    • 2.3.1. Cost of CO2 transport
  • 2.4. Carbon credits
  • 2.5. Life Cycle Assessment (LCA) of CCUS Technologies
  • 2.6. Environmental Impact Assessment
  • 2.7. Social acceptance and public perception
  • 2.8. Fate of CO2

3. CARBON DIOXIDE CAPTURE

  • 3.1. Historical CO2 capture
  • 3.2. CO2 capture technologies
  • 3.3. Maturity of technologies
  • 3.4. Technology selection
  • 3.5. Capture Percentages
    • 3.5.1. >90% capture rate
    • 3.5.2. 99% capture rate
  • 3.6. CO2 capture agent performance
  • 3.7. Energy Consumption
  • 3.8. TRL
  • 3.9. Global Pipeline of Carbon Capture Facilities-Current and PLanned
  • 3.10. CO2 capture from point sources
    • 3.10.1. Energy Availability and Costs
    • 3.10.2. Power plants with CCUS
    • 3.10.3. Transportation
    • 3.10.4. Global point source CO2 capture capacities
    • 3.10.5. By source
    • 3.10.6. Blue hydrogen
      • 3.10.6.1. Steam-methane reforming (SMR)
      • 3.10.6.2. Autothermal reforming (ATR)
      • 3.10.6.3. Partial oxidation (POX)
      • 3.10.6.4. Sorption Enhanced Steam Methane Reforming (SE-SMR)
      • 3.10.6.5. Pre-Combustion vs. Post-Combustion carbon capture
      • 3.10.6.6. Blue hydrogen projects
      • 3.10.6.7. Costs
      • 3.10.6.8. Market players
    • 3.10.7. Carbon capture in cement
      • 3.10.7.1. CCUS Projects
      • 3.10.7.2. Carbon capture technologies
      • 3.10.7.3. Costs
      • 3.10.7.4. Challenges
    • 3.10.8. Maritime carbon capture
  • 3.11. Main carbon capture processes
    • 3.11.1. Materials
    • 3.11.2. Natural Gas Sweetening
    • 3.11.3. Post-combustion
      • 3.11.3.1. Chemicals/Solvents
      • 3.11.3.2. Amine-based post-combustion CO2 absorption
      • 3.11.3.3. Physical absorption solvents
      • 3.11.3.4. Emerging Solvents for Carbon Capture
      • 3.11.3.5. Chilled Ammonia Process (CAP)
      • 3.11.3.6. Molten Borates
      • 3.11.3.7. Costs
      • 3.11.3.8. Alternatives to Solvent-Based Carbon Capture
    • 3.11.4. Oxy-fuel combustion
      • 3.11.4.1. Oxyfuel CCUS cement projects
      • 3.11.4.2. Chemical Looping-Based Capture
    • 3.11.5. Liquid or supercritical CO2: Allam-Fetvedt Cycle
    • 3.11.6. Pre-combustion
  • 3.12. Carbon separation technologies
    • 3.12.1. Absorption capture
    • 3.12.2. Adsorption capture
      • 3.12.2.1. Solid sorbent-based CO2 separation
      • 3.12.2.2. Metal organic framework (MOF) adsorbents
      • 3.12.2.3. Zeolite-based adsorbents
      • 3.12.2.4. Solid amine-based adsorbents
      • 3.12.2.5. Carbon-based adsorbents
      • 3.12.2.6. Polymer-based adsorbents
      • 3.12.2.7. Solid sorbents in pre-combustion
      • 3.12.2.8. Sorption Enhanced Water Gas Shift (SEWGS)
      • 3.12.2.9. Solid sorbents in post-combustion
    • 3.12.3. Membranes
      • 3.12.3.1. Membrane-based CO2 separation
      • 3.12.3.2. Gas Separation Membranes
      • 3.12.3.3. Post-combustion CO2 capture
      • 3.12.3.4. Facilitated transport membranes
      • 3.12.3.5. Pre-combustion capture
      • 3.12.3.6. Advanced membrane materials
        • 3.12.3.6.1. Graphene-based membranes
        • 3.12.3.6.2. Metal-organic framework (MOF) membranes
      • 3.12.3.7. Membranes for Direct Air Capture
    • 3.12.4. Liquid or supercritical CO2 (Cryogenic) capture
    • 3.12.5. Calcium Looping
      • 3.12.5.1. Calix Advanced Calciner
    • 3.12.6. Other technologies
      • 3.12.6.1. LEILAC process
      • 3.12.6.2. CO2 capture with Solid Oxide Fuel Cells (SOFCs)
      • 3.12.6.3. CO2 capture with Molten Carbonate Fuel Cells (MCFCs)
      • 3.12.6.4. Microalgae Carbon Capture
    • 3.12.7. Comparison of key separation technologies
    • 3.12.8. Technology readiness level (TRL) of gas separation technologies
  • 3.13. Opportunities and barriers
  • 3.14. Costs of CO2 capture
  • 3.15. CO2 capture capacity
  • 3.16. Direct air capture (DAC)
    • 3.16.1. Technology description
      • 3.16.1.1. Sorbent-based CO2 Capture
      • 3.16.1.2. Solvent-based CO2 Capture
      • 3.16.1.3. DAC Solid Sorbent Swing Adsorption Processes
      • 3.16.1.4. Electro-Swing Adsorption (ESA) of CO2 for DAC
      • 3.16.1.5. Solid and liquid DAC
    • 3.16.2. Advantages of DAC
    • 3.16.3. Deployment
    • 3.16.4. Point source carbon capture versus Direct Air Capture
    • 3.16.5. Technologies
      • 3.16.5.1. Solid sorbents
      • 3.16.5.2. Liquid sorbents
      • 3.16.5.3. Liquid solvents
      • 3.16.5.4. Airflow equipment integration
      • 3.16.5.5. Passive Direct Air Capture (PDAC)
      • 3.16.5.6. Direct conversion
      • 3.16.5.7. Co-product generation
      • 3.16.5.8. Low Temperature DAC
      • 3.16.5.9. Regeneration methods
    • 3.16.6. Electricity and Heat Sources
    • 3.16.7. Commercialization and plants
    • 3.16.8. Metal-organic frameworks (MOFs) in DAC
    • 3.16.9. DAC plants and projects-current and planned
    • 3.16.10. Capacity forecasts
    • 3.16.11. Costs
    • 3.16.12. Market challenges for DAC
    • 3.16.13. Market prospects for direct air capture
    • 3.16.14. Players and production
    • 3.16.15. Co2 utilization pathways
    • 3.16.16. Markets for Direct Air Capture and Storage (DACCS)
      • 3.16.16.1. Fuels
        • 3.16.16.1.1. Overview
        • 3.16.16.1.2. Production routes
        • 3.16.16.1.3. Methanol
        • 3.16.16.1.4. Algae based biofuels
        • 3.16.16.1.5. CO2-fuels from solar
        • 3.16.16.1.6. Companies
        • 3.16.16.1.7. Challenges
      • 3.16.16.2. Chemicals, plastics and polymers
        • 3.16.16.2.1. Overview
        • 3.16.16.2.2. Scalability
        • 3.16.16.2.3. Plastics and polymers
          • 3.16.16.2.3.1. CO2 utilization products
        • 3.16.16.2.4. Urea production
        • 3.16.16.2.5. Inert gas in semiconductor manufacturing
        • 3.16.16.2.6. Carbon nanotubes
        • 3.16.16.2.7. Companies
      • 3.16.16.3. Construction materials
        • 3.16.16.3.1. Overview
        • 3.16.16.3.2. CCUS technologies
        • 3.16.16.3.3. Carbonated aggregates
        • 3.16.16.3.4. Additives during mixing
        • 3.16.16.3.5. Concrete curing
        • 3.16.16.3.6. Costs
        • 3.16.16.3.7. Companies
        • 3.16.16.3.8. Challenges
      • 3.16.16.4. CO2 Utilization in Biological Yield-Boosting
        • 3.16.16.4.1. Overview
        • 3.16.16.4.2. Applications
          • 3.16.16.4.2.1. Greenhouses
          • 3.16.16.4.2.2. Algae cultivation
          • 3.16.16.4.2.3. Microbial conversion
        • 3.16.16.4.3. Companies
      • 3.16.16.5. Food and feed production
      • 3.16.16.6. CO2 Utilization in Enhanced Oil Recovery
        • 3.16.16.6.1. Overview
          • 3.16.16.6.1.1. Process
          • 3.16.16.6.1.2. CO2 sources
        • 3.16.16.6.2. CO2-EOR facilities and projects
  • 3.17. Hybrid Capture Systems
  • 3.18. Artificial Intelligence in Carbon Capture
  • 3.19. Integration with Renewable Energy Systems
  • 3.20. Mobile Carbon Capture Solutions
  • 3.21. Carbon Capture Retrofitting
  • 3.22. Carbon Capture in Industry
    • 3.22.1. Cement
    • 3.22.2. Iron and Steel
      • 3.22.2.1. Post-combustion capture for BF-BOF processes
      • 3.22.2.2. Pre-Combustion Carbon Capture for Ironmaking
      • 3.22.2.3. Gas Recycling and Oxyfuel Combustion for Ironmaking
      • 3.22.2.4. Direct reduced iron (DRI) production
    • 3.22.3. Power Generation
      • 3.22.3.1. Power plants with carbon capture systems
      • 3.22.3.2. Coal Power Generation
      • 3.22.3.3. Gas Power Generation
        • 3.22.3.3.1. Gas Power CCS for Data Centers
      • 3.22.3.4. Power sector CCUS cost

4. CARBON DIOXIDE REMOVAL

  • 4.1. Conventional CDR on land
    • 4.1.1. Wetland and peatland restoration
    • 4.1.2. Cropland, grassland, and agroforestry
  • 4.2. Technological CDR Solutions
  • 4.3. Main CDR methods
  • 4.4. Novel CDR methods
  • 4.5. Value chain
  • 4.6. Deployment of carbon dioxide removal technologies
  • 4.7. Technology Readiness Level (TRL): Carbon Dioxide Removal Methods
  • 4.8. Carbon Credits
    • 4.8.1. Description
    • 4.8.2. Carbon pricing
    • 4.8.3. Carbon Removal vs Carbon Avoidance Offsetting
    • 4.8.4. Carbon credit certification
    • 4.8.5. Carbon registries
    • 4.8.6. Carbon credit quality
    • 4.8.7. Voluntary Carbon Credits
      • 4.8.7.1. Definition
      • 4.8.7.2. Purchasing
      • 4.8.7.3. Key Market Players and Projects
      • 4.8.7.4. Pricing
    • 4.8.8. Compliance Carbon Credits
      • 4.8.8.1. Definition
      • 4.8.8.2. Market players
      • 4.8.8.3. Pricing
    • 4.8.9. Durable carbon dioxide removal (CDR) credits
    • 4.8.10. Corporate commitments
    • 4.8.11. Increasing government support and regulations
    • 4.8.12. Advancements in carbon offset project verification and monitoring
    • 4.8.13. Potential for blockchain technology in carbon credit trading
    • 4.8.14. Buying and Selling Carbon Credits
      • 4.8.14.1. Carbon credit exchanges and trading platforms
      • 4.8.14.2. Over-the-counter (OTC) transactions
      • 4.8.14.3. Pricing mechanisms and factors affecting carbon credit prices
    • 4.8.15. Certification
    • 4.8.16. Challenges and risks
  • 4.9. Monitoring, reporting, and verification
  • 4.10. Government policies
  • 4.11. Bioenergy with Carbon Removal and Storage (BiCRS)
    • 4.11.1. Feedstocks
    • 4.11.2. BiCRS Conversion Pathways
  • 4.12. BECCS
    • 4.12.1. Technology overview
      • 4.12.1.1. Point Source Capture Technologies for BECCS
      • 4.12.1.2. Energy efficiency
      • 4.12.1.3. Heat generation
      • 4.12.1.4. Waste-to-Energy
      • 4.12.1.5. Blue Hydrogen Production
    • 4.12.2. Biomass conversion
    • 4.12.3. CO2 capture technologies
    • 4.12.4. BECCS facilities
    • 4.12.5. Cost analysis
    • 4.12.6. BECCS carbon credits
    • 4.12.7. Sustainability
    • 4.12.8. Challenges
  • 4.13. Mineralization-based CDR
    • 4.13.1. Overview
    • 4.13.2. Storage in CO2-Derived Concrete
    • 4.13.3. Oxide Looping
    • 4.13.4. Enhanced Weathering
      • 4.13.4.1. Overview
      • 4.13.4.2. Benefits
      • 4.13.4.3. Monitoring, Reporting, and Verification (MRV)
      • 4.13.4.4. Applications
      • 4.13.4.5. Commercial activity and companies
      • 4.13.4.6. Challenges and Risks
    • 4.13.5. Cost analysis
    • 4.13.6. SWOT analysis
  • 4.14. Afforestation/Reforestation
    • 4.14.1. Overview
    • 4.14.2. Carbon dioxide removal methods
      • 4.14.2.1. Nature-based CDR
      • 4.14.2.2. Land-based CDR
    • 4.14.3. Technologies
      • 4.14.3.1. Remote Sensing
      • 4.14.3.2. Drone technology and robotics
      • 4.14.3.3. Automated forest fire detection systems
      • 4.14.3.4. AI/ML
      • 4.14.3.5. Genetics
    • 4.14.4. Trends and Opportunities
    • 4.14.5. Challenges and Risks
      • 4.14.5.1. SWOT analysis
      • 4.14.5.2. Soil carbon sequestration (SCS)
        • 4.14.5.2.1. Overview
        • 4.14.5.2.2. Practices
        • 4.14.5.2.3. Measuring and Verifying
        • 4.14.5.2.4. Trends and Opportunities
        • 4.14.5.2.5. Carbon credits
        • 4.14.5.2.6. Challenges and Risks
        • 4.14.5.2.7. SWOT analysis
      • 4.14.5.3. Biochar
        • 4.14.5.3.1. What is biochar?
        • 4.14.5.3.2. Carbon sequestration
        • 4.14.5.3.3. Properties of biochar
        • 4.14.5.3.4. Feedstocks
        • 4.14.5.3.5. Production processes
          • 4.14.5.3.5.1. Sustainable production
          • 4.14.5.3.5.2. Pyrolysis
            • 4.14.5.3.5.2.1. Slow pyrolysis
            • 4.14.5.3.5.2.2. Fast pyrolysis
          • 4.14.5.3.5.3. Gasification
          • 4.14.5.3.5.4. Hydrothermal carbonization (HTC)
          • 4.14.5.3.5.5. Torrefaction
          • 4.14.5.3.5.6. Equipment manufacturers
        • 4.14.5.3.6. Biochar pricing
        • 4.14.5.3.7. Biochar carbon credits
          • 4.14.5.3.7.1. Overview
          • 4.14.5.3.7.2. Removal and reduction credits
          • 4.14.5.3.7.3. The advantage of biochar
          • 4.14.5.3.7.4. Prices
          • 4.14.5.3.7.5. Buyers of biochar credits
          • 4.14.5.3.7.6. Competitive materials and technologies
        • 4.14.5.3.8. Bio-oil based CDR
        • 4.14.5.3.9. Biomass burial for CO2 removal
        • 4.14.5.3.10. Bio-based construction materials for CDR
        • 4.14.5.3.11. SWOT analysis
  • 4.15. Ocean-based CDR
    • 4.15.1. Overview
    • 4.15.2. CO2 capture from seawater
    • 4.15.3. Ocean fertilisation
      • 4.15.3.1. Biotic Methods
      • 4.15.3.2. Coastal blue carbon ecosystems
      • 4.15.3.3. Algal Cultivation
      • 4.15.3.4. Artificial Upwelling
    • 4.15.4. Ocean alkalinisation
      • 4.15.4.1. Electrochemical ocean alkalinity enhancement
      • 4.15.4.2. Direct Ocean Capture
      • 4.15.4.3. Artificial Downwelling
    • 4.15.5. Monitoring, Reporting, and Verification (MRV)
    • 4.15.6. Ocean-based CDR Carbon Credits
    • 4.15.7. Trends and Opportunities
    • 4.15.8. Ocean-based carbon credits
    • 4.15.9. Cost analysis
    • 4.15.10. Challenges and Risks
    • 4.15.11. SWOT analysis
    • 4.15.12. Companies

5. CARBON DIOXIDE UTILIZATION

  • 5.1. Overview
    • 5.1.1. Current market status
  • 5.2. Competition with other low carbon technologies
  • 5.3. Carbon utilization business models
    • 5.3.1. Benefits of carbon utilization
    • 5.3.2. Market challenges
  • 5.4. Co2 utilization pathways
  • 5.5. Conversion processes
    • 5.5.1. Thermochemical
      • 5.5.1.1. Process overview
      • 5.5.1.2. Plasma-assisted CO2 conversion
    • 5.5.2. Electrochemical conversion of CO2
      • 5.5.2.1. Process overview
    • 5.5.3. Photocatalytic and photothermal catalytic conversion of CO2
    • 5.5.4. Catalytic conversion of CO2
    • 5.5.5. Biological conversion of CO2
    • 5.5.6. Copolymerization of CO2
    • 5.5.7. Mineral carbonation
  • 5.6. CO2-Utilization in Fuels
    • 5.6.1. Overview
    • 5.6.2. Production routes
    • 5.6.3. CO2 -fuels in road vehicles
    • 5.6.4. CO2 -fuels in shipping
    • 5.6.5. CO2 -fuels in aviation
    • 5.6.6. Costs of e-fuel
    • 5.6.7. Power-to-methane
      • 5.6.7.1. Thermocatalytic pathway to e-methane
      • 5.6.7.2. Biological fermentation
      • 5.6.7.3. Costs
    • 5.6.8. Algae based biofuels
    • 5.6.9. DAC for e-fuels
    • 5.6.10. Syngas Production Options
    • 5.6.11. CO2-fuels from solar
    • 5.6.12. Companies
    • 5.6.13. Challenges
    • 5.6.14. Global market forecasts 2025-2046
  • 5.7. CO2-Utilization in Chemicals
    • 5.7.1. Overview
    • 5.7.2. Carbon nanostructures
    • 5.7.3. Scalability
    • 5.7.4. Pathways
      • 5.7.4.1. Thermochemical
      • 5.7.4.2. Electrochemical
        • 5.7.4.2.1. Low-Temperature Electrochemical CO2 Reduction
        • 5.7.4.2.2. High-Temperature Solid Oxide Electrolyzers
        • 5.7.4.2.3. Coupling H2 and Electrochemical CO2 Reduction
      • 5.7.4.3. Microbial conversion
      • 5.7.4.4. Other
        • 5.7.4.4.1. Photocatalytic
        • 5.7.4.4.2. Plasma technology
    • 5.7.5. Applications
      • 5.7.5.1. Urea production
      • 5.7.5.2. CO2-derived polymers
        • 5.7.5.2.1. Pathways
        • 5.7.5.2.2. Polycarbonate from CO2
        • 5.7.5.2.3. Methanol to olefins (polypropylene production)
        • 5.7.5.2.4. Ethanol to polymers
      • 5.7.5.3. Inert gas in semiconductor manufacturing
    • 5.7.6. Companies
    • 5.7.7. Global market forecasts 2025-2046
  • 5.8. CO2-Utilization in Construction and Building Materials
    • 5.8.1. Overview
    • 5.8.2. Market drivers
    • 5.8.3. Key CO2 utilization technologies in construction
    • 5.8.4. Carbonated aggregates
    • 5.8.5. Additives during mixing
    • 5.8.6. Concrete curing
    • 5.8.7. Costs
    • 5.8.8. Market trends and business models
    • 5.8.9. Carbon credits
    • 5.8.10. Companies
    • 5.8.11. Challenges
    • 5.8.12. Global market forecasts
  • 5.9. CO2-Utilization in Biological Yield-Boosting
    • 5.9.1. Overview
    • 5.9.2. CO2 utilization in biological processes
    • 5.9.3. Applications
      • 5.9.3.1. Greenhouses
        • 5.9.3.1.1. CO2 enrichment
      • 5.9.3.2. Algae cultivation
        • 5.9.3.2.1. CO2-enhanced algae cultivation: open systems
        • 5.9.3.2.2. CO2-enhanced algae cultivation: closed systems
      • 5.9.3.3. Microbial conversion
      • 5.9.3.4. Food and feed production
    • 5.9.4. Companies
    • 5.9.5. Global market forecasts 2025-2046
  • 5.10. CO2 Utilization in Enhanced Oil Recovery
    • 5.10.1. Overview
      • 5.10.1.1. Process
      • 5.10.1.2. CO2 sources
    • 5.10.2. CO2-EOR facilities and projects
    • 5.10.3. Challenges
    • 5.10.4. Global market forecasts 2025-2046
  • 5.11. Enhanced mineralization
    • 5.11.1. Advantages
    • 5.11.2. In situ and ex-situ mineralization
    • 5.11.3. Enhanced mineralization pathways
    • 5.11.4. Challenges
  • 5.12. Digital Solutions and IoT in Carbon Utilization
  • 5.13. Blockchain Applications in Carbon Trading
  • 5.14. Carbon Utilization in Data Centers
  • 5.15. Integration with Smart City Infrastructure
  • 5.16. Novel Applications
    • 5.16.1. 3D Printing with CO2-derived Materials
    • 5.16.2. CO2 in Energy Storage
    • 5.16.3. CO2 in Electronics Manufacturing

6. CARBON DIOXIDE STORAGE

  • 6.1. Introduction
  • 6.2. CO2 storage sites
    • 6.2.1. Storage types for geologic CO2 storage
    • 6.2.2. Oil and gas fields
    • 6.2.3. Saline formations
    • 6.2.4. Coal seams and shale
    • 6.2.5. Basalts and ultra-mafic rocks
  • 6.3. CO2 leakage
  • 6.4. Global CO2 storage capacity
  • 6.5. CO2 Storage Projects
  • 6.6. CO2 -EOR
    • 6.6.1. Description
    • 6.6.2. Injected CO2
    • 6.6.3. CO2 capture with CO2 -EOR facilities
    • 6.6.4. Companies
    • 6.6.5. Economics
  • 6.7. Costs
  • 6.8. Challenges
  • 6.9. Storage Monitoring Technologies
  • 6.10. Underground Hydrogen Storage Synergies
  • 6.11. Advanced Modelling and Simulation
  • 6.12. Storage Site Selection Criteria
  • 6.13. Risk Assessment and Management

7. CARBON DIOXIDE TRANSPORTATION

  • 7.1. Introduction
  • 7.2. CO2 transportation methods and conditions
  • 7.3. CO2 transportation by pipeline
  • 7.4. CO2 transportation by ship
  • 7.5. CO2 transportation by rail and truck
  • 7.6. Cost analysis of different methods
  • 7.7. Smart Pipeline Networks
  • 7.8. Transportation Hubs and Infrastructure
  • 7.9. Safety Systems and Monitoring
  • 7.10. Future Transportation Technologies
  • 7.11. Companies

8. COMPANY PROFILES (374 company profiles)

9. APPENDICES

  • 9.1. Abbreviations
  • 9.2. Research Methodology
  • 9.3. Definition of Carbon Capture, Utilisation and Storage (CCUS)
  • 9.4. Technology Readiness Level (TRL)

10. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제