시장보고서
상품코드
1636630

세계의 지속가능한 전자기기 및 반도체 제조 시장(2025-2035년)

The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 237 Pages, 119 Tables, 49 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

전자기기의 양은 계속 증가하고 있으며, 이 부문의 원자재 사용량은 2050년까지 두 배로 증가할 것으로 예상됩니다. 전자폐기물의 양 또한 20년 동안 거의 두 배로 증가했으며, 이 폐기물 중 효율적으로 회수되는 폐기물은 20% 정도에 불과한 것으로 추정됩니다. 매년 5,500만 톤 이상의 전자폐기물이 배출되고 있어 환경뿐만 아니라 인간과 동물의 건강에도 상당한 위험을 초래할 수 있습니다. 또한, 폐기된 전자기기에는 상당한 금액이 낭비되고 있습니다. 귀금속과 재사용 가능한 재료가 매립되거나 소각되어 매년 600억 달러 상당의 원재료가 손실되는 것으로 추정됩니다. 전자기기에 플라스틱을 사용하면 생분해성이 떨어지고 사용 후 폐기 비용이 많이 들기 때문에 환경적으로 큰 문제가 있습니다. 따라서 환경 친화적이고 생분해성 기판을 찾는 것이 필수적입니다.

지속가능한 전자기기 및 반도체 제조는 에너지와 천연자원을 절약하고 환경에 미치는 악영향을 최소화하는 경제적으로 건전한 프로세스를 통해 전자제품을 개발하는 것을 목표로 합니다. 그 목표는 에너지 효율, 폐기물 감소, 재활용 및 무해한 재료의 사용, 기타 환경 친화적인 활동을 통해 전자제품의 라이프사이클을 보다 지속가능하게 만드는 것입니다.

본 보고서는 지속가능한 전자기기 및 반도체 제조 세계 시장을 조사 분석했으며, 지속가능한 신기술 및 시장 동향, 지속가능성 촉진요인 및 과제, 지속가능한 제조 프로세스, 재료 혁신 등의 정보와 50개 이상의 기업 프로파일을 제공합니다.

목차

제1장 소개

  • 지속가능한 전자기기 및 반도체 제조
  • 지속가능한 전자기기 촉진요인
  • 전자기기 제조 환경에 대한 영향
  • 지속가능한 전자기기가 가져오는 새로운 기회
  • 규제
  • 지속가능한 전자기기에 대한 전력 공급(바이오 전지)
  • 사출 성형 전자부품의 바이오플라스틱

제2장 지속가능한 전자기기 및 반도체 제조

  • 기존 전자기기 제조
  • 지속가능한 전자기기 제조의 이점
  • 지속가능한 전자기기 제조 채용의 과제
  • 접근법
  • 공급망 그린화

제3장 지속가능한 인쇄회로기판(PCB) 제조

  • 기존 PCB 제조
  • PCB 동향
  • 지속가능성과 성능의 조화
  • 지속가능한 공급망
  • PCB 제조의 지속가능성
  • 지속가능성을 고려한 PCB 설계
  • 재료
  • 기판
  • 전자기기 제조의 지속가능한 패터닝과 금속화
  • 컴포넌트의 지속가능한 장착과 통합

제4장 지속가능한 집적회로

  • IC 제조
  • 지속가능한 IC 제조
  • 웨이퍼 제조
  • 산화법
  • 패터닝, 도핑
  • 금속화
  • 패키징
  • 물 관리

제5장 EOL

  • 법률
  • 유해 폐기물
  • 배출
  • 물사용

제6장 재활용

  • 메커니컬 재활용
  • 전기기계 분리
  • 화학적 재활용
  • 전기화학 프로세스
  • 서멀 재활용
  • 그린 인증
  • PCB 재활용

제7장 데이터센터의 지속가능성

  • 개요
  • 그린 에너지
  • 에너지 효율 향상
  • 탄소배출권, CO2 오프셋
  • 기업

제8장 세계 시장과 매출(2018-2035년)

  • 세계의 PCB 제조 산업
    • PCB 매출
  • 지속가능한 PCB
  • 지속가능한 IC

제9장 기업 개요(55개사 기업 개요)

제10장 조사 방법

제11장 참고문헌

ksm 25.02.14

The volume of electronics will continues to increase and the use of raw materials in the sector is expected to double by 2050. The amount of electronic waste has also almost doubled over the two decades and it is estimated that only 20% of this waste is collected efficiently. With over 55 million tonnes of electronic waste produced every year, the risk of harm to human and animal health as well as the environment is substantial. There is also considerable value squandered in discarded electronics. It is estimated that $60 billion worth of raw materials are lost every year as precious metals and re-useable materials are disposed of in landfill or incinerated. The use of plastics in electronics devices has significant environmental issues owing to poor biodegradability and additional cost for disposal after use. It is therefore essential to find an eco-friendly and biodegradable substrate.

Sustainable electronics and semiconductor manufacturing seeks to develop electronics products through economically-sound processes that minimize negative environmental impacts while conserving energy and natural resources. The goal is to make the lifecycle of electronic products more sustainable through energy efficiency, reducing waste, using recycled and non-toxic materials, and other eco-friendly practices.

Key principles of sustainable electronics manufacturing include:

  • Energy efficiency: Reducing energy consumption in production processes through technology, automation, and optimized practices.
  • Renewable energy:Utilization of renewable energy sources like solar, wind, and geothermal to power manufacturing facilities.
  • Waste reduction: Minimizing waste generation through improved materials utilization, recycling, and re-use.
  • Emissions reduction:Lowering air emissions, water discharges, and carbon footprint through abatement technologies and greener chemistries.
  • Resource conservation: Optimizing use of natural resources like water, minerals, and forestry through efficiency, closed-loop systems, and product circularity.
  • Eco-design- Designing products that are energy efficient, durable, non-toxic and recyclable.
  • Supply chain sustainability:Managing social and environmental impacts across the entire supply chain lifecycle; procurement and logistics to reduce environmental impact

"The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035" offers an in-depth analysis of the sustainable electronics landscape, providing strategic insights for businesses, investors, and technology leaders seeking to navigate the complex intersection of technological advancement and environmental responsibility.

Report contents include:

  • Analysis of global PCB and integrated circuit (IC) revenues
  • Emerging sustainable technologies and market trends
  • Advanced digital manufacturing techniques
  • Renewable energy integration
  • Innovative materials development
  • Circular economy strategies in electronics production
  • Sustainability Drivers and Challenges
    • Environmental impact mitigation
    • Regulatory compliance
    • Resource efficiency
    • Waste reduction strategies
  • Sustainable Manufacturing Processes
    • Closed-loop manufacturing models
    • Advanced robotics and automation
    • AI and machine learning analytics
    • Internet of Things (IoT) integration
    • Additive manufacturing techniques
  • Material Innovation
    • Bio-based materials
    • Recycled and advanced chemical recycling approaches
    • Biodegradable substrates
    • Green and lead-free soldering technologies
    • Sustainable substrate development
  • Semiconductor and PCB Transformation
    • Sustainable integrated circuit manufacturing
    • Flexible and printed electronics
    • Eco-friendly patterning and metallization
    • Advanced oxidation methods
    • Water management in semiconductor production
  • Market Projections and Revenue Analysis
    • Global PCB manufacturing (2018-2035)
    • Sustainable PCB market segments
    • Sustainable integrated circuit revenues
    • Substrate type market penetration
  • Company Profiles. In-depth analyses of 50+ companies providing green materials, equipment, and manufacturing services. Companies profiled include DP Patterning, Elephantech, Infineon Technologies, Jiva Materials, Samsung, Syenta, and Tactotek. Additional information on bio-based battery, conductive ink, green & lead-free solder and halogen-free FR4, data center sustainability companies.
  • Data Center Sustainability
  • Green Energy Solutions
  • Carbon Reduction Strategies
  • Recycling Technologies
  • End-of-Life Electronics Management
  • Regulatory and Certification Landscape
    • Global sustainability regulations
    • Emerging certification standards
    • Compliance strategies for electronics manufacturers

"The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035" provides a strategic roadmap for technological transformation. As the world increasingly demands environmentally responsible technology solutions, this report provides the critical insights needed to lead, innovate, and succeed in the sustainable electronics ecosystem.

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Sustainable electronics & semiconductor manufacturing
  • 1.2. Drivers for sustainable electronics
  • 1.3. Environmental Impacts of Electronics Manufacturing
    • 1.3.1. E-Waste Generation
    • 1.3.2. Carbon Emissions
    • 1.3.3. Resource Utilization
    • 1.3.4. Waste Minimization
    • 1.3.5. Supply Chain Impacts
  • 1.4. New opportunities from sustainable electronics
  • 1.5. Regulations
    • 1.5.1. Certifications
  • 1.6. Powering sustainable electronics (Bio-based batteries)
  • 1.7. Bioplastics in injection moulded electronics parts

2. SUSTAINABLE ELECTRONICS & SEMICONDUCTORS MANUFACTURING

  • 2.1. Conventional electronics manufacturing
  • 2.2. Benefits of Sustainable Electronics manufacturing
  • 2.3. Challenges in adopting Sustainable Electronics manufacturing
  • 2.4. Approaches
    • 2.4.1. Closed-Loop Manufacturing
    • 2.4.2. Digital Manufacturing
      • 2.4.2.1. Advanced robotics & automation
      • 2.4.2.2. AI & machine learning analytics
      • 2.4.2.3. Internet of Things (IoT)
      • 2.4.2.4. Additive manufacturing
      • 2.4.2.5. Virtual prototyping
      • 2.4.2.6. Blockchain-enabled supply chain traceability
    • 2.4.3. Renewable Energy Usage
    • 2.4.4. Energy Efficiency
    • 2.4.5. Materials Efficiency
    • 2.4.6. Sustainable Chemistry
    • 2.4.7. Recycled Materials
      • 2.4.7.1. Advanced chemical recycling
    • 2.4.8. Bio-Based Materials
  • 2.5. Greening the Supply Chain
    • 2.5.1. Key focus areas
    • 2.5.2. Sustainability activities from major electronics brands
    • 2.5.3. Key challenges
    • 2.5.4. Use of digital technologies

3. SUSTAINABLE PRINTED CIRCUIT BOARD (PCB) MANUFACTURING

  • 3.1. Conventional PCB manufacturing
  • 3.2. Trends in PCBs
    • 3.2.1. High-Speed PCBs
    • 3.2.2. Flexible PCBs
    • 3.2.3. 3D Printed PCBs
    • 3.2.4. Sustainable PCBs
  • 3.3. Reconciling sustainability with performance
  • 3.4. Sustainable supply chains
  • 3.5. Sustainability in PCB manufacturing
    • 3.5.1. Sustainable cleaning of PCBs
  • 3.6. Design of PCBs for sustainability
    • 3.6.1. Rigid
    • 3.6.2. Flexible
    • 3.6.3. Additive manufacturing
    • 3.6.4. In-mold elctronics (IME)
  • 3.7. Materials
    • 3.7.1. Low-energy epoxy resins
    • 3.7.2. Metal cores
    • 3.7.3. Recycled laminates
    • 3.7.4. Conductive inks
    • 3.7.5. Green and lead-free solder
    • 3.7.6. Biodegradable substrates
      • 3.7.6.1. Bacterial Cellulose
      • 3.7.6.2. Mycelium
      • 3.7.6.3. Lignin
      • 3.7.6.4. Cellulose Nanofibers
      • 3.7.6.5. Soy Protein
      • 3.7.6.6. Algae
      • 3.7.6.7. PHAs
    • 3.7.7. Biobased inks
  • 3.8. Substrates
    • 3.8.1. Halogen-free FR4
      • 3.8.1.1. FR4 limitations
      • 3.8.1.2. FR4 alternatives
      • 3.8.1.3. Bio-Polyimide
    • 3.8.2. Glass substrates
    • 3.8.3. Ceramic substrates
    • 3.8.4. Metal-core PCBs
    • 3.8.5. Biobased PCBs
      • 3.8.5.1. Polylactic acid
      • 3.8.5.2. Lignin-based Polymers
      • 3.8.5.3. Cellulose Composites
      • 3.8.5.4. Polyhydroxyalkanoates (PHA)
      • 3.8.5.5. Starch Blends
      • 3.8.5.6. Challenges
      • 3.8.5.7. Flexible (bio) polyimide PCBs
      • 3.8.5.8. Recent commercial activity
    • 3.8.6. Paper-based PCBs
    • 3.8.7. PCBs without solder mask
    • 3.8.8. Thinner dielectrics
    • 3.8.9. Recycled plastic substrates
    • 3.8.10. Flexible substrates
    • 3.8.11. Polyimide alternatives
  • 3.9. Sustainable patterning and metallization in electronics manufacturing
    • 3.9.1. Introduction
    • 3.9.2. Issues with sustainability
    • 3.9.3. Regeneration and reuse of etching chemicals
    • 3.9.4. Transition from Wet to Dry phase patterning
    • 3.9.5. Print-and-plate
    • 3.9.6. Approaches
      • 3.9.6.1. Direct Printed Electronics
      • 3.9.6.2. Photonic Sintering
      • 3.9.6.3. Biometallization
      • 3.9.6.4. Plating Resist Alternatives
      • 3.9.6.5. Laser-Induced Forward Transfer
      • 3.9.6.6. Electrohydrodynamic Printing
      • 3.9.6.7. Electrically conductive adhesives (ECAs
      • 3.9.6.8. Green electroless plating
      • 3.9.6.9. Smart Masking
      • 3.9.6.10. Component Integration
      • 3.9.6.11. Bio-inspired material deposition
      • 3.9.6.12. Multi-material jetting
      • 3.9.6.13. Vacuumless deposition
      • 3.9.6.14. Upcycling waste streams
  • 3.10. Sustainable attachment and integration of components
    • 3.10.1. Conventional component attachment materials
    • 3.10.2. Materials
      • 3.10.2.1. Conductive adhesives
      • 3.10.2.2. Biodegradable adhesives
      • 3.10.2.3. Magnets
      • 3.10.2.4. Bio-based solders
      • 3.10.2.5. Bio-derived solders
      • 3.10.2.6. Recycled plastics
      • 3.10.2.7. Nano adhesives
      • 3.10.2.8. Shape memory polymers
      • 3.10.2.9. Photo-reversible polymers
      • 3.10.2.10. Conductive biopolymers
    • 3.10.3. Processes
      • 3.10.3.1. Traditional thermal processing methods
      • 3.10.3.2. Low temperature solder
      • 3.10.3.3. Reflow soldering
      • 3.10.3.4. Induction soldering
      • 3.10.3.5. UV curing
      • 3.10.3.6. Near-infrared (NIR) radiation curing
      • 3.10.3.7. Photonic sintering/curing
      • 3.10.3.8. Hybrid integration

4. SUSTAINABLE INTEGRATED CIRCUITS

  • 4.1. IC manufacturing
  • 4.2. Sustainable IC manufacturing
  • 4.3. Wafer production
    • 4.3.1. Silicon
    • 4.3.2. Gallium nitride ICs
    • 4.3.3. Flexible ICs
    • 4.3.4. Fully printed organic ICs
  • 4.4. Oxidation methods
    • 4.4.1. Sustainable oxidation
    • 4.4.2. Metal oxides
    • 4.4.3. Recycling
    • 4.4.4. Thin gate oxide layers
    • 4.4.5. Substrate Oxidation
    • 4.4.6. Solution-Based Manufacturing
    • 4.4.7. MOSFET Transistors
    • 4.4.8. Silicon on Insulator (SOI) and Manufacturing
  • 4.5. Patterning and doping
    • 4.5.1. Processes
      • 4.5.1.1. Wet etching
      • 4.5.1.2. Dry plasma etching
      • 4.5.1.3. Lift-off patterning
      • 4.5.1.4. Surface doping
    • 4.5.2. Photolithography
    • 4.5.3. Green solvents and chemicals
  • 4.6. Metallization
    • 4.6.1. Evaporation
    • 4.6.2. Plating
    • 4.6.3. Printing
      • 4.6.3.1. Printed metal gates for organic thin film transistors
    • 4.6.4. Physical vapour deposition (PVD)
  • 4.7. Packaging
    • 4.7.1. Sustainable Semiconductor Packaging Technologies
    • 4.7.2. Glass interposer technology
  • 4.8. Water management
    • 4.8.1. Overview
    • 4.8.2. Ultra pure water (UPW)
    • 4.8.3. Semiconductor manufacturing water consumption
    • 4.8.4. Water Reuse

5. END OF LIFE

  • 5.1. Legislation
  • 5.2. Hazardous waste
  • 5.3. Emissions
  • 5.4. Water Usage

6. RECYCLING

  • 6.1. Mechanical recycling
  • 6.2. Electro-Mechanical Separation
  • 6.3. Chemical Recycling
  • 6.4. Electrochemical Processes
  • 6.5. Thermal Recycling
  • 6.6. Green Certification
  • 6.7. PCB recycling
    • 6.7.1. Overview
    • 6.7.2. Metal recovery from PCB manufacturing
    • 6.7.3. Recyclable PCBs
    • 6.7.4. Excess electronic component inventory management
    • 6.7.5. Electronic waste management and reuse

7. SUSTAINABILITY IN DATA CENTERS

  • 7.1. Overview
    • 7.1.1. Data center sustainability
    • 7.1.2. Carbon reductions
    • 7.1.3. Data center decarbonization
    • 7.1.4. Data center company sustainability activities
  • 7.2. Green Energy
    • 7.2.1. Data centers power consumption
    • 7.2.2. Microgrids
    • 7.2.3. Energy storage systems
    • 7.2.4. Solar
    • 7.2.5. Wind power
    • 7.2.6. Geothermal
    • 7.2.7. Nuclear
      • 7.2.7.1. Large-scale nuclear reactors
      • 7.2.7.2. Small modular reactors (SMRs)
      • 7.2.7.3. Nuclear fusion
    • 7.2.8. Fuel cells
      • 7.2.8.1. PEMFCs and SOFCs
    • 7.2.9. Batteries
      • 7.2.9.1. UPS battery technologies
      • 7.2.9.2. BESS (Battery Energy Storage Systems)
  • 7.3. Improved Energy Efficiency
    • 7.3.1. Thermal efficiency
    • 7.3.2. IT efficiency
    • 7.3.3. Electrical efficiency
  • 7.4. Carbon credits and CO2 offsetting
    • 7.4.1. CO2 emissions of data centers
    • 7.4.2. Carbon dioxide removal technology
    • 7.4.3. Low-carbon construction
      • 7.4.3.1. Green concrete
      • 7.4.3.2. Green Steel
  • 7.5. Companies

8. GLOBAL MARKET AND REVENUES 2018-2035

  • 8.1. Global PCB manufacturing industry
    • 8.1.1. PCB revenues
  • 8.2. Sustainable PCBs
  • 8.3. Sustainable ICs

9. COMPANY PROFILES (55 company profiles)

10. RESEARCH METHODOLOGY

  • 10.1. Objectives of This Report

11. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제