시장보고서
상품코드
1682216

첨단 화학제품 및 공급 원료 재활용 시장(2025-2040년)

The Global Advanced (Chemical or Feedstock) Recycling Market 2025-2040

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 363 Pages, 89 Tables, 54 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

화학적 재활용 또는 공급원료 재활용이라고도 불리는 첨단 재활용은 폐기물을 분자 수준까지 분해하여 새로운 원료로 전환하는 과정입니다. 이해관계자들이 지금까지 재활용할 수 없었던 플라스틱 폐기물에 대한 해결책을 모색하는 가운데, 첨단 재활용 시장은 큰 성장세를 보이고 있습니다. 주로 폴리머를 재형성하는 기계적 재활용과 달리 고급 재활용은 재료를 분자 단위로 분해하여 더 넓은 범위의 플라스틱 및 기타 재료의 진정한 순환성을 실현합니다.

이 시장은 증가하는 규제 압력, 기업의 지속가능성에 대한 노력, 여러 변환 플랫폼에 걸친 기술 성숙에 의해 주도되고 있습니다. 주요 기술로는 열분해, 가스화, 용매 분해, 용매 분해, 해중합 등이 있으며, 각 기술은 특정 폴리머 흐름 또는 최종 제품 용도를 대상으로 합니다. 이 부문에 대한 투자 흐름은 급격히 가속화되고 있으며, 2020년 이후 75억 달러 이상의 투자가 약속되어 있습니다. 첨단 재활용과 기존 석유화학 인프라의 통합은 기존 유통망과 기술 전문성을 통해 배포상의 이점을 창출할 수 있습니다.

규제 프레임워크는 점점 더 선진적인 재활용 채택을 지지하는 방향으로 변화하고 있습니다. 유럽연합의 Circular Economy Action Plan과 Plastic Packaging Levy는 재활용 제품에 대한 직접적인 경제적 인센티브를 제공하고 있으며, 미국 EPA와 주정부 차원의 법률은 화학물질 재활용을 폐기물 처리가 아닌 정당한 재활용으로 인식하고 있습니다. 이러한 발전에도 불구하고 과제는 여전히 남아 있습니다. 자본 집약도는 연간 생산 능력 1톤당 1,500-4,000달러로 여전히 높으며, 이는 급속한 확장에 대한 경제적 장벽으로 작용하고 있습니다. 촉매 개발 및 공정 통합을 통해 공정 수율과 에너지 효율이 지속적으로 개선되어 경제성이 점차 개선되고 있습니다. 원료의 품질과 일관성은 운영상의 문제이며, 오염 물질은 촉매의 성능과 제품 품질에 영향을 미칠 수 있습니다.

시장 예측에 따르면, 선진 재활용은 2030년까지 연간 2,000만-2,500만 톤의 플라스틱 폐기물을 처리할 것으로 예상되며, 이는 전 세계 플라스틱 생산량의 약 5-7%에 해당합니다. 전체 플라스틱 생산량에서 차지하는 비중은 여전히 작지만, 현재 수준(1% 미만)에서 크게 증가하여 이전에는 매립 또는 소각 처리되던 물질에 대한 의미 있는 순환 경로를 창출할 수 있습니다. 이 부문의 진화는 깨끗하고 균일한 흐름을 위해 기계식 재활용과 직접 경쟁하는 것이 아니라 고급 재활용이 고유한 가치를 제공하는 특수 용도에 점점 더 초점을 맞추었습니다. 이 보완적인 접근 방식은 다양한 재료의 품질과 오염 수준에서 환경적, 경제적 성능을 최적화하면서 플라스틱 폐기물의 전체 범위를 다루고 있습니다.

이 보고서는 세계 첨단 화학제품 및 공급 원료 재활용 시장을 조사했으며, 빠르게 진화하는 기술, 시장 역학, 성장 기회에 대한 상세한 분석을 제공합니다.

목차

제1장 재활용 기술 분류

제2장 조사 방법

제3장 서론

  • 세계의 플라스틱 생산
  • 플라스틱의` 중요성
  • 플라스틱 사용에 관한 문제
  • 바이오 또는 재생플라스틱
  • 생분해성 퇴비화 가능한 플라스틱
  • 플라스틱 오염
  • 정책과 규제
  • 순환형 경제
  • 플라스틱 재활용
  • 수명주기 평가

제4장 첨단 재활용 시장

  • 시장 성장 촉진요인과 동향
  • 시장이 해결해야 할 과제와 억제요인
  • 업계 뉴스, 자금조달, 발전(2020년-2025년)
  • 처리 능력
  • 세계의 폴리머 수요 : 재활용 기술별(2022년-2040년)
    • PE
    • PP
    • PET
    • PS
    • 나일론
    • 기타
  • 세계의 폴리머 수요 : 기술별 재활용 지역별(2022년-2040년)
    • 유럽
    • 북미
    • 남미
    • 아시아
    • 오세아니아
    • 아프리카
  • 화학제품 재활용 플라스틱 제품
  • 시장 맵
  • 밸류체인
  • 첨단 화학제품 재활용 프로세스 수명주기 평가(LCA)
    • PE
    • PP
    • PET
  • 재활용 플라스틱 제품 비율과 비용
    • 케미컬 재활용 기술별 플라스틱 제품 비율
    • 가격

제5장 첨단 화학제품 및 공급 원료 재활용 기술

  • 용도
  • 열분해
  • 가스화
  • 용해
  • 해중합
  • 기타 첨단 화학제품 재활용 기술
  • 열경화성 재료 첨단 재활용
  • 기존 재활용 방법과의 비교
  • 환경에 대한 영향 평가
  • 신기술

제6장 재료 분석

  • 플라스틱
  • 금속
  • 비금속
  • 희토류 원소
  • 전자 폐기물
  • 텍스타일
  • 합성 섬유

제7장 최종 제품 분석

  • 화확원료
  • 연료
  • 원재료
  • 에너지 제품

제8장 기업 개요(기업 193개사 개요)

제9장 용어집

제10장 참고 문헌

LSH 25.03.31

Advanced recycling, sometimes referred to as chemical or feedstock recycling, is a process that breaks down waste to the molecular level so it can be converted to new raw materials. The advanced recycling market is experiencing major growth as stakeholders seek solutions for previously unrecyclable plastic waste. Unlike mechanical recycling, which primarily reshapes polymers, advanced recycling breaks materials down to molecular building blocks, enabling true circularity for a wider range of plastics and other materials.

The market is driven by increasing regulatory pressure, corporate sustainability commitments, and technological maturation across multiple conversion platforms. Leading technologies include pyrolysis, gasification, solvolysis, and depolymerization, each targeting specific polymer streams or end-product applications. Investment flows into the sector have accelerated dramatically, with over $7.5 billion committed since 2020. This integration of advanced recycling with conventional petrochemical infrastructure creates deployment advantages through existing distribution networks and technical expertise.

Regulatory frameworks increasingly support advanced recycling adoption. The European Union's Circular Economy Action Plan and Plastic Packaging Levy create direct economic incentives for recycled content, while the U.S. EPA and state-level legislation increasingly recognize chemical recycling as legitimate recycling rather than waste disposal. Challenges persist despite these advances. Capital intensity remains high at $1,500-4,000 per ton of annual capacity, creating economic barriers to rapid scaling. Process yield and energy efficiency improvements continue through catalyst development and process integration, gradually improving economics. Feedstock quality and consistency represent operational challenges, with contaminants potentially affecting catalyst performance and product quality.

Market forecasts suggest advanced recycling will process 20-25 million tons of plastic waste annually by 2030, representing approximately 5-7% of global plastic production. While still a modest fraction of total plastics volume, this represents significant growth from current levels (<1%) and creates meaningful circular pathways for materials previously destined for landfills or incineration. The sector's evolution increasingly focuses on specialized applications where advanced recycling provides unique value rather than competing directly with mechanical recycling for clean, homogeneous streams. This complementary approach addresses the full spectrum of plastic waste while optimizing environmental and economic performance across different material qualities and contamination levels.

"The Advanced (Chemical or Feedstock) Recycling Market 2025-2040" report provides an in-depth analysis of the rapidly evolving technologies, market dynamics, and growth opportunities in the advanced (chemical or feedstock) recycling sector. As global plastic production reaches unprecedented levels and environmental concerns intensify, advanced recycling emerges as a critical solution for transforming plastic waste into valuable chemical feedstocks and materials. This report delivers essential insights for stakeholders across the value chain, from technology developers and investors to consumer product companies and policymakers.

Report contents include:

  • Market Drivers & Trends Analysis: Detailed examination of environmental concerns, regulatory policies, corporate sustainability initiatives, technological advancements, and circular economy adoption driving market growth
  • Comprehensive Technology Assessment: In-depth coverage of pyrolysis, gasification, dissolution, and depolymerization technologies, including SWOT analyses and commercial readiness
  • Material-Specific Insights: Detailed analysis of recycling processes for polyethylene (PE), polypropylene (PP), PET, polystyrene (PS), and other polymers
  • Competitive Landscape: Profiles of 193 companies operating across the advanced recycling value chain, including capacities and technological approaches
  • Regional Market Analysis: Forecasts for Europe, North America, South America, Asia, Oceania, and Africa from 2022-2040
  • End Product Evaluation: Analysis of chemical feedstocks, fuels, raw materials, and energy products derived from advanced recycling
  • Environmental Impact Assessment: Carbon footprint analysis, energy consumption assessment, and sustainability metrics
  • Emerging Technologies: Analysis of AI applications, robotics in sorting, and novel catalyst development
  • Investment & Capacity Trends: Complete overview of industry news, funding, and capacity developments from 2020-2025
  • Value Chain Analysis: Comprehensive mapping of the advanced recycling ecosystem and market positioning

The report features extensive data on polymer demand segmented by recycling technology, life cycle assessments comparing different recycling methods, and detailed price and yield analyses.

The report provides comprehensive profiles of 193 key players in the advanced recycling market, including Accurec Recycling, Aduro Clean Technologies, Advanced Plastic Purification International, Aeternal Upcycling, Agilyx, Alpha Recyclage Composites, Alterra Energy, Ambercycle, Anellotech, Anhui Oursun Resource Technology, APChemi, Aquafil, ARCUS Greencycling, Arkema, Axens, BASF, Bcircular, BioBTX, Biofabrik Technologies, Blest, Blue Cycle, BlueAlp Technology, Borealis, Boston Materials, Braven Environmental, Breaking, Brightmark, Cadel Deinking, Carbios, Carboliq, Carbon Fiber Recycling, Cassandra Oil, CIRC, Chian Tianying, Chevron Phillips Chemical, Clariter, Clean Energy Enterprises, Clean Planet Energy, Corsair Group International, Covestro, CreaCycle, CuRe Technology, Cyclic Materials, Cyclize, DeepTech Recycling, DePoly, DOPS Recycling Technology, Dow Chemical, DyeRecycle, Descycle, Eastman Chemical, Eco Fuel Technology, Ecopek, Ecoplasteam, ECO RnS, Eeden, Emery Oleochemicals, Encina Development Group, Enerkem, Enespa, Enval, Environmental Solutions, Epoch Biodesign, Equipolymers, Evonik Industries, Evrnu, Extracthive, ExxonMobil, Fairmat, Fulcrum BioEnergy, Futerro, Freepoint Eco-Systems, Fych Technologies, Garbo, GreenMantra Technologies, Greyparrot, Gr3n, Handerek Technologies, Hanwha Solutions, Honeywell, Hyundai Chemical, Indaver, InEnTec, INEOS Styrolution, Infinited Fiber Company, Ioncell, Ioniqa Technologies, Itero Technologies, Jeplan, JFE Chemical, Kaneka, Khepra, Klean Industries, Lanzatech, Licella, Loop Industries, LOTTE Chemical, Lummus Technology, LyondellBasell Industries, MacroCycle Technologies, Metaspectral, METYCLE, Mint Innovation, Microwave Chemical, Mitsubishi Chemical, MolyWorks Materials, Mote, Mura Technology, Nanya Plastics, NatureWorks, Neste, New Hope Energy, Nexus Circular, Next Generation Group, Novoloop, Olefy Technologies, OMV, Orlen Unipetrol, PETRONAS Chemicals Group, PlastEco, Plastic Back, Plastic Energy, Plastic2Oil, Plasta Rei, Plastogaz, Poliloop, Polycycl, Polynate, PolyStyreneLoop, Polystyvert, Poseidon Plastics and more....

TABLE OF CONTENTS

1. CLASSIFICATION OF RECYCLING TECHNOLOGIES

2. RESEARCH METHODOLOGY

3. INTRODUCTION

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Bio-based or renewable plastics
    • 3.4.1. Drop-in bio-based plastics
    • 3.4.2. Novel bio-based plastics
  • 3.5. Biodegradable and compostable plastics
    • 3.5.1. Biodegradability
    • 3.5.2. Compostability
  • 3.6. Plastic pollution
  • 3.7. Policy and regulations
  • 3.8. The circular economy
  • 3.9. Plastic recycling
    • 3.9.1. Mechanical recycling
      • 3.9.1.1. Closed-loop mechanical recycling
      • 3.9.1.2. Open-loop mechanical recycling
      • 3.9.1.3. Polymer types, use, and recovery
    • 3.9.2. Advanced recycling (molecular recycling, chemical recycling)
      • 3.9.2.1. Main streams of plastic waste
      • 3.9.2.2. Comparison of mechanical and advanced chemical recycling
  • 3.10. Life cycle assessment

4. THE ADVANCED RECYCLING MARKET

  • 4.1. Market drivers and trends
    • 4.1.1. Growing Environmental Concerns
    • 4.1.2. Stringent Regulatory Policies
    • 4.1.3. Corporate Sustainability Initiatives
    • 4.1.4. Technological Advancements
    • 4.1.5. Circular Economy Adoption
  • 4.2. Market Challenges and Restraints
    • 4.2.1. High Initial Investment Costs
    • 4.2.2. Technical Challenges
    • 4.2.3. Infrastructure Limitations
    • 4.2.4. Technological Barriers
    • 4.2.5. Supply Chain Complexities
    • 4.2.6. Cost Competitiveness
  • 4.3. Industry news, funding and developments 2020-2025
  • 4.4. Capacities
  • 4.5. Global polymer demand 2022-2040, segmented by recycling technology
    • 4.5.1. PE
    • 4.5.2. PP
    • 4.5.3. PET
    • 4.5.4. PS
    • 4.5.5. Nylon
    • 4.5.6. Others
  • 4.6. Global polymer demand 2022-2040, segmented by recycling technology, by region
    • 4.6.1. Europe
    • 4.6.2. North America
    • 4.6.3. South America
    • 4.6.4. Asia
    • 4.6.5. Oceania
    • 4.6.6. Africa
  • 4.7. Chemically recycled plastic products
  • 4.8. Market map
  • 4.9. Value chain
  • 4.10. Life Cycle Assessments (LCA) of advanced chemical recycling processes
    • 4.10.1. PE
    • 4.10.2. PP
    • 4.10.3. PET
  • 4.11. Recycled plastic yield and cost
    • 4.11.1. Plastic yield of each chemical recycling technologies
    • 4.11.2. Prices

5. ADVANCED (CHEMICAL OR FEEDSTOCK) RECYCLING TECHNOLOGIES

  • 5.1. Applications
  • 5.2. Pyrolysis
    • 5.2.1. Non-catalytic
    • 5.2.2. Catalytic
      • 5.2.2.1. Polystyrene pyrolysis
      • 5.2.2.2. Pyrolysis for production of bio fuel
      • 5.2.2.3. Used tires pyrolysis
        • 5.2.2.3.1. Conversion to biofuel
      • 5.2.2.4. Co-pyrolysis of biomass and plastic wastes
    • 5.2.3. SWOT analysis
    • 5.2.4. Companies and capacities
  • 5.3. Gasification
    • 5.3.1. Technology overview
      • 5.3.1.1. Syngas conversion to methanol
      • 5.3.1.2. Biomass gasification and syngas fermentation
      • 5.3.1.3. Biomass gasification and syngas thermochemical conversion
    • 5.3.2. SWOT analysis
    • 5.3.3. Companies and capacities (current and planned)
  • 5.4. Dissolution
    • 5.4.1. Technology overview
    • 5.4.2. SWOT analysis
    • 5.4.3. Companies and capacities (current and planned)
  • 5.5. Depolymerisation
    • 5.5.1. Hydrolysis
      • 5.5.1.1. Technology overview
      • 5.5.1.2. SWOT analysis
    • 5.5.2. Enzymolysis
      • 5.5.2.1. Technology overview
      • 5.5.2.2. SWOT analysis
    • 5.5.3. Methanolysis
      • 5.5.3.1. Technology overview
      • 5.5.3.2. SWOT analysis
    • 5.5.4. Glycolysis
      • 5.5.4.1. Technology overview
      • 5.5.4.2. SWOT analysis
    • 5.5.5. Aminolysis
      • 5.5.5.1. Technology overview
      • 5.5.5.2. SWOT analysis
    • 5.5.6. Companies and capacities (current and planned)
  • 5.6. Other advanced chemical recycling technologies
    • 5.6.1. Hydrothermal cracking
    • 5.6.2. Pyrolysis with in-line reforming
    • 5.6.3. Microwave-assisted pyrolysis
    • 5.6.4. Plasma pyrolysis
    • 5.6.5. Plasma gasification
    • 5.6.6. Supercritical fluids
    • 5.6.7. Carbon fiber recycling
      • 5.6.7.1. Processes
      • 5.6.7.2. Companies
  • 5.7. Advanced recycling of thermoset materials
    • 5.7.1. Thermal recycling
      • 5.7.1.1. Energy Recovery Combustion
      • 5.7.1.2. Anaerobic Digestion
      • 5.7.1.3. Pyrolysis Processing
      • 5.7.1.4. Microwave Pyrolysis
    • 5.7.2. Solvolysis
    • 5.7.3. Catalyzed Glycolysis
    • 5.7.4. Alcoholysis and Hydrolysis
    • 5.7.5. Ionic liquids
    • 5.7.6. Supercritical fluids
    • 5.7.7. Plasma
    • 5.7.8. Companies
  • 5.8. Comparison with Traditional Recycling Methods
    • 5.8.1. Mechanical Recycling Limitations
    • 5.8.2. Energy Efficiency Comparison
    • 5.8.3. Quality of Output Comparison
    • 5.8.4. Cost Analysis
  • 5.9. Environmental Impact Assessment
    • 5.9.1. Carbon Footprint Analysis
    • 5.9.2. Energy Consumption Assessment
    • 5.9.3. Waste Reduction Potential
      • 5.9.3.1. Wastewater
      • 5.9.3.2. Atmospheric Emissions
      • 5.9.3.3. Catalyst and Media Waste
      • 5.9.3.4. Maintenance and Cleaning Waste
      • 5.9.3.5. Waste Management Approaches
      • 5.9.3.6. Regulatory Considerations and Classification
      • 5.9.3.7. Comparative Waste Production
      • 5.9.3.8. Environmental Impact and Future Directions
    • 5.9.4. Sustainability Metrics
  • 5.10. Emerging Technologies
    • 5.10.1. AI and Machine Learning Applications
      • 5.10.1.1. Sorting Optimization
      • 5.10.1.2. Process Control
      • 5.10.1.3. Quality Prediction
      • 5.10.1.4. Maintenance Prediction
    • 5.10.2. Robotics in Sorting
      • 5.10.2.1. Vision Systems
      • 5.10.2.2. Picking Mechanisms
      • 5.10.2.3. Control Systems
      • 5.10.2.4. Integration Methods
    • 5.10.3. Novel Catalyst Development
      • 5.10.3.1. Nano-catalysts
      • 5.10.3.2. Bio-catalysts
      • 5.10.3.3. Hybrid Catalysts

6. MATERIALS ANALYSIS

  • 6.1. Plastics
    • 6.1.1. Polyethylene (PE)
      • 6.1.1.1. HDPE Analysis
      • 6.1.1.2. LLDPE Analysis
      • 6.1.1.3. Recovery Methods
    • 6.1.2. Polypropylene (PP)
      • 6.1.2.1. Homopolymer
      • 6.1.2.2. Copolymer
      • 6.1.2.3. Processing Methods
      • 6.1.2.4. Quality Grades
    • 6.1.3. Polyethylene Terephthalate (PET)
      • 6.1.3.1. Bottle Grade
      • 6.1.3.2. Fiber Grade
      • 6.1.3.3. Film Grade
      • 6.1.3.4. Recovery Technologies
    • 6.1.4. Polystyrene (PS)
      • 6.1.4.1. General Purpose PS
      • 6.1.4.2. High Impact PS
      • 6.1.4.3. Expanded PS
      • 6.1.4.4. Processing Methods
    • 6.1.5. Other Plastics
      • 6.1.5.1. PVC
      • 6.1.5.2. PC
      • 6.1.5.3. ABS
      • 6.1.5.4. Mixed Plastics
  • 6.2. Metals
    • 6.2.1. Precious Metals
      • 6.2.1.1. Gold
      • 6.2.1.2. Silver
      • 6.2.1.3. Platinum Group Metals
      • 6.2.1.4. Recovery Methods
  • 6.3. Base Metals
    • 6.3.1. Copper
    • 6.3.2. Aluminium
    • 6.3.3. Steel
    • 6.3.4. Processing Technologies
  • 6.4. Rare Earth Elements
    • 6.4.1. Light REEs
    • 6.4.2. Heavy REEs
    • 6.4.3. Extraction Methods
  • 6.5. Electronic Waste
    • 6.5.1. Circuit Boards
      • 6.5.1.1. PCB Types
      • 6.5.1.2. Component Separation
      • 6.5.1.3. Metal Recovery
      • 6.5.1.4. Waste Management
    • 6.5.2. Batteries
      • 6.5.2.1. Lithium-ion
      • 6.5.2.2. Lead-acid
      • 6.5.2.3. Nickel-based
      • 6.5.2.4. Recovery Processes
    • 6.5.3. Displays
      • 6.5.3.1. LCD
      • 6.5.3.2. LED
      • 6.5.3.3. OLED
      • 6.5.3.4. Material Recovery
    • 6.5.4. Other Components
      • 6.5.4.1. Capacitors
      • 6.5.4.2. Resistors
      • 6.5.4.3. Semiconductors
      • 6.5.4.4. Connectors
  • 6.6. Textiles
    • 6.6.1. Natural Fibers
    • 6.6.2. Cotton
    • 6.6.3. Wool
    • 6.6.4. Silk
    • 6.6.5. Processing Methods
  • 6.7. Synthetic Fibers
    • 6.7.1. Polyester
    • 6.7.2. Nylon
    • 6.7.3. Acrylic
    • 6.7.4. Recovery Technologies

7. END PRODUCT ANALYSIS

  • 7.1. Chemical Feedstocks
    • 7.1.1. Monomers
    • 7.1.2. Oligomers
    • 7.1.3. Specialty Chemicals
  • 7.2. Fuels
    • 7.2.1. Diesel
    • 7.2.2. Gasoline
    • 7.2.3. Synthetic Gas
  • 7.3. Raw Materials
    • 7.3.1. Recycled Plastics
    • 7.3.2. Recovered Metals
    • 7.3.3. Other Materials
  • 7.4. Energy Products
    • 7.4.1. Electricity
    • 7.4.2. Heat
    • 7.4.3. Biofuels

8. COMPANY PROFILES (193 company profiles)

9. GLOSSARY OF TERMS

10. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제