시장보고서
상품코드
1857508

바이오 폼 시장 : 제품, 원재료, 소재 구성, 최종사용자용도, 유통 채널별 - 세계 예측(2025-2032년)

Bio-based Foam Market by Product, Raw Material, Material Composition, End-User Application, Distribution Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 189 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

바이오 폼 시장은 2032년까지 연평균 복합 성장률(CAGR) 8.64%로 25억 5,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 13억 1,000만 달러
추정 연도 : 2025년 14억 2,000만 달러
예측 연도 : 2032년 25억 5,000만 달러
CAGR(%) 8.64%

재료의 대체, 가치사슬의 변화, 상업적 채택의 전략적 우선순위, 바이오 폼 분야의 미래 지향적인 방향성

바이오 폼의 상황은 의도적인 재료 대체와 여러 밸류체인에서 상업적 관심 증가로 인해 매우 중요한 국면을 맞이하고 있습니다. 업계 관계자들은 바이오 유래 원료를 평가하고, 폴리머의 화학적 특성을 재검토하고, 주요 용도에 필수적인 성능을 유지하면서 지속가능성 요건을 충족하기 위해 공급망 구조를 재구성하고 있습니다. 이 소개에서는 제조업체, OEM, 재료 공급업체 모두에게 가까운 미래에 전략적 선택을 형성하고 있는 기술적, 상업적, 규제적 벡터에 대해 설명합니다.

다음 섹션에서는 새로운 원자재, 새로운 가공 접근 방식, 그리고 조달 우선순위의 변화가 어떻게 새로운 파트너십 모델과 경쟁 역학을 만들어내는지 살펴봅니다. 또한, 배합 최적화, 사용 후 제품 프로파일링, 스케일업 엔지니어링과 같은 역량에 대한 투자를 통해 선발업체와 현실적인 후발업체가 불균형적인 우위를 점할 수 있다는 점을 강조합니다.

원료 혁신, 규제 압력, 이종 산업 간 협업이 바이오 폼의 주류 수용과 성능 평준화를 가속화하는 방법

기술적 실현 가능성이 성숙하고 규제와 기업의 지속가능성에 대한 약속이 진화하면서 바이오 폼 분야는 큰 변화의 시기를 맞이하고 있습니다. 공급 측면에서는 원료의 다양화와 연구개발 강화로 신규 화학물질에 대한 진입장벽이 낮아져 더 많은 제조업체들이 바이오 대체물질의 시험 및 인증을 받을 수 있게 되었습니다. 동시에, 조달 요건의 강화와 소비자의 기대치가 높아짐에 따라 효과적인 라이프사이클 증명 및 추적 시스템의 중요성이 높아지고 있으며, 그 결과 투명한 원료 조달 및 인증 경로에 투자하는 공급업체가 유리하게 되었습니다.

채용 패턴도 변화하고 있습니다. 과거에는 틈새 시장에 국한되었던 바이오 폼은 하이브리드 배합과 가공 관리의 개선으로 성능의 동등성을 점점 더 많이 달성할 수 있게 되면서 주류 응용 분야로 이동하고 있습니다. 재정적 규율이 그 어느 때보다 중요해졌습니다. 기업은 재료비 증가와 규제 당국에 대한 노출 감소, 브랜드 자산 향상, 사용 후 가치 재사용 가능성 등 다운스트림 공정의 이익과 균형을 맞추어야 합니다. 따라서 재료 개발자, 컨버터, OEM, 재활용 업체 간의 생태계 전반의 협력은 의미 있는 스케일업을 가속화하는 데 중요한 요소입니다.

바이오 폼 생태계 전반의 조달 전략, 공급업체 통합, 탄력적인 공급망 설계에 대한 미국의 최근 관세 조정이 미치는 영향

미국이 최근 도입한 관세 제도는 상업적 복잡성을 증가시켜 조달 전략과 공급업체와의 협상을 재구성하고 있습니다. 수입 관세 및 관련 규정 준수 요건으로 인해 조달팀은 공급업체의 발자국을 재평가하고, 가능하면 국내 또는 니어쇼어링 옵션을 우선시하며, 가격 변동과 운송의 불확실성을 줄이기 위해 계약상 보호 장치를 협상해야 합니다. 일부 다운스트림 제조업체는 우대 조건을 확보하기 위해 공급업체를 통합하기도 하고, 최종 시장에 가까운 대체 원료 공급처의 인증을 앞당기기도 했습니다.

또한, 관세 환경은 공급망의 탄력성과 운영 유연성의 가치를 강조하고 있습니다. 다양한 제조 거점이나 모듈화된 가공 기술을 가진 기업은 생산 경로를 변경하고 혼란을 최소화할 수 있습니다. 또한, 마진을 유지하고 고객과의 약속을 유지하기 위해 조달, 규제 및 상업적 인풋을 통합하는 부서 간 팀을 통해 강력한 비용 대비 서비스 비용 분석 및 시나리오 계획의 필요성이 급증하고 있습니다. 앞으로의 전략적 결정은 투명한 컴플라이언스 준수와 효율적인 물류 실행 및 적응형 소싱을 결합할 수 있는 능력에 달려있습니다.

제품 유형, 원료 선택, 재료 구성, 최종 용도 요건, 유통 전략을 경쟁 우위로 연결시키는 경쟁 세분화 고찰

통찰력 있는 세분화를 통해 기술적 차별화와 상업적 기회가 공존하는 곳을 찾아낼 수 있습니다. 제품별로, 시장 진출기업은 연구개발 로드맵과 설비 투자를 계획할 때 연질 폼과 경질 폼의 서로 다른 가공 요구와 성능 프로파일을 비교 검토해야 합니다. 원료에 따라 조류 기반, 피마자유 기반, 옥수수 기반, 대두 기반, 사탕수수 기반 원료의 선택은 공급 안정성, 계절적 변동성, 하류 가공 요구 사항에 영향을 미칩니다. 원료 구성에 따라 셀룰로오스와 전분을 주축으로 한 아키텍처가 이분화되어 압축탄성, 열 안정성, 생분해 경로 등의 기능적 특성이 형성되기 때문에 각각에 맞는 첨가제 전략이 필요합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 바이오 폼 시장 : 제품별

  • 연질 폼
  • 경질 폼

제9장 바이오 폼 시장 : 원재료별

  • 조류(Algae) 기반
  • 피마자유 기반
  • 옥수수 기반
  • 대두 기반
  • 사탕수수 기반

제10장 바이오 폼 시장 : 재료 조성별

  • 셀룰로오스
  • 전분

제11장 바이오 폼 시장 : 최종사용자 용도별

  • 자동차 및 항공우주
  • 건축 및 건설
  • 소비재
  • 전기 및 전자
  • 식품 및 음료
  • 가구 및 침구

제12장 바이오 폼 시장 : 유통 채널별

  • 오프라인
  • 온라인

제13장 바이오 폼 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 바이오 폼 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 바이오 폼 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Altor Solutions
    • BASF SE
    • Bewi Group
    • BIO EX
    • Brighi Group
    • Cargill, Incorporated
    • CertiPUR-US
    • Eco-Global Manufacturing
    • Emery Oleochemicals
    • EVA GLORY Industrial Co., Ltd
    • Foamite Industries Inc.
    • Green Cell Foam
    • Huntsman Corporation
    • INOAC Corporation
    • Kodiak Industries
    • Nam Liong Global Corporation
    • Nomaco Inc.
    • OrthoLite by O2 Partners, LLC
    • Sealed Air Corporation
    • Shree Malani Foams
    • Sinomax USA
    • Stora Enso
    • The Vita Group
    • The Woodbridge Group
    • TROCELLEN GmbH
LSH 25.11.11

The Bio-based Foam Market is projected to grow by USD 2.55 billion at a CAGR of 8.64% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.31 billion
Estimated Year [2025] USD 1.42 billion
Forecast Year [2032] USD 2.55 billion
CAGR (%) 8.64%

A forward-looking orientation to the bio-based foam sector that frames material substitution, value chain shifts, and strategic priorities for commercial adoption

The bio-based foam landscape is entering a pivotal phase marked by purposeful material substitution and intensified commercial interest across multiple value chains. Industry participants are evaluating bio-derived feedstocks, revisiting polymer chemistries, and realigning supply chain architectures to meet sustainability mandates while preserving performance attributes essential for core applications. This introduction frames the technical, commercial, and regulatory vectors that are shaping near-term strategic choices for manufacturers, OEMs, and material suppliers alike.

In the following sections, we examine how emerging raw materials, novel processing approaches, and shifting procurement priorities converge to create new partnership models and competitive dynamics. The narrative prioritizes practical implications for product design, sourcing, and go-to-market strategy, and it highlights where investment in capabilities-such as blend optimization, end-of-life profiling, and scale-up engineering-will yield disproportionate advantage for first movers and pragmatic fast followers.

How feedstock innovation, regulatory pressure, and cross-industry collaboration are accelerating mainstream acceptance and performance parity for bio-based foams

Significant transformative shifts are redefining the bio-based foam domain as technical feasibility matures alongside evolving regulatory and corporate sustainability commitments. On the supply side, feedstock diversification and intensified R&D have reduced barriers to entry for novel chemistries, enabling a wider set of manufacturers to test and qualify bio-based alternatives. Concurrently, tightening procurement requirements and consumer expectations have elevated the importance of validated life-cycle credentials and traceability systems, which in turn favor suppliers investing in transparent raw material sourcing and certification pathways.

Adoption patterns are also changing. Once confined to niche applications, bio-based foams are moving into mainstream use because performance parity is increasingly attainable through hybrid formulations and improved processing controls. Financial discipline matters more now than ever: companies must balance incremental material cost against downstream benefits such as reduced regulatory exposure, improved brand equity, and potential reclaiming of end-of-life value. Accordingly, collaboration across the ecosystem-between material developers, converters, OEMs, and recyclers-has become a critical accelerator of meaningful scale-up.

Implications of recent U.S. tariff adjustments on sourcing strategies, supplier consolidation, and resilient supply chain design across the bio-based foam ecosystem

The recent tariff landscape introduced by the United States has injected an added layer of commercial complexity, reshaping sourcing strategies and supplier negotiations. Import duties and associated compliance requirements have prompted procurement teams to reassess supplier footprints, prioritize domestic or nearshoring options where feasible, and negotiate contractual protections to mitigate price volatility and transit uncertainty. In practice, this has led to a mosaic of strategic responses: some downstream manufacturers have consolidated suppliers to secure preferential terms, while others have accelerated qualification of alternative feedstock sources closer to end markets.

Moreover, the tariff environment has emphasized the value of supply chain resilience and operational flexibility. Companies with diversified manufacturing nodes or modular processing technologies can re-route production and minimize disruption. In addition, the need for robust cost-to-serve analytics and scenario planning has become acute, with cross-functional teams integrating procurement, regulatory, and commercial inputs to preserve margin and maintain customer commitments. Going forward, strategic decisions will hinge on the ability to combine adaptive sourcing with transparent compliance and efficient logistics execution.

Targeted segmentation insights that align product types, feedstock choices, material compositions, end-use requirements, and distribution strategies to competitive advantage

Insightful segmentation reveals where technical differentiation and commercial opportunity coexist. Based on Product, market participants must weigh the distinct processing needs and performance profiles of Flexible Foam and Rigid Foam when structuring R&D roadmaps and capital investments. Based on Raw Material, the choice among Algae-Based, Castor-Based, Corn-Based, Soy-Based, and Sugarcane-Based feedstocks carries implications for supply security, seasonal variability, and downstream processing requirements; feedstock chemistry influences both formulation windows and sustainability narratives. Based on Material Composition, the dichotomy between Cellulose and Starch-driven architectures shapes functional properties such as compressive resilience, thermal stability, and biodegradation pathways, necessitating tailored additive strategies.

Based on End-User Application, differentiation is driven by sector-specific performance and regulatory thresholds: Automotive & Aerospace demand high durability and flame performance, Building & Construction require fire ratings and long-term dimensional stability, Consumer Goods prioritize tactile quality and cost efficiency, Electrical & Electronics emphasize insulation and flame retardancy, Food & Beverage applications call for food-contact compliance and hygiene, and Furniture & Bedding focus on comfort, durability, and emissions. Based on Distribution Channel, the go-to-market calculus differs between Offline and Online approaches; offline channels favor specification-led sales and technical support, while online channels prioritize rapid information delivery, configurators, and logistics integration. Collectively, segmentation underscores that material choices and commercialization models must be tightly aligned with end-use requirements and channel dynamics.

How regional regulatory priorities, feedstock availability, and industrial capabilities are shaping distinct adoption pathways for bio-based foams across global markets

Regional dynamics frame where investment, regulation, and demand are converging to enable adoption. In the Americas, policy momentum toward low-carbon solutions and strong downstream manufacturing clusters supports early uptake of bio-based foams in automotive, furniture, and construction sectors, while regional feedstock availability and logistic networks shape supplier strategies. In Europe, Middle East & Africa, regulatory rigor on sustainability credentials and extended producer responsibility is reshaping procurement specifications, creating high demand for verifiable life-cycle data and circularity solutions; meanwhile, local manufacturing ecosystems are incentivizing substitution to meet aggressive environmental targets. In the Asia-Pacific region, rapid industrialization and large-scale manufacturing capacities combine with strong agricultural feedstock streams to create both opportunity and competitive pressure for cost-effective bio-based alternatives.

Across regions, macro factors such as trade policy, infrastructure maturity, and access to certification bodies influence time-to-market and commercialization pathways. Companies should therefore adopt region-specific playbooks that account for regulatory granularity, feedstock logistics, and customer expectations. These playbooks must balance global platform strategies with local adaptations to capture regional growth trajectories and mitigate cross-border supply chain friction.

Company-level imperatives emphasize technology protection, strategic partnerships, manufacturing agility, and credible circularity commitments to win procurement decisions

Company-level dynamics are increasingly driven by a combination of technology leadership, strategic partnerships, and operational scaling. Leading innovators are leveraging intellectual property in polymerization routes and foam processing to protect performance advantages while pursuing partnerships with agricultural suppliers and chemical intermediaries to secure feedstock streams. At the same time, convergence around common testing standards and certification frameworks is enabling a clearer differentiation between validated offerings and speculative claims, elevating the importance of third-party verification and reproducible test data.

Operational scale and manufacturing agility remain decisive factors: firms that invest in modular production assets and flexible formulation lines can respond more quickly to OEM qualification cycles and bespoke customer requirements. Strategic M&A and licensing arrangements are being used selectively to accelerate access to complementary capabilities such as recycling technology, flame-retardant chemistries, or specialty additives. Finally, companies that articulate credible pathways to circularity-through design for recyclability, take-back programs, or feedstock traceability-are finding a receptive audience among procurement teams that prioritize total cost of ownership and reputational risk mitigation.

Practical implementation priorities for converting sustainability commitments into resilient supply chains, agile production, and commercially viable bio-based foam solutions

For industry leaders seeking to convert insight into measurable advantage, an actionable agenda focuses on five core priorities. First, accelerate qualification of feedstock-flexible formulations to reduce single-source exposure and enable cost-effective substitution when supply dynamics shift. Second, invest in rigorous life-cycle assessment and traceability systems to support procurement requirements and to underpin sustainability claims with auditable data. Third, prioritize modular and convertible manufacturing assets that permit rapid product changeovers and scale without large capital outlays. Fourth, cultivate cross-sector partnerships that span agricultural suppliers, chemical intermediates, and end-user OEMs to align feedstock availability with specification windows and timing. Fifth, develop commercial models that reflect total cost of ownership including end-of-life value recovery and circularity premiums.

In implementing these priorities, organizations should pair near-term tactical moves-such as supplier diversification and compliance readiness-with medium-term capability building in R&D, analytics, and customer engineering. Equally important is to establish internal governance that aligns sustainability targets with commercial incentives, ensuring that technical development roadmaps and procurement frameworks reinforce each other. Taken together, these steps reduce exposure to supply shocks, strengthen value propositions for customers, and position firms to capture growing preference for verified, high-performance bio-based solutions.

A transparent mixed-methods research approach combining primary interviews, technical validation, regulatory analysis, and scenario-based stress testing to ensure robustness

The analysis underpinning this executive summary draws on a mixed-methods research approach that triangulates primary insights with structured secondary analysis and technical validation. Primary engagements included in-depth interviews with material scientists, procurement leaders, converters, and OEM specification engineers to capture operational constraints, qualification timelines, and evolving buyer expectations. Secondary analysis incorporated regulatory texts, patent filings, technical white papers, and industry conference proceedings to validate technology trajectories and to map standards development. Experimental validation and technical dossiers were reviewed where available to confirm claims related to mechanical performance, thermal properties, and biodegradation behavior.

Methodologically, the research prioritized reproducibility and transparency. Data sources were documented, and cross-checks were performed via supply chain mapping and scenario analysis to stress-test assumptions around feedstock availability, logistics, and tariff impacts. Where gaps existed, sensitivity analyses were used to indicate ranges of plausible outcomes tied to specific operational levers. This combination of primary engagement, documentary analysis, and technical validation yields conclusions that are grounded in observed practice and in documented technical progress rather than in extrapolative projection alone.

Concluding synthesis on strategic imperatives and the incremental path to scaled adoption of bio-based foams across technical and commercial ecosystems

In summary, the bio-based foam sector stands at the intersection of material innovation and commercial pragmatism. Technological advancements and growing regulatory expectations are converging to make bio-derived foams a viable alternative for an expanding set of applications, but realization of this potential depends on deliberate investment in feedstock resilience, validated sustainability claims, and manufacturing flexibility. Organizations that align product development, procurement, and commercial models around these imperatives will be better positioned to meet increasingly sophisticated buyer requirements and to capture preference-driven value.

Looking ahead, the path to scale will be iterative: initial wins will come from targeted applications where performance and regulatory alignment are already favorable, followed by incremental broadening as processing knowledge and supply ecosystems mature. Strategic collaboration, rigorous testing, and disciplined supply chain design will determine which players achieve enduring competitive advantage rather than transient differentiation.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Increased use of algae-based biofoam in automotive interior components to reduce vehicle weight
  • 5.2. Integration of mycelium-based foams in packaging solutions to enhance biodegradability and stiffness
  • 5.3. Development of soy protein-based foams with enhanced flame retardancy for construction insulation applications
  • 5.4. Scaling up microbial fermentation processes for cost-effective large-scale production of bio-based foam precursors
  • 5.5. Collaboration between chemical companies and agritech firms to secure sustainable feedstock supply chains for biofoam
  • 5.6. Advancements in chemical crosslinking techniques to improve durability and water resistance in plant-derived foams
  • 5.7. Government incentives and stricter regulations driving shift from petrochemical PU foams to renewable bio-based alternatives
  • 5.8. Consumer demand for zero-waste furniture leading to innovative biofoam upholstery with full cradle-to-cradle lifecycle

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Bio-based Foam Market, by Product

  • 8.1. Flexible Foam
  • 8.2. Rigid Foam

9. Bio-based Foam Market, by Raw Material

  • 9.1. Algae-Based
  • 9.2. Castor-Based
  • 9.3. Corn-Based
  • 9.4. Soy-Based
  • 9.5. Sugarcane-Based

10. Bio-based Foam Market, by Material Composition

  • 10.1. Cellulose
  • 10.2. Starch

11. Bio-based Foam Market, by End-User Application

  • 11.1. Automotive & Aerospace
  • 11.2. Building & Construction
  • 11.3. Consumer Goods
  • 11.4. Electrical & Electronics
  • 11.5. Food & Beverage
  • 11.6. Furniture & Bedding

12. Bio-based Foam Market, by Distribution Channel

  • 12.1. Offline
  • 12.2. Online

13. Bio-based Foam Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Bio-based Foam Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Bio-based Foam Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Altor Solutions
    • 16.3.2. BASF SE
    • 16.3.3. Bewi Group
    • 16.3.4. BIO EX
    • 16.3.5. Brighi Group
    • 16.3.6. Cargill, Incorporated
    • 16.3.7. CertiPUR-US
    • 16.3.8. Eco-Global Manufacturing
    • 16.3.9. Emery Oleochemicals
    • 16.3.10. EVA GLORY Industrial Co., Ltd
    • 16.3.11. Foamite Industries Inc.
    • 16.3.12. Green Cell Foam
    • 16.3.13. Huntsman Corporation
    • 16.3.14. INOAC Corporation
    • 16.3.15. Kodiak Industries
    • 16.3.16. Nam Liong Global Corporation
    • 16.3.17. Nomaco Inc.
    • 16.3.18. OrthoLite by O2 Partners, LLC
    • 16.3.19. Sealed Air Corporation
    • 16.3.20. Shree Malani Foams
    • 16.3.21. Sinomax USA
    • 16.3.22. Stora Enso
    • 16.3.23. The Vita Group
    • 16.3.24. The Woodbridge Group
    • 16.3.25. TROCELLEN GmbH
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제