시장보고서
상품코드
1858289

세계의 에어로겔 시장(2026-2036년)

The Global Aerogels Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 325 Pages, 61 Tables, 42 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 에어로겔 산업은 틈새 특수 소재 부문에서 전기자동차 배터리, 건축용 단열재, 항공우주 시스템, 바이오 의료기기 등 다양한 용도의 주류 기술 플랫폼으로 전환하면서 전례 없는 변화를 보이고 있습니다. 이러한 역동적인 시장의 진화는 에어로겔의 고유한 특성(뛰어난 단열성, 높은 표면적, 뛰어난 다공성을 가진 초경량 소재)과 에너지 효율, 열 관리 및 지속 가능한 제조의 주요 과제를 해결할 수 있는 가능성에 대한 인식이 높아진 것을 반영합니다.

에어로겔을 둘러싼 환경은 기존 제조업체와 혁신적인 신규 진입업체에 의해 급속한 재편이 진행되고 있습니다. Aspen Aerogels 및 Cabot Corporation과 같은 전통적인 제조업체들은 핵심 실리카 에어로겔 기술을 발전시키면서 전기자동차의 열 장벽 및 첨단 건축용 단열 시스템과 같은 고성장 분야로 계속 진출하고 있습니다. 동시에 대학의 스핀오프 기업부터 포트폴리오를 다각화하는 기존 소재 기업까지 신규 진출기업들이 잇따라 참신한 제품을 출시하며 새로운 시장 기회를 놓고 경쟁을 벌이고 있습니다. 이러한 경쟁이 치열한 환경은 다방면에 걸친 혁신을 가속화하고 있습니다. 실리카 에어로겔이 상업용 제품 카테고리에서 지배적인 지위를 유지하는 반면, 폴리머/바이오폴리머 에어로겔은 큰 추진력을 얻고 있습니다. 각 회사는 에너지 저장 전극용 탄소 에어로젤, 5G 통신 인프라를 위한 고분자 에어로겔, 지속 가능한 포장 및 생물의학용 바이오 에어로겔 등 특정 용도에 특화된 전문 제제를 개발하고 있습니다.

제조 공정의 혁신은 중요한 경쟁 분야입니다. 기업들은 고가의 초임계 공정을 없애는 상압 건조 기술부터 처리량을 향상시키는 연속 제조 시스템까지, 제조 비용을 절감하고 확장성을 높이기 위한 다양한 전략을 추구하고 있습니다. 첨단 3D 프린팅 기술은 이전에는 불가능했던 복잡한 에어로겔 형상을 가능하게 하는 한편, 지속 가능한 원료의 개발로 환경 문제 및 공급망 복원력을 해결하고 있습니다. 디지털 기술의 통합은 에어로겔의 개발 및 제조를 크게 강화하고 있습니다. 계산 모델링은 재료 설계를 가속화하고, 첨단 특성 평가 기술은 기공 구조, 열적 특성, 기계적 성능을 정밀하게 제어할 수 있습니다. 이러한 능력은 다양한 산업에서 점점 더 까다로워지는 용도 요구 사항을 충족하는 데 필수적입니다.

전기자동차 용도는 아마도 가장 중요한 촉진요인으로 부상하고 있으며, 에어로겔은 배터리의 안전과 성능에 필수적인 열 관리 솔루션을 제공합니다. 전 세계적으로 EV의 보급이 가속화됨에 따라 에어로겔 배리어가 내장된 열폭주 방지 시스템이 표준 안전 장비로 자리 잡으면서 특수 소재 공급업체에 큰 시장 기회를 제공합니다.

건축 및 건설 용도는 기존 단열재에 그치지 않고 고성능 창호, 열교 솔루션, 순 제로 에너지 성능을 지향하는 통합 건축 시스템 등 지속적으로 확대되고 있습니다. 항공우주 및 방위 부문에서는 열 보호 시스템, 경량 구조 부품, 첨단 전자기기 냉각 용도로 에어로겔이 채택되고 있습니다. 바이오메디컬 분야는 특히 활발한 연구 분야로 조직공학용 스캐폴드, 상처 치유 재료, 약물 방출 제어 시스템 등이 개발되고 있습니다. 탄소 포집 기술 및 수질 정화 시스템과 같은 환경 응용 분야는 새로운 상업적 기회를 창출하는 동시에 세계 지속가능성 문제를 해결하고 있습니다.

에어로겔 시장의 궤적은 에너지 효율성, 지속가능성, 첨단 소재 성능에 대한 광범위한 트렌드를 반영하고 있습니다. 제조 비용이 계속 하락하고 응용 지식이 확대됨에 따라 에어로겔은 여러 산업 분야에서 주류 솔루션이 될 것입니다.

이 보고서는 세계 에어로겔 시장을 조사 분석하여 종합적인 기업 프로파일과 상세한 시장 예측을 통해 제조 확장성, 비용 구조, 경쟁 역학, 새로운 응용 기회 등을 검증합니다.

목차

제1장 주요 요약

  • 에어로겔 특성
  • 에어로겔 용도
  • 에어로겔 시장 경쟁 요인
  • 시장 성장 촉진요인과 동향
  • 에어로겔 제조업체의 생산능력과 제조 공정
  • 시장과 기술 과제
  • 에어로겔 시장 규모와 예측(-2036년)
  • 경쟁 구도

제2장 서론

  • 에어로겔
  • 제조 공정
  • 실리카 에어로겔
  • 에어로겔 라이크 폴리머 폼
  • 금속 산화물 에어로겔
  • 유기 에어로겔
  • 3D 프린팅 에어로겔
  • 하이브리드·복합 에어로겔
  • 기술 성숙도 레벨(TRL)

제3장 생산 방식

  • 개요
  • 졸겔법
  • 에어로겔 3D 프린팅
  • 건조 방법
  • 비용
  • 제조 규모 확대 과제

제4장 에어로겔 시장과 용도

  • 경쟁 구도
  • EV용 배터리
  • 석유 및 가스
  • 건축 및 건설
  • 에너지 저장
  • 바이오메디컬
  • 콜드체인 포장
  • 전자 통신
  • 여과, 분리 및 흡착
  • 섬유
  • 식품
  • 촉매
  • 페인트 및 코팅
  • 항공우주 및 방위
  • 화장품
  • 기타 시장과 용도

제5장 에어로겔 특허

  • 특허 출원

제6장 에어로겔 기업 개요(기업 52개사 개요)

제7장 조사 범위와 조사 방법

제8장 참고 문헌

LSH

The global aerogel industry is experiencing unprecedented transformation as it transitions from a niche specialty materials sector into a mainstream technology platform with applications spanning electric vehicle batteries, building insulation, aerospace systems, and biomedical devices. This dynamic market evolution reflects both the unique properties of aerogels-ultralight materials with exceptional thermal insulation, high surface area, and remarkable porosity-and the growing recognition of their potential to address critical challenges in energy efficiency, thermal management, and sustainable manufacturing.

The aerogel landscape is undergoing rapid restructuring driven by both established players and innovative newcomers. Traditional manufacturers like Aspen Aerogels and Cabot Corporation continue advancing their core silica aerogel technologies while expanding into high-growth applications such as electric vehicle thermal barriers and advanced building insulation systems. Simultaneously, a wave of new entrants-ranging from university spin-offs to established materials companies diversifying their portfolios-are introducing novel products and competing for emerging market opportunities. This competitive environment has accelerated innovation across multiple dimensions. While silica aerogels maintain their position as the dominant commercial product category, polymer and biopolymer aerogels are gaining significant traction. Companies are developing specialized formulations targeting specific applications: carbon aerogels for energy storage electrodes, polymer aerogels for 5G telecommunications infrastructure, and bio-based aerogels for sustainable packaging and biomedical applications.

Manufacturing process innovation represents a critical competitive frontier. Companies are pursuing multiple strategies to reduce production costs and improve scalability, from ambient pressure drying techniques that eliminate expensive supercritical processing to continuous manufacturing systems that enhance throughput. Advanced 3D printing technologies are enabling complex aerogel geometries previously impossible to achieve, while sustainable feedstock development is addressing environmental concerns and supply chain resilience. The integration of digital technologies is significantly enhancing aerogel development and manufacturing. Computational modelling accelerates materials design, while advanced characterization techniques enable precise control over pore structure, thermal properties, and mechanical performance. These capabilities are essential for meeting increasingly stringent application requirements across diverse industries.

Electric vehicle applications have emerged as perhaps the most significant growth driver, with aerogels providing critical thermal management solutions for battery safety and performance. As EV adoption accelerates globally, thermal runaway protection systems incorporating aerogel barriers are becoming standard safety features, creating substantial market opportunities for specialized materials suppliers.

Building and construction applications continue expanding beyond traditional insulation, encompassing high-performance windows, thermal bridge solutions, and integrated building systems designed for net-zero energy performance. The aerospace and defense sectors are adopting aerogels for thermal protection systems, lightweight structural components, and advanced electronics cooling applications. Biomedical applications represent a particularly active research area, with developments in tissue engineering scaffolds, wound healing materials, and controlled drug release systems. Environmental applications, including carbon capture technologies and water purification systems, address global sustainability challenges while creating new commercial opportunities.

The aerogel market's trajectory reflects broader trends toward energy efficiency, sustainability, and advanced materials performance. As manufacturing costs continue declining and application knowledge expands, aerogels are positioned to become mainstream solutions across multiple industries.

"The Global Aerogels Market 2026-2036" provides strategic intelligence for materials manufacturers, end-users, investors, and technology developers navigating this rapidly evolving market. Analysis encompasses silica, polymer, carbon, and bio-based aerogel technologies, examining manufacturing scalability, cost structures, competitive dynamics, and emerging application opportunities through comprehensive company profiles and detailed market forecasts.

Report Contents include:

  • Comprehensive analysis of aerogel properties including thermal conductivity benchmarking, density comparisons, and mechanical characteristics
  • EV battery pack applications as primary growth driver with detailed thermal runaway protection analysis
  • Competitive landscape assessment covering 54+ global manufacturers
  • Market drivers spanning energy efficiency regulations, thermal management requirements, and sustainability mandates
  • Manufacturing capacity analysis by geography with focus on China's dominance in production versus revenue
  • Technology and market challenges including cost barriers, dust generation concerns, and integration complexities
  • Market forecasts 2026-2036 segmented by aerogel type (silica, polymer, carbon), end-use market, and geographic region
  • Technology & Materials Analysis
    • Detailed aerogel classification covering inorganic, organic, and composite materials
    • Manufacturing processes including supercritical drying, ambient pressure drying, and rapid extraction techniques
    • Silica aerogel products: monoliths, powders, granules, blankets, boards, and renders with SWOT analyses
    • Advanced composites using organic crosslinkers and fiber reinforcement
    • Sustainable feedstock development from food waste, textile waste, and agricultural byproducts
    • Polymer aerogels including polyimide, polyurethane, and resorcinol-formaldehyde systems
    • Bio-based aerogels: cellulose nanofibers, alginate, starch, chitosan, protein, pectin, and agar materials
    • Carbon aerogels, graphene aerogels, and carbon nanotube architectures
    • 3D printing technologies for complex aerogel geometries
    • Hybrid and composite systems including metal-organic framework aerogels
  • Manufacturing & Production
    • Sol-gel chemistry fundamentals and process optimization
    • Supercritical CO2 drying with closed-loop systems and autoclave technologies
    • Ambient pressure drying innovations reducing production costs
    • Scale-up challenges from laboratory to commercial manufacturing
    • Cost analysis by aerogel type and production method
    • QT-polysiloxane enabler technologies
  • Applications & Markets
    • EV Batteries: Thermal runaway protection, fire safety regulations (UN GTR 20, GB 38031-2020), material intensity analysis, integration strategies, and comprehensive company assessment
    • Oil & Gas: Refinery insulation, cryogenic pipeline applications, LNG facilities
    • Building & Construction: Sustainable insulation materials, panels, renders, plasters, window glazing systems, industrial insulation standards (EN 17956)
    • Energy Storage: Silicon anodes, lithium-sulfur batteries, electrode materials, supercapacitors, hydrogen storage
    • Biomedical: Drug delivery systems, tissue engineering scaffolds, wound dressings, medical implants with sterilization protocols
    • Electronics & Telecommunications: EMI shielding, thermal management, 5G antenna substrates, low-loss dielectric materials
    • Environmental Applications: Water treatment, heavy metal removal, oil spill remediation, CO2 capture and direct air capture systems
    • Textiles: Winter sports apparel, luxury fashion applications, protective equipment, footwear
    • Aerospace & Defense: Thermal protection systems, vibration suppression, NASA applications, crash absorbers
    • Additional Markets: Cold-chain packaging, cosmetics, catalysts, paints/coatings, food applications, solar energy, passive cooling
  • Patent Landscape
    • Analysis of 2010-2024 patent filings by technology area, assignee, and geography
    • Intellectual property trends and competitive positioning
  • Company Profiles Detailed profiles of 54 aerogel manufacturers including:
    • Production capacity and manufacturing processes
    • Product portfolios and specifications
    • Target markets and applications
    • Recent developments and strategic initiatives
    • Companies profiled include: ABIS Aerogel Co., Ltd., Active Aerogels, Aerobel BV, Aerofybers Technologies SL, aerogel-it GmbH, Aerogel Core Ltd, Aerogel Technologies LLC, Aerogel Coating Technologies, Aerogel Inside, AeroShield Materials Inc., AGITEC International AG, Armacell International S.A., Aspen Aerogels, Inc., BASF SE, Blueshift Materials, Inc., Cabot Corporation, Dongjin Semichem, Dragonfly Insulation, Elisto GmbH, Enersens SAS, Fibenol, Fuji Silysia Chemical Ltd., Gelanggang Kencana Sdn. Bhd., Graphene Composites Limited, Guangdong Alison Hi-Tech Co., Ltd., Hebei Jinna Technology Co., Ltd., IBIH Advanced Materials, Hokuetsu Toyo Fibre Co., Ltd., JIOS Aerogel, Joda Technology Co., Ltd., Keey Aerogel and more.......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Aerogel Properties
  • 1.2. Aerogel Applications
  • 1.3. Competitive Factors in the Aerogels Market
  • 1.4. Market Drivers and Trends
  • 1.5. Aerogel Manufacturer Production Capacity and Manufacturing Processes
    • 1.5.1. Technology Evolution Enabling Capacity Growth
    • 1.5.2. Cost Reduction Trajectory
    • 1.5.3. Regional Capacity Analysis and Utilization Rates
      • 1.5.3.1. North America
      • 1.5.3.2. China
      • 1.5.3.3. Europe
      • 1.5.3.4. South Korea
      • 1.5.3.5. Japan
      • 1.5.3.6. Rest of World
  • 1.6. Market and Technology Challenges
  • 1.7. Aerogel Market Size and Forecast to 2036
    • 1.7.1. 2024 Market Composition by Value
    • 1.7.2. Company Performance and Market Share Analysis
      • 1.7.2.1. Aspen Aerogels, Inc.
      • 1.7.2.2. Cabot Corporation
      • 1.7.2.3. Armacell International S.A.
      • 1.7.2.4. Guangdong Alison Hi-Tech Co., Ltd.
    • 1.7.3. By Aerogel Type
      • 1.7.3.1. Silica Aerogels
        • 1.7.3.1.1. Manufacturing Maturity
        • 1.7.3.1.2. Applications
        • 1.7.3.1.3. Competitive Dynamics
        • 1.7.3.1.4. Technology Trends and Future Development:
        • 1.7.3.1.5. Market Share Erosion but Absolute Growth
      • 1.7.3.2. Polymer Aerogels
        • 1.7.3.2.1. Material Types and Properties
        • 1.7.3.2.2. Applications
        • 1.7.3.2.3. Manufacturing and Cost Structure
        • 1.7.3.2.4. Competitive Landscape
        • 1.7.3.2.5. Technology Development Priorities
        • 1.7.3.2.6. Market Growth Drivers
      • 1.7.3.3. Carbon Aerogels
        • 1.7.3.3.1. Material Properties and Characteristics
        • 1.7.3.3.2. Cost Structure
        • 1.7.3.3.3. Applications
        • 1.7.3.3.4. Technology Development Priorities
        • 1.7.3.3.5. Market Growth Drivers
      • 1.7.3.4. Hybrid/Composite Aerogels: Engineered Multi-Functionality
        • 1.7.3.4.1. Material Types and Architectures
        • 1.7.3.4.2. Applications
        • 1.7.3.4.3. Technology Development Priorities
        • 1.7.3.4.4. Market Growth Drivers
      • 1.7.3.5. Other Aerogel Types: Emerging Technologies
        • 1.7.3.5.1. Material Types
    • 1.7.4. By End Use Market
    • 1.7.5. EV Battery Thermal Barriers: The Dominant Growth Engine
      • 1.7.5.1. Regulatory Drivers
      • 1.7.5.2. Market Penetration Dynamics
      • 1.7.5.3. Geographic Penetration Patterns
      • 1.7.5.4. Technology and Product Evolution
      • 1.7.5.5. Content per Vehicle Trends
      • 1.7.5.6. Competitive Dynamics and Market Share Evolution
      • 1.7.5.7. Growth Projections Methodology and Assumptions
      • 1.7.5.8. Alternative Scenarios
    • 1.7.6. Oil & Gas Pipeline Insulation
      • 1.7.6.1. Market Composition by Pipeline Type
        • 1.7.6.1.1. Subsea Oil & Gas Pipelines
        • 1.7.6.1.2. Onshore Heated Oil Pipelines
        • 1.7.6.1.3. LNG and Cryogenic Applications
        • 1.7.6.1.4. Industrial Process Pipelines
      • 1.7.6.2. Market Trends and Outlook:
    • 1.7.7. By Region
      • 1.7.7.1. North America
      • 1.7.7.2. Europe
      • 1.7.7.3. China
      • 1.7.7.4. Japan
      • 1.7.7.5. Rest of Asia-Pacific (excluding China and Japan)
      • 1.7.7.6. Rest of World (Middle East, Africa, Latin America)
  • 1.8. Competitive Landscape
    • 1.8.1. Market Structure and Concentration
    • 1.8.2. Strategic Group Analysis
      • 1.8.2.1. Group 1: Global Technology Leaders
      • 1.8.2.2. Group 2: Diversified Insulation Leaders
      • 1.8.2.3. Group 3: Chinese Volume Manufacturers
      • 1.8.2.4. Group 4: Niche Specialists & Regional Players
    • 1.8.3. Competitive Battlegrounds: Where Competition Is Intensifying
      • 1.8.3.1. Battleground 1: Mass-Market EV Segment ($30-50K Vehicles)
      • 1.8.3.2. Battleground 2: Industrial Insulation Market
      • 1.8.3.3. Battleground 3: Particles vs. Blankets Format War
      • 1.8.3.4. Battleground 4: Geographic Market Control - China

2. INTRODUCTION

  • 2.1. Aerogels
    • 2.1.1. Origin of Aerogels
    • 2.1.2. Classification
    • 2.1.3. Aerogel Forms
    • 2.1.4. Commercially available aerogels
  • 2.2. Manufacturing processes
    • 2.2.1. Supercritical Drying Process
      • 2.2.1.1. Closed Loop Systems
      • 2.2.1.2. Autoclave Loading and Operational Efficiency
    • 2.2.2. Ambient Pressure Drying Process
  • 2.3. Silica aerogels
    • 2.3.1. Properties
      • 2.3.1.1. Thermal conductivity and density
      • 2.3.1.2. Mechanical
      • 2.3.1.3. Silica aerogel precursors
    • 2.3.2. Products
      • 2.3.2.1. Monoliths
        • 2.3.2.1.1. Properties
        • 2.3.2.1.2. Monoliths prepared under ambient pressure
        • 2.3.2.1.3. Scalable monolithic sheet production for windows
        • 2.3.2.1.4. Alternative monolithic aerogel manufacturing processes
      • 2.3.2.2. Powder
        • 2.3.2.2.1. Key characteristics
        • 2.3.2.2.2. Silica Aerogel powder manufacturing processes
        • 2.3.2.2.3. Powders and granules prepared under ambient pressure
      • 2.3.2.3. Granules
      • 2.3.2.4. Blankets
      • 2.3.2.5. Aerogel boards
      • 2.3.2.6. Aerogel renders
      • 2.3.2.7. Silica aerogel from sustainable feedstocks
      • 2.3.2.8. Silica composite aerogels
        • 2.3.2.8.1. Organic crosslinkers
        • 2.3.2.8.2. Composites from powders and granules
        • 2.3.2.8.3. Opacified aerogels
        • 2.3.2.8.4. Commercial activity
    • 2.3.3. Cost
    • 2.3.4. Main Companies and Products
  • 2.4. Aerogel-like polymer foams
    • 2.4.1. Properties
    • 2.4.2. Applications for aerogel-like polymer foams include:
  • 2.5. Metal oxide aerogels
  • 2.6. Organic aerogels
    • 2.6.1. Polymer-based aerogels
      • 2.6.1.1. Polyimide-graphene aerogel composites
      • 2.6.1.2. Recyclable aerogels
    • 2.6.2. Biobased aerogels (bio-aerogels)
      • 2.6.2.1. Overview
      • 2.6.2.2. Sustainable Feedstocks
        • 2.6.2.2.1. Silica aerogels derived from waste sources
          • 2.6.2.2.1.1. Food waste to bioaerogel conversion
        • 2.6.2.2.2. Commercial development
        • 2.6.2.2.3. Textile waste into high-value aerogel materials
      • 2.6.2.3. Cellulose aerogels
        • 2.6.2.3.1. Cellulose nanofiber (CNF) aerogels
        • 2.6.2.3.2. Cellulose nanocrystal aerogels
        • 2.6.2.3.3. Bacterial nanocellulose aerogels
      • 2.6.2.4. Lignin aerogels
      • 2.6.2.5. Alginate aerogels
      • 2.6.2.6. Starch aerogels
      • 2.6.2.7. Chitosan aerogels
      • 2.6.2.8. Protein aerogels
        • 2.6.2.8.1. Albumin aerogels
        • 2.6.2.8.2. Casein aerogels
        • 2.6.2.8.3. Gelatin aerogels
        • 2.6.2.8.4. Whey protein isolate aerogels
      • 2.6.2.9. Silk fiber
      • 2.6.2.10. Pectin composite aerogels for thermal superinsulation
      • 2.6.2.11. Agar aerogels for biomedical applications
    • 2.6.3. Carbon aerogels
      • 2.6.3.1. Manufacturing and properties
      • 2.6.3.2. Carbon nanotube aerogels
      • 2.6.3.3. Graphene and graphite aerogels
      • 2.6.3.4. MXene materials
      • 2.6.3.5. Graphitic Networks on Polyimide Aerogels
      • 2.6.3.6. Graphene (Hybrid Systems)
      • 2.6.3.7. Carbon aerogel manufacturers
  • 2.7. 3D printed aerogels
    • 2.7.1. 3D printing processes and applications
    • 2.7.2. Carbon nitride
    • 2.7.3. Gold
    • 2.7.4. Cellulose
    • 2.7.5. Graphene oxide
  • 2.8. Hybrid and composite aerogels
    • 2.8.1. Mixed oxide aerogels
    • 2.8.2. Metal oxide aerogel composites
    • 2.8.3. Carbon-based aerogel composites
    • 2.8.4. Metal Organic Framework Aerogel Composites (MOFACs)
  • 2.9. Technology Readiness Level (TRL)

3. PRODUCTION METHODS

  • 3.1. Overview
  • 3.2. Sol-gel process
  • 3.3. 3D printing of aerogels
  • 3.4. Drying methods
    • 3.4.1. Overview of drying methods
    • 3.4.2. Supercritical Drying
      • 3.4.2.1. Closed loop
      • 3.4.2.2. Autoclave loading
    • 3.4.3. Ambient Pressure Drying
    • 3.4.4. Rapid Supercritical Extraction (RSCE)
    • 3.4.5. Advantages and disadvantages
  • 3.5. Costs
  • 3.6. Manufacturing scale-up challenges

4. MARKETS AND APPLICATIONS FOR AEROGELS

  • 4.1. Competitive landscape
  • 4.2. EV Batteries
    • 4.2.1. Overview
    • 4.2.2. EV batteries
      • 4.2.2.1. Fire protection
      • 4.2.2.2. Thermal barriers
      • 4.2.2.3. Regulations
      • 4.2.2.4. Challenges
      • 4.2.2.5. Integration of aerogels with specialized foam materials
      • 4.2.2.6. Companies
  • 4.3. Oil and Gas
    • 4.3.1. Overview
    • 4.3.2. Applications
      • 4.3.2.1. Refineries
      • 4.3.2.2. Pipelines
  • 4.4. Building and Construction
    • 4.4.1. Overview
    • 4.4.2. Types of sustainable insulation materials
    • 4.4.3. Technical Value Proposition in Buildings
    • 4.4.4. Application Segments
      • 4.4.4.1. Historic Building Renovation
        • 4.4.4.1.1. Market Characteristics
        • 4.4.4.1.2. Typical Applications
        • 4.4.4.1.3. Geographic Distribution
        • 4.4.4.1.4. Market Dynamics
      • 4.4.4.2. Exterior Insulation Finishing Systems (EIFS) and Facades
        • 4.4.4.2.1. Market Characteristics
        • 4.4.4.2.2. Applications
        • 4.4.4.2.3. Geographic Distribution
        • 4.4.4.2.4. Market Dynamics
        • 4.4.4.2.5. Technology Development
      • 4.4.4.3. Window Glazing and Daylighting Systems
        • 4.4.4.3.1. Market Characteristics
        • 4.4.4.3.2. Technology Description
        • 4.4.4.3.3. Technical Performance
        • 4.4.4.3.4. Applications
        • 4.4.4.3.5. Geographic Distribution
        • 4.4.4.3.6. Market Dynamics
        • 4.4.4.3.7. Technology Development
      • 4.4.4.4. High-Performance Residential and Commercial Insulation
        • 4.4.4.4.1. Market Characteristics
        • 4.4.4.4.2. Geographic Distribution
        • 4.4.4.4.3. Market Dynamics
        • 4.4.4.4.4. Growth Trajectory
      • 4.4.4.5. Industrial insulation
      • 4.4.4.6. Other Building Applications
      • 4.4.4.7. Manufacturing and Cost Economics for Building Applications
        • 4.4.4.7.1. Cost Reduction Pathway
      • 4.4.4.8. Regulatory Environment and Building Codes
        • 4.4.4.8.1. Regulatory Evolution
      • 4.4.4.9. Market Growth Drivers
  • 4.5. Energy Storage
    • 4.5.1. Overview
    • 4.5.2. Applications
      • 4.5.2.1. Silicon anodes
      • 4.5.2.2. Li-S batteries
      • 4.5.2.3. Electrodes
      • 4.5.2.4. Thermal insulation
      • 4.5.2.5. Supercapacitors
  • 4.6. Biomedical
    • 4.6.1. Overview
    • 4.6.2. Applications
      • 4.6.2.1. Drug delivery
      • 4.6.2.2. Tissue engineering
      • 4.6.2.3. Medical implants
      • 4.6.2.4. Wound care
  • 4.7. Cold-Chain Packaging
    • 4.7.1. Overview
  • 4.8. Electronics and Telecommunications
    • 4.8.1. Overview
    • 4.8.2. Applications
      • 4.8.2.1. EMI Shielding
      • 4.8.2.2. Thermal insulation
      • 4.8.2.3. 5G
        • 4.8.2.3.1. Antenna modules
        • 4.8.2.3.2. High-performance antenna substrates
        • 4.8.2.3.3. Advanced low-loss materials
  • 4.9. Filtration, Separation, and Sorption
    • 4.9.1. Overview
    • 4.9.2. Applications
      • 4.9.2.1. Sorbents for liquids, hazardous ions (heavy metal ions) (e.g., water treatment)
      • 4.9.2.2. Sorbent for oil spills
      • 4.9.2.3. Sorbents for gases (CO2, hazardous gases, VOC)
  • 4.10. Textiles
    • 4.10.1. Overview
    • 4.10.2. Applications
      • 4.10.2.1. Winter sports apparel
      • 4.10.2.2. Consumer apparel
      • 4.10.2.3. Protective equipment
      • 4.10.2.4. Footwear applications
  • 4.11. Food
    • 4.11.1. Overview
  • 4.12. Catalysts
  • 4.13. Paint and Coatings
  • 4.14. Aerospace and Defence
    • 4.14.1. Overview
    • 4.14.2. Applications
      • 4.14.2.1. Thermal protection systems
      • 4.14.2.2. Crash absorbers
      • 4.14.2.3. Applications
  • 4.15. Cosmetics
    • 4.15.1. Overview
  • 4.16. Other markets and applications
    • 4.16.1. Sports equipment
    • 4.16.2. Fire retardant applications
    • 4.16.3. Solar energy collection
    • 4.16.4. Knudsen pumps
    • 4.16.5. Passive Cooling

5. AEROGEL PATENTS

  • 5.1. Patent applications

6. AEROGEL COMPANY PROFILES (52 company profiles)

7. RESEARCH SCOPE AND METHODOLOGY

  • 7.1. Report scope
  • 7.2. Research methodology

8. REFERENCES

Tables

  • Table 1. General properties and value of aerogels
  • Table 2. Aerogel Thermal Conductivity and Density Benchmarking
  • Table 3. Market drivers for aerogels
  • Table 4. Aerogel Manufacturer Production Capacity and Manufacturing Processes (2024)
  • Table 5. Planned Aerogel Production Expansions (2024-2027)
  • Table 6. Market and technology challenges in aerogels
  • Table 7. Global Aerogel Market Forecast 2021-2036 by Aerogel Type (Million USD)
  • Table 8. Global Aerogel Market 2024-2036 by Application (Million USD)
  • Table 9. Global Aerogel Market 2024-2036 by Region (Million USD)
  • Table 10. Aerogel Form Factors
  • Table 11. Commercially Available Aerogel Products
  • Table 12. Silica aerogel properties
  • Table 13. Chemical precursors used to synthesize silica aerogels
  • Table 14. Alternative Monolithic Aerogel Manufacturing Processes
  • Table 15. Silica Aerogel Powder Manufacturing Processes
  • Table 16. Commercially available aerogel-enhanced blankets
  • Table 17. Silica Composite Aerogels Formed from Powder and Granules - Players and Progress
  • Table 18. Commercial Silica Composite Aerogels
  • Table 19. Main manufacturers of silica aerogels and product offerings
  • Table 20. Typical structural properties of metal oxide aerogels
  • Table 21. Polymer aerogels companies
  • Table 22. Types of biobased aerogels
  • Table 23. Agar Aerogels for Biomedical Applications
  • Table 24. Carbon aerogel companies
  • Table 25. Carbon aerogel manufacturers
  • Table 26. 3D printing processes and applications
  • Table 27. Synthesis methods-Aerogels synthesised, advantages and disadvantages
  • Table 28. Silica Aerogel Powder Manufacturing Processes Using Ambient Drying
  • Table 29. Drying methods for aerogel production
  • Table 30. Advantages and disadvantages of drying methods
  • Table 31. Silica Composite Aerogels - Cost Analysis
  • Table 32. Cost Analysis by Aerogel Type
  • Table 33. Manufacturing scale-up challenges
  • Table 34. Market overview of aerogels in automotive-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 35. Properties of Aerogels and Other Fire Protection Materials
  • Table 36. Types of Fire Protection Materials
  • Table 37. Thermally Insulating Fire Protection Products for EVs
  • Table 38. Comparison of Aerogels vs Other Fire Protection Materials
  • Table 39. Comparison of Aerogel Fire Protection Materials for EV Batteries
  • Table 40. Companies producing Aerogels for EV Batteries
  • Table 41. Market overview of aerogels in oil and gas-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 42. Aerogel Products for Cryogenic Insulation
  • Table 43. Thermal Performance Comparison
  • Table 44. Aerogel Products for Windows/Daylighting
  • Table 45. Aerogel Materials for Building & Construction Applications
  • Table 46. Market overview of aerogels in energy conversion and storage-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 47. Market overview of aerogels in drug delivery-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 48. Market overview of aerogels in tissue engineering-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 49. Market overview of aerogels in medical implants-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 50. Market overview of aerogels in wound care-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 51. Market overview of aerogels in cold-chain packaging-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 52. Market overview of aerogels in electronics and Telecommunications-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 53. Aerogel Products for Electronic Appliances
  • Table 54. Market overview of aerogels in filtration, separation, and sorption-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 55. Market overview of aerogels in textiles- market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 56. Market overview of aerogels in food- market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 57. Market overview of aerogels in catalysts-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 58. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 59. Market overview of aerogels in aerospace and defence-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 60. Market overview of aerogels in cosmetics-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 61. Aerogel patents 2010-2024

Figures

  • Figure 1. Classification of aerogels
  • Figure 2. SLENTEX-R thermal insulation
  • Figure 3. Global Aerogel Market Forecast 2021-2036 by Aerogel Type (Million USD)
  • Figure 4. Global Aerogel Market 2024-2036 by Application (Million USD)
  • Figure 5. Global Aerogel Market 2024-2036 by Region (Million USD)
  • Figure 6. Main characteristics of aerogel type materials
  • Figure 7. Classification of aerogels
  • Figure 8. Canada Goose luxury footwear
  • Figure 9. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner
  • Figure 10. Monolithic aerogel
  • Figure 11. Aerogel granules
  • Figure 12. Internal aerogel granule applications
  • Figure 13. Slentite
  • Figure 14. Methods for producing bio-based aerogels
  • Figure 15. Types of cellulose aerogel
  • Figure 16. Lignin-based aerogels
  • Figure 17. Fabrication routes for starch-based aerogels
  • Figure 18. Schematic of silk fiber aerogel synthesis
  • Figure 19. Graphene aerogel
  • Figure 20. Commonly employed printing technologies for aerogels
  • Figure 21. Schematic for direct ink writing of silica aerogels
  • Figure 22. 3D printed aerogel
  • Figure 23. Schematic of silica aerogels synthesis
  • Figure 24. Formation of aerogels, cryogels and xerogels
  • Figure 25. Aerogel engineering strategies
  • Figure 26. 3D printed aerogels
  • Figure 27. SEM images of the microstructures of (a) alginate and (b) pectin aerogels obtained by supercritical drying, (c) cellulose aerogels by freeze-drying, and (d) silica-cellulose composite aerogels by ambient drying
  • Figure 28. Methods of gel drying
  • Figure 29. Pyrogel insulation on a heat-exchange vessel in a petrochemical plant
  • Figure 30. Aerogel construction applications
  • Figure 31. Incorporation of aerogels into textiles
  • Figure 32. Aerogel dust collector
  • Figure 33. Thermal Conductivity Performance of ArmaGel HT
  • Figure 34. SLENTEX-R roll (piece)
  • Figure 35. CNF gel
  • Figure 36. Block nanocellulose material
  • Figure 37. Keey Aerogel
  • Figure 38. Fire-resistance in Keey Aerogel
  • Figure 39. Melodea CNC suspension
  • Figure 40. Insulation of various aerogel fibres illustrated using the example of a cushion
  • Figure 41. Sunthru Aerogel pane
  • Figure 42. Quartzene-R
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제