시장보고서
상품코드
1876167

세계의 리튬이온 배터리 및 차세대 배터리 시장(2026-2036년)

The Global Li-ion and Next-Gen Battery Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 909 Pages, 249 Tables, 187 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 리튬이온 배터리 및 차세대 배터리 시장은 주로 운송 수단의 전기화, 재생에너지 저장의 확대, 소비자 일렉트로닉스의 지속적인 수요로 인해 큰 변화를 맞이하고 있습니다. 현행의 리튬 이온 기술은 확립된 성능 특성, 제조 확장성, 비용 구조의 개량에 의해 상업용도를 지배하고 있지만, 이론상의 성능 한계에 가까워지고 있으며, 차세대 대체 기술의 개발이 요구되고 있습니다.

전기자동차가 최대의 용도 부문이 되고 있어 승용차, 상용차, 이륜차·삼륜차가 맞추어 배터리 수요 성장의 대부분을 견인하고 있습니다. 이 변화는 배출 감소를 위한 규제 압력, 실용적인 항속 거리를 가능하게 하는 배터리의 에너지 밀도 향상, 충전 인프라의 확대를 반영합니다. 각 지역의 채택 패턴에는 큰 차이가 있습니다. 중국은 전개 규모로 선행하고, 유럽은 정책에 의한 의무화로 진보해, 북미는 최근의 인센티브 프로그램에 의해 채택이 가속하고 있습니다. 상용차의 전기화는 특히 도시 버스 플릿이나 라스트 마일 배송 용도로 진행되고 있어 초기 비용은 고액이면서 총 소유 비용의 경제성이 유리한 것이 증명되고 있습니다.

고정형 에너지 저장은 신재생 에너지 통합의 요구사항을 뒷받침하고 급속히 확장되는 용도입니다. 그리드 규모의 배터리 시스템은 태양광과 풍력의 간헐성에 대응하기 위해 주파수 조정, 피크 수요 관리, 재생에너지 안정화 등 중요한 서비스를 제공합니다. 인산철 리튬(LFP) 화학은 비용 효율, 안전성, 6,000-10,000 사이클을 넘는 사이클 수명으로 이 부문에서 주류를 차지하고 있습니다. 주거용 및 상업용 축전 시스템은 유틸리티 규모의 전개를 보완하고 백업 전원 공급 장치, 수요 비용 절감, 태양광 자가 소비 최적화를 제공합니다.

소비자 일렉트로닉스는 시장의 역사적 기반을 구성하는 반면 스마트폰과 노트북 시장의 성숙에 따라 성장이 둔화되고 있습니다. 그러나 웨어러블 디바이스, 전동 공구 및 신제품 카테고리를 통한 절대적인 수요는 계속 확대되고 있습니다. 이 부문은 초기의 리튬 이온 개발과 제조 규모를 견인해 현재는 수송 기기나 고정형 축전 용도를 지지하는 공급 체인과 생산 능력을 확립했습니다.

현재의 리튬 이온 기술은 주로 흑연 음극과 니켈 망간 코발트(NMC), 인산철 리튬(LFP), 니켈 코발트 알루미늄(NCA)을 포함한 다양한 양극 화학에 의존합니다. 양극의 선택은 에너지 밀도, 비용, 사이클 수명 및 안전성 사이에 절충을 야기합니다. NMC는 균형 잡힌 성능을 제공하며 고급 전기자동차 시장에서 주류를 차지합니다. 한편, LFP는 에너지 밀도가 낮음에도 불구하고 비용이 중시되는 용도나 고정형 축전에 있어서 시장 점유율을 확대하고 있습니다. 음극 재료는 순수한 흑연에서 실리콘·흑연 복합재료로 이행하고 있으며, 제조에 있어서의 양산의 확대의 과제가 해결됨에 따라, 실리콘 함유량은 현재의 5-10%에서 30-50%로 단계적으로 증가해 나갈 전망입니다.

개발중인 차세대 배터리 기술은 리튬 이온 배터리의 고유 한계를 극복하는 것을 목표로 합니다. 전고체 배터리는 액체 전해질을 고체 이온 전도체로 대체하여 리튬 금속 음극의 채택을 가능하게 함으로써 에너지 밀도를 두배로 하는 동시에 안전성의 향상을 도모합니다. 그러나 충분한 이온 전도성 확보, 충 방전시 계면 안정성 유지, 확장 가능한 제조 공정 개발 등의 과제가 남아 있습니다. 복수의 기업이 2025년-2028년의 상업화를 목표로 하고 있으며, 당초는 고급 용도로의 도입이 예정되어 있습니다.

유황 리튬 배터리는 유황의 높은 비용량에 의해 이론상 500-600Wh/kg에 육박하는 에너지 밀도를 갖습니다만, 실용화에는 다황화물의 용해, 황의 전도성 부족, 사이클 수명의 제한이라고 하는 과제가 있습니다. 개발에서는 다황화물을 물리적으로 봉쇄할 수 있는 정극 구조, 셔틀 효과를 억제하는 전해질 조성, 리튬 금속 부극의 안정화에 초점이 맞추어져 있습니다.

본 보고서에서는 세계의 리튬이온 배터리 및 차세대 배터리 시장에 대해 조사했으며, 각 용도에 있어서 수요의 예측, 각 지역 시장 역학, 기술 채택 패턴, 경쟁 구도의 분석 등을 제공합니다.

목차

제1장 주요 요약

  • 리튬 이온 배터리 시장(2025년)
  • 세계 시장 예측(-2036년)
  • 첨단 리튬 이온 배터리 세계 시장
  • 시장 성장 촉진요인
  • 배터리 시장의 메가 트렌드
  • 배터리용 첨단 재료
  • 리튬을 넘어선 배터리 개발 촉진요인
  • 배터리 화학

제2장 리튬 이온 배터리

  • 리튬 배터리의 유형
  • 음극재
  • SWOT 분석
  • 리튬 이온 배터리 시장 동향
  • 리튬 이온 기술 로드맵
  • 실리콘 음극
  • 리튬 이온 전해질
  • 음극
  • 바인더와 전도성 첨가제
  • 분리기
  • 고성능 리튬 이온 시스템 : 350Wh/kg에 근접
  • PFAS 프리 배터리 첨가제와 규제의 이행
  • 백금족 금속
  • 리튬 이온 배터리 시장의 기업
  • 리튬 이온 재활용
  • 세계 수익

제3장 리튬 금속 배터리

  • 기술 설명
  • 전고체 배터리와 리튬 금속 음극
  • 에너지 밀도 향상
  • 리튬 금속 음극
  • 도전 과제
  • 에너지 밀도
  • 애노드리스 셀
  • 리튬 금속 배터리와 전고체 배터리
  • 하이브리드 배터리
  • 용도
  • SWOT 분석
  • 제품 개발자

제4장 리튬 유황 배터리

  • 기술 설명
  • 리튬 유황(Li-S) 배터리의 동작 원리
  • 비용
  • 재료 구성
  • 리튬 강도
  • 밸류체인
  • 시장
  • SWOT 분석
  • 세계 수익
  • 제품 개발자

제5장 리튬 티타네이트 산화물(LTO) 및 나이오베이트 배터리

  • 기술 설명
  • 세계 수익
  • 제품 개발자

제6장 나트륨 이온(Na 이온) 배터리

  • 기술 설명
  • 기타 유형의 배터리와의 비교 분석
  • 리튬 이온과의 비용 비교
  • 나트륨 이온 배터리 셀의 재료
  • SWOT 분석
  • 세계 수익
  • 제품 개발자

제7장 나트륨 유황 배터리

  • 기술 설명
  • 용도
  • SWOT 분석

제8장 알루미늄 이온 배터리

  • 기술 설명
  • SWOT 분석
  • 상업화
  • 세계 수익
  • 제품 개발자

제9장 전고체 배터리

  • 기술 설명
  • 특징과 장점
  • 기술 사양
  • 유형
  • 기술 준비도와 제조 상황
  • 자동차 OEM의 전략과 전개 타임라인
  • 마이크로 배터리
  • 벌크형 전고체 배터리
  • SWOT 분석
  • 제한
  • 세계 수익
  • 제품 개발자

제10장 구조 배터리 복합재료

  • 소개
  • 재료 및 아키텍처
  • 용도
  • 기술적 과제
  • 공급망
  • 시장 예측
  • 안전 고려 사항
  • 구조 배터리 복합재료의 환경 프로파일

제11장 플렉서블 배터리

  • 기술 설명
  • 기술 사양
  • 플렉서블 일렉트로닉스
  • 유연한 재료
  • 플렉서블 웨어러블 금속 유황 배터리
  • 플렉서블 웨어러블 금속 공기 배터리
  • 플렉서블 리튬 이온 배터리
  • 플렉서블 리튬 유황 배터리
  • 플렉서블 리튬 이산화망간 배터리
  • 플렉서블 아연 배터리
  • 섬유상 배터리
  • 웨어러블 에너지 저장 장치와 조합한 에너지 수확
  • SWOT 분석
  • 세계 수익
  • 제품 개발자

제12장 투명 배터리

  • 기술 설명
  • 컴포넌트
  • SWOT 분석
  • 시장 전망

제13장 분해성 배터리

  • 기술 설명
  • 컴포넌트
  • SWOT 분석
  • 시장 전망
  • 제품 개발자

제14장 프린트 배터리

  • 기술 사양
  • 컴포넌트
  • 설계
  • 주요 특징
  • 인쇄 가능한 집전체
  • 인쇄 가능한 전극
  • 재료
  • 용도
  • 인쇄 기술
  • 리튬 이온(LIB) 프린트 배터리
  • 아연 프린트 배터리
  • 3D 프린팅 배터리
  • SWOT 분석
  • 세계 수익
  • 제품 개발자

제15장 산화환원 플로우 배터리

  • 기술 설명
  • 시장 개요
  • 기술 벤치마크 - 화학 비교
  • 화학선택 매트릭스 : 용도별
  • 컴포넌트의 기술과 비용 절감의 길
  • 컴포넌트의 혁신
  • 유형
  • 산화 환원 플로우 배터리 시장
  • 세계 수익

제16장 아연계 배터리

  • 기술 설명
  • 시장 전망
  • 제품 개발자

제17장 AI 배터리 기술

  • 개요
  • 용도

제18장 프린트 슈퍼커패시터

  • 개요
  • 인쇄 방법
  • 전극 재료
  • 전해질

제19장 셀과 배터리의 설계

  • 셀 설계
  • 셀의 성능
  • 배터리 팩

제20장 기업 프로파일(기업 406사프로파일)

제21장 조사 방법

제22장 참고문헌

SHW 25.12.01

The global lithium-ion battery market is undergoing significant transformation, driven primarily by the electrification of transportation, expansion of renewable energy storage, and continued demand from consumer electronics. Current lithium-ion technology dominates commercial applications due to its established performance characteristics, manufacturing scalability, and improving cost structure, though it is approaching theoretical performance limits that necessitate development of next-generation alternatives.

Electric vehicles represent the largest application segment, with passenger cars, commercial vehicles, and two/three-wheelers collectively accounting for the majority of battery demand growth. This shift reflects regulatory pressures to reduce emissions, improvements in battery energy density enabling practical driving ranges, and expanding charging infrastructure. Regional adoption patterns vary considerably, with China leading in deployment scale, Europe advancing through policy mandates, and North America accelerating adoption through recent incentive programs. Commercial vehicle electrification progresses particularly in urban bus fleets and last-mile delivery applications, where total cost of ownership economics prove favorable despite higher upfront costs.

Stationary energy storage represents a rapidly expanding application driven by renewable energy integration requirements. Grid-scale battery systems provide essential services including frequency regulation, peak demand management, and renewable energy firming to address solar and wind intermittency. Lithium iron phosphate (LFP) chemistry dominates this segment due to cost-effectiveness, safety characteristics, and cycle life exceeding 6,000-10,000 cycles. Residential and commercial storage systems complement utility-scale deployments, offering backup power, demand charge reduction, and solar self-consumption optimization.

Consumer electronics, while representing the market's historical foundation, now exhibits slower growth as smartphone and laptop markets mature. However, absolute demand continues expanding through wearable devices, power tools, and emerging product categories. This segment drove early lithium-ion development and manufacturing scale, establishing supply chains and production capabilities that now support transportation and stationary storage applications.

Current lithium-ion technology relies predominantly on graphite anodes and various cathode chemistries including nickel manganese cobalt (NMC), lithium iron phosphate (LFP), and nickel cobalt aluminum (NCA). Cathode selection involves trade-offs between energy density, cost, cycle life, and safety. NMC offers balanced performance and dominates premium electric vehicles, while LFP gains market share in cost-sensitive applications and stationary storage despite lower energy density. Anode materials are transitioning from pure graphite toward silicon-graphite composites, with silicon content gradually increasing from current levels of 5-10% toward 30-50% as manufacturing addresses volume expansion challenges.

Next-generation battery technologies under development aim to overcome lithium-ion's inherent limitations. Solid-state batteries replace liquid electrolytes with solid ion conductors, enabling lithium metal anodes and potentially doubling energy density while improving safety. However, challenges remain in achieving adequate ionic conductivity, maintaining stable interfaces during cycling, and developing scalable manufacturing processes. Multiple companies target commercial introduction between 2025-2028, initially in premium applications.

Lithium-sulfur batteries offer theoretical energy densities approaching 500-600 Wh/kg through sulfur's high specific capacity, though practical implementation faces obstacles including polysulfide dissolution, poor sulfur conductivity, and limited cycle life. Development focuses on cathode architectures that physically confine polysulfides, electrolyte formulations suppressing shuttle effects, and lithium metal anode stabilization.

Sodium-ion batteries present a cost-effective alternative using abundant sodium resources, targeting stationary storage and entry-level electric vehicles where lower energy density proves acceptable. Lithium titanate (LTO) serves specialized applications requiring exceptional fast-charging capability and ultra-long cycle life despite energy density penalties. Other emerging technologies including lithium-metal, aluminum-ion, and various flow battery chemistries address specific application requirements where conventional lithium-ion proves suboptimal.

The battery industry faces ongoing challenges including supply chain constraints for critical materials like lithium, cobalt, and nickel; manufacturing scale-up requirements; safety and reliability validation; and establishing recycling infrastructure for circular economy implementation. Regional governments increasingly prioritize domestic manufacturing capacity and supply chain security, while technological development continues across materials science, cell design, manufacturing processes, and battery management systems. The trajectory toward widespread electrification depends fundamentally on continued battery technology advancement, cost reduction, and addressing resource availability constraints through both improved lithium-ion variants and successful commercialization of next-generation alternatives.

"The Global Li-ion and Next-Gen Battery Market 2026-2036" delivers authoritative analysis of the evolving battery technology landscape, providing essential insights for stakeholders navigating the transition from conventional lithium-ion to next-generation battery architectures through 2036.

The report encompasses exhaustive coverage of established and emerging battery technologies, including lithium-ion variants, solid-state batteries, sodium-ion systems, lithium-sulfur, lithium-metal, aluminum-ion, and redox flow batteries. Detailed market forecasts quantify demand trajectories across electric vehicles (passenger cars, commercial vehicles, buses, trucks, micro-EVs), grid-scale energy storage, residential and commercial installations, consumer electronics, and industrial applications. Regional market dynamics, technology adoption patterns, and competitive landscapes receive granular examination across all major geographies.

Technical analysis explores critical materials innovation driving performance improvements, including silicon anodes, high-nickel cathodes (NMC, NCA), lithium iron phosphate (LFP), lithium manganese iron phosphate (LMFP), lithium nickel manganese oxide (LNMO), graphene coatings, carbon nanotubes, and advanced electrolyte formulations. The report addresses manufacturing scalability challenges, cost reduction pathways, supply chain evolution, and recycling technologies through hydrometallurgical, pyrometallurgical, and direct recycling methodologies.

Emerging technologies receive comprehensive treatment, with detailed assessments of solid-state battery development (oxide, sulfide, and polymer electrolytes), semi-solid-state architectures, structural battery composites, flexible and wearable batteries, transparent batteries, degradable systems, and printed battery technologies. Specialized chapters examine artificial intelligence applications in battery development, cell design innovations including cell-to-pack and cell-to-chassis architectures, bipolar configurations, and hybrid battery systems.

Market drivers, regulatory frameworks, sustainability considerations, and PFAS elimination strategies provide context for technology transitions. The report quantifies addressable markets, technology penetration rates, pricing dynamics, and profitability outlooks across chemistry types and application segments. Energy density evolution, fast-charging capabilities, cycle life improvements, and safety enhancements receive detailed technical evaluation alongside commercialization timelines and automotive OEM deployment strategies.

Key Report Features:

  • Comprehensive market forecasts through 2036 with historical data from 2018, including GWh demand projections and market value assessments across all battery technologies and application segments
  • Detailed analysis of 20+ battery chemistries and architectures, from conventional lithium-ion variants to cutting-edge solid-state and beyond-lithium technologies
  • Extensive coverage of electric vehicle battery requirements across passenger cars, commercial vehicles, buses, trucks, construction equipment, trains, boats, and micro-mobility
  • Grid storage market intelligence spanning utility-scale installations, commercial and industrial systems, residential applications, and microgrid deployments
  • Material-level analysis of anodes (graphite, silicon, lithium titanate, lithium-metal), cathodes (NMC, LFP, NCA, LMFP, LNMO), electrolytes, separators, binders, and conductive additives
  • Manufacturing technology evaluation including production methods, cost structures, capacity expansion plans, and regional manufacturing strategies
  • Recycling technologies and circular economy strategies with comparative analysis of direct, hydrometallurgical, and pyrometallurgical approaches
  • Technology roadmaps detailing pathways to 350+ Wh/kg energy density, fast-charging capabilities, and extended cycle life
  • Regulatory analysis including PFAS elimination requirements, safety standards, and environmental compliance
  • Supply chain mapping covering raw materials, component manufacturing, cell production, and pack assembly
  • SWOT analyses for each major battery technology identifying strengths, weaknesses, opportunities, and threats
  • Competitive intelligence with strategic positioning analysis and technology differentiation assessment
  • 249 detailed tables presenting quantitative market data, technical specifications, and comparative analyses
  • 187 figures including market forecasts, technology roadmaps, process schematics, and competitive landscapes

The report features comprehensive profiles of 405 leading companies including 2D Fab AB, 24M Technologies, 3DOM Inc., 6K Energy, Abound Energy, AC Biode, ACCURE Battery Intelligence, Achelous Pure Metal Company, Accu't, Addionics, Advano, Agora Energy Technologies, Aionics, AirMembrane Corporation, Allegro Energy, Alsym Energy, Altairnano/Yinlong, Altris AB, Aluma Power, Altech Batteries, Ambri, AMO Greentech, Ampcera, Amprius, AMTE Power, Anaphite Limited, Anhui Anwa New Energy, Anthro Energy, APB Corporation, Appear, Ateios Systems, Atlas Materials, Australian Advanced Materials, Australian Vanadium Limited, AVESS, Avanti Battery Company, AZUL Energy, BAK Power Battery, BASF, BattGenie, Basquevolt, Base Power, Bedimensional, Beijing WeLion, Bemp Research, BenAn Energy Technology, BGT Materials, Big Pawer, Bihar Batteries, Biwatt Power, Black Diamond Structures, Blackstone Resources, Blue Current, Blue Solutions, Blue Spark Technologies, Bodi, Brill Power, BrightVolt, Broadbit Batteries, BTR New Energy Materials, BTRY, BYD Company Limited, Cabot Corporation, California Lithium Battery, CAMX Power, CAPCHEM, CarbonScape, CBAK Energy Technology, CCL Design, CEC Science & Technology, CATL, CellCube, CellsX, Central Glass, CENS Materials, CERQ, Ceylon Graphene Technologies, Cham Battery Technology, Chasm Advanced Materials, Chemix, Chengdu Baisige Technology, China Sodium-ion Times, Citrine Informatics, Clarios, Clim8, CMBlu Energy AG, Connexx Systems, Conovate, Coreshell, Customcells, Cymbet, Daejoo Electronic Materials, DFD, Domolynx, Dotz Nano, Dreamweaver International, Eatron Technologies, EBS Square, Ecellix, Echion Technologies, Eclipse, EcoPro BM, ElecJet, Electroflow Technologies, Elestor, Elegus Technologies, E-Magy, Emerald Battery Labs, Energy Storage Industries, Enerpoly AB, Enfucell Oy, Energy Plug Technologies, Enevate, EnPower Greentech, Enovix, Ensurge Micropower ASA, E-Zinc, Eos Energy, Enzinc, Eonix Energy, ESS Tech, Estes Energy Solutions, EthonAI, EticaAG, EVE Energy, Exencell New Energy, Factorial Energy, Faradion Limited, Farasis Energy, FDK Corporation, Feon Energy, FinDreams Battery, FlexEnergy LLC, Flint, Flow Aluminum, Flux XII, Forge Nano, Forsee Power, Fraunhofer ENAS, Front Edge Technology, Fuelium, Fuji Pigment, Fujitsu Laboratories, GAC, Ganfeng Lithium, Gelion Technologies, Geyser Batteries, General Motors, GDI, Global Graphene Group, Gnanomat, Gotion High Tech, GQenergy, Grafentek, Grafoid, Graphene Batteries AS, Graphene Manufacturing Group, Great Power Energy, Green Energy Storage, Grinergy, GRST, GridFlow, Grepow, Group14 Technologies, Guoke Tanmei New Materials, GUS Technology, H2 Inc., Hansol Chemical, HE3DA, Heiwit, Hexalayer LLC, High Performance Battery Holding AG, HiNa Battery Technologies, Hirose Paper Mfg, HiT Nano, Hitachi Zosen Corporation, Horizontal Na Energy, HPQ Nano Silicon Powders, Hua Na New Materials, Hybrid Kinetic Group, HydraRedox Iberia, IBU-tec Advanced Materials AG, Idemitsu Kosan, Ilika plc, Indi Energy, INEM Technologies, Inna New Energy, Innolith, InnovationLab, Inobat, Intecells, Intellegens, Invinity Energy Systems, Ionblox, Ionic Materials, Ionic Mineral Technologies, Ion Storage Systems LLC, Iontra, I-Ten SA, Janaenergy Technology, Jenax, Jiana Energy, JIOS Aerogel, JNC Corporation, Johnson Energy Storage, Johnson Matthey, Jolt Energy Storage, JR Energy Solution, Kemiwatt, Kite Rise Technologies, KoreaGraph, Korid Energy/AVESS, Koura, Kusumoto Chemicals, Largo, Le System, Lepu Sodium Power, LeydenJar Technologies, LG Energy Solutions, LiBest, Libode New Material, LiCAP Technologies, Li-Fun Technology, Li-Metal Corp, LiNa Energy, LIND Limited, Lionrock Batteries, LionVolt BV, Li-S Energy, Lithium Werks BV, LIVA Power Management Systems, Lucky Sodium Storage, Luxera Energy, Lyten, Merck, Microvast, Mitsubishi Chemical Corporation, Molyon, Monolith AI, Moonwat, mPhase Technologies, Murata Manufacturing, NanoGraf Corporation, Nacoe Energy, nanoFlocell, Nanom, Nanomakers, Nano One Materials, NanoPow AS, Nanoramic Laboratories, Nanoresearch, Nanotech Energy, Nascent Materials, Natrium Energy, Nawa Technologies, NDB, NEC Corporation, NEI Corporation, Neo Battery Materials, New Dominion Enterprises, Nexeon, NGK Insulators, NIO, Nippon Chemicon, Nippon Electric Glass, Noco-noco, Noon Energy, Nordische Technologies, Novonix, Nuriplan, Nuvola Technology, Nuvvon and many more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The Li-ion Battery Market in 2025
  • 1.2. Global Market Forecasts to 2036
    • 1.2.1. Addressable markets
    • 1.2.2. Li-ion battery pack demand for XEV (GWh)
      • 1.2.2.1. Battery Chemistry Distribution by Vehicle Type 2036
      • 1.2.2.2. OEM Strategies 2036
    • 1.2.3. Li-ion battery market value for XEV ($B)
      • 1.2.3.1. Market Value Dynamics
      • 1.2.3.2. Price Trajectory Drivers
    • 1.2.4. Semi-solid-state battery market forecast (GWh)
      • 1.2.4.1. Technology Roadmap
      • 1.2.4.2. Competitive Positioning
      • 1.2.4.3. Technology Evolution 2025-2036
    • 1.2.5. Semi-solid-state battery market value ($B)
      • 1.2.5.1. Pricing Dynamics
    • 1.2.6. Solid-state battery market forecast (GWh)
    • 1.2.7. Sodium-ion battery market forecast (GWh)
      • 1.2.7.1. Growth Analysis
    • 1.2.8. Sodium-ion battery market value ($B)
      • 1.2.8.1. Pricing Analysis
      • 1.2.8.2. Profitability Outlook for Sodium-Ion Manufacturers
    • 1.2.9. Li-ion battery demand versus beyond Li-ion batteries demand
      • 1.2.9.1. Market Transition Analysis
      • 1.2.9.2. Long-Term Outlook (Post-2036)
      • 1.2.9.3. Why Beyond Li-ion Remains Limited Through 2036
      • 1.2.9.4. Market Share Trajectories by Technology
    • 1.2.10. BEV car cathode forecast (GWh)
    • 1.2.11. BEV anode forecast (GWh)
    • 1.2.12. BEV anode forecast ($B)
    • 1.2.13. EV cathode forecast (GWh)
    • 1.2.14. EV Anode forecast (GWh)
    • 1.2.15. Advanced anode forecast (GWh)
    • 1.2.16. Advanced anode forecast (S$B)
      • 1.2.16.1. Market Dynamics 2036
  • 1.3. The global market for advanced Li-ion batteries
    • 1.3.1. Electric vehicles
      • 1.3.1.1. Market overview
      • 1.3.1.2. Battery Electric Vehicles
      • 1.3.1.3. Electric buses, vans and trucks
        • 1.3.1.3.1. Electric medium and heavy duty trucks
        • 1.3.1.3.2. Electric light commercial vehicles (LCVs)
        • 1.3.1.3.3. Electric buses
        • 1.3.1.3.4. Micro EVs
      • 1.3.1.4. Electric off-road
        • 1.3.1.4.1. Construction vehicles
        • 1.3.1.4.2. Electric trains
        • 1.3.1.4.3. Electric boats
      • 1.3.1.5. Market demand and forecasts
      • 1.3.1.6. Market Analysis
        • 1.3.1.6.1. BEV Passenger Cars - Dominant Segment
        • 1.3.1.6.2. PHEV Passenger Cars - Transitional Technology:
        • 1.3.1.6.3. Profitability Analysis 2036
        • 1.3.1.6.4. Electric Buses
        • 1.3.1.6.5. Delivery Vans
        • 1.3.1.6.6. Medium-Duty Trucks
        • 1.3.1.6.7. Heavy-Duty Trucks
        • 1.3.1.6.8. Micro-EVs
          • 1.3.1.6.8.1. Micro-EV Market Overview
    • 1.3.2. Grid storage
      • 1.3.2.1. Market overview
      • 1.3.2.2. Technologies
      • 1.3.2.3. Market demand and forecasts
      • 1.3.2.4. Utility-Scale Grid Storage
        • 1.3.2.4.1. Application Categories
      • 1.3.2.5. Key Market Drivers
      • 1.3.2.6. Commercial & Industrial (C&I) Grid Storage
        • 1.3.2.6.1. Application Categories:
      • 1.3.2.7. Residential Grid Storage
        • 1.3.2.7.1. Application Categories
        • 1.3.2.7.2. Market Outlook
    • 1.3.3. Consumer electronics
      • 1.3.3.1. Market overview
      • 1.3.3.2. Technologies
      • 1.3.3.3. Market demand and forecasts
    • 1.3.4. Stationary batteries
      • 1.3.4.1. Market overview
      • 1.3.4.2. Technologies
      • 1.3.4.3. Market demand and forecasts
  • 1.4. Market drivers
  • 1.5. Battery market megatrends
  • 1.6. Advanced materials for batteries
  • 1.7. Motivation for battery development beyond lithium
  • 1.8. Battery chemistries

2. LI-ION BATTERIES

  • 2.1. Types of Lithium Batteries
  • 2.2. Anode materials
    • 2.2.1. Graphite
    • 2.2.2. Lithium Titanate
    • 2.2.3. Lithium Metal
    • 2.2.4. Silicon anodes
  • 2.3. SWOT analysis
  • 2.4. Trends in the Li-ion battery market
  • 2.5. Li-ion technology roadmap
  • 2.6. Silicon anodes
    • 2.6.1. Benefits
    • 2.6.2. Silicon anode performance
    • 2.6.3. Development in li-ion batteries
      • 2.6.3.1. Manufacturing silicon
      • 2.6.3.2. Commercial production
      • 2.6.3.3. Costs
      • 2.6.3.4. Value chain
      • 2.6.3.5. Markets and applications
        • 2.6.3.5.1. EVs
        • 2.6.3.5.2. Consumer electronics
        • 2.6.3.5.3. Energy Storage
        • 2.6.3.5.4. Portable Power Tools
        • 2.6.3.5.5. Emergency Backup Power
      • 2.6.3.6. Future outlook
    • 2.6.4. Consumption
      • 2.6.4.1. By anode material type
      • 2.6.4.2. By end use market
    • 2.6.5. Alloy anode materials
    • 2.6.6. Silicon-carbon composites
    • 2.6.7. Silicon oxides and coatings
    • 2.6.8. Carbon nanotubes in Li-ion
    • 2.6.9. Graphene coatings for Li-ion
    • 2.6.10. Prices
    • 2.6.11. Companies
  • 2.7. Li-ion electrolytes
  • 2.8. Cathodes
    • 2.8.1. Materials
      • 2.8.1.1. High and Ultra-High nickel cathode materials
        • 2.8.1.1.1. Types
        • 2.8.1.1.2. Benefits
        • 2.8.1.1.3. Stability
        • 2.8.1.1.4. Single Crystal Cathodes
        • 2.8.1.1.5. Commercial activity
        • 2.8.1.1.6. Manufacturing
        • 2.8.1.1.7. High manganese content
      • 2.8.1.2. Zero-cobalt NMx
        • 2.8.1.2.1. Overview
        • 2.8.1.2.2. Ultra-high nickel, zero-cobalt cathodes
        • 2.8.1.2.3. Extending the operating voltage
        • 2.8.1.2.4. Operating NMC cathodes at high voltages
      • 2.8.1.3. Lithium-Manganese-Rich (Li-Mn-Rich, LMR-NMC)
        • 2.8.1.3.1. Li-Mn-rich cathodes LMR-NMC
        • 2.8.1.3.2. Stability
        • 2.8.1.3.3. Energy density
        • 2.8.1.3.4. Commercialization
        • 2.8.1.3.5. Hybrid battery chemistry design for manganese-rich
      • 2.8.1.4. Lithium Cobalt Oxide(LiCoO2) - LCO
      • 2.8.1.5. Lithium Iron Phosphate(LiFePO4) - LFP
      • 2.8.1.6. Lithium Manganese Oxide (LiMn2O4) - LMO
      • 2.8.1.7. Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) - NMC
      • 2.8.1.8. Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) - NCA
      • 2.8.1.9. Lithium manganese phosphate (LiMnP)
      • 2.8.1.10. Lithium manganese iron phosphate (LiMnFePO4 or LMFP)
        • 2.8.1.10.1. Key characteristics
        • 2.8.1.10.2. LMFP energy density
        • 2.8.1.10.3. Costs
        • 2.8.1.10.4. Saft phosphate-based cathodes
        • 2.8.1.10.5. Commercialization
        • 2.8.1.10.6. Challenges
        • 2.8.1.10.7. LMFP (lithium manganese iron phosphate) market
        • 2.8.1.10.8. Companies
      • 2.8.1.11. Lithium nickel manganese oxide (LNMO)
        • 2.8.1.11.1. Overview
        • 2.8.1.11.2. High-voltage spinel cathode LNMO
        • 2.8.1.11.3. LNMO energy density
        • 2.8.1.11.4. Cathode chemistry selection
        • 2.8.1.11.5. LNMO (lithium nickel manganese oxide) high-voltage spinel cathodes cost
      • 2.8.1.12. Graphite and LTO
      • 2.8.1.13. Silicon
      • 2.8.1.14. Lithium metal
    • 2.8.2. Alternative Cathode Production
      • 2.8.2.1. Production/Synthesis
      • 2.8.2.2. Commercial development
      • 2.8.2.3. Recycling cathodes
    • 2.8.3. Comparison of key lithium-ion cathode materials
    • 2.8.4. Emerging cathode material synthesis methods
    • 2.8.5. Cathode coatings
  • 2.9. Binders and conductive additives
    • 2.9.1. Materials
  • 2.10. Separators
    • 2.10.1. Materials
  • 2.11. High-Performance Lithium-Ion Systems: Approaching 350 Wh/kg
    • 2.11.1. Energy Density Evolution and Current State
    • 2.11.2. Pathways to 350+ Wh/kg
      • 2.11.2.1. Cathode Advances
      • 2.11.2.2. Anode Advances
      • 2.11.2.3. Electrolyte and Cell Design Optimization
    • 2.11.3. Performance Projections and Technology Roadmap
      • 2.11.3.1. Critical Dependencies and Risk Factors
    • 2.11.4. Commercial Deployment Timeline
  • 2.12. PFAS-Free Battery Additives and Regulatory Transitions
    • 2.12.1. Global Regulatory Trend Analysis
    • 2.12.2. PFAS Materials in Current Battery Manufacturing
    • 2.12.3. Non-PFAS Cathode Binders - The Critical Challenge
    • 2.12.4. Non-PFAS Cathode Binder Technologies
      • 2.12.4.1. Polyacrylic Acid (PAA) and Lithium Polyacrylate (Li-PAA)
      • 2.12.4.2. Carboxymethyl Cellulose (CMC) and Modified Cellulose Derivatives
      • 2.12.4.3. Polyacrylamide (PAM) and Acrylamide Copolymers
      • 2.12.4.4. Styrene-Butadiene Rubber (SBR) and Synthetic Rubber Derivatives
      • 2.12.4.5. Hybrid and Composite Binder Systems
    • 2.12.5. PFAS in Electrolyte Additives - Critical Performance Trade-offs
      • 2.12.5.1. Major PFAS Electrolyte Additives
    • 2.12.6. Market Analysis
  • 2.13. Platinum group metals
  • 2.14. Li-ion battery market players
  • 2.15. Li-ion recycling
    • 2.15.1. Comparison of recycling techniques
    • 2.15.2. Hydrometallurgy
      • 2.15.2.1. Method overview
        • 2.15.2.1.1. Solvent extraction
      • 2.15.2.2. SWOT analysis
    • 2.15.3. Pyrometallurgy
      • 2.15.3.1. Method overview
      • 2.15.3.2. SWOT analysis
    • 2.15.4. Direct recycling
      • 2.15.4.1. Method overview
        • 2.15.4.1.1. Electrolyte separation
        • 2.15.4.1.2. Separating cathode and anode materials
        • 2.15.4.1.3. Binder removal
        • 2.15.4.1.4. Relithiation
        • 2.15.4.1.5. Cathode recovery and rejuvenation
        • 2.15.4.1.6. Hydrometallurgical-direct hybrid recycling
      • 2.15.4.2. SWOT analysis
    • 2.15.5. Other methods
      • 2.15.5.1. Mechanochemical Pretreatment
      • 2.15.5.2. Electrochemical Method
      • 2.15.5.3. Ionic Liquids
    • 2.15.6. Recycling of Specific Components
      • 2.15.6.1. Anode (Graphite)
      • 2.15.6.2. Cathode
      • 2.15.6.3. Electrolyte
    • 2.15.7. Recycling of Beyond Li-ion Batteries
      • 2.15.7.1. Conventional vs Emerging Processes
  • 2.16. Global revenues

3. LITHIUM-METAL BATTERIES

  • 3.1. Technology description
  • 3.2. Solid-state batteries and lithium metal anodes
  • 3.3. Increasing energy density
  • 3.4. Lithium-metal anodes
    • 3.4.1. Overview
  • 3.5. Challenges
  • 3.6. Energy density
  • 3.7. Anode-less Cells
    • 3.7.1. Overview
    • 3.7.2. Benefits
    • 3.7.3. Key companies
  • 3.8. Lithium-metal and solid-state batteries
  • 3.9. Hybrid batteries
  • 3.10. Applications
  • 3.11. SWOT analysis
  • 3.12. Product developers

4. LITHIUM-SULFUR BATTERIES

  • 4.1. Technology description
  • 4.2. Operating principle of lithium-sulfur (Li-S) batteries
    • 4.2.1. Advantages
    • 4.2.2. Challenges
    • 4.2.3. Commercialization
  • 4.3. Costs
  • 4.4. Material composition
  • 4.5. Lithium intensity
  • 4.6. Value chain
  • 4.7. Markets
  • 4.8. SWOT analysis
  • 4.9. Global revenues
  • 4.10. Product developers

5. LITHIUM TITANATE OXIDE (LTO) AND NIOBATE BATTERIES

  • 5.1. Technology description
    • 5.1.1. Lithium titanate oxide (LTO)
    • 5.1.2. Niobium titanium oxide (NTO)
      • 5.1.2.1. Niobium tungsten oxide
      • 5.1.2.2. Vanadium oxide anodes
  • 5.2. Global revenues
  • 5.3. Product developers

6. SODIUM-ION (NA-ION) BATTERIES

  • 6.1. Technology description
    • 6.1.1. Cathode materials
      • 6.1.1.1. Layered transition metal oxides
        • 6.1.1.1.1. Types
        • 6.1.1.1.2. Cycling performance
        • 6.1.1.1.3. Advantages and disadvantages
        • 6.1.1.1.4. Market prospects for LO SIB
      • 6.1.1.2. Polyanionic materials
        • 6.1.1.2.1. Advantages and disadvantages
        • 6.1.1.2.2. Types
        • 6.1.1.2.3. Market prospects for Poly SIB
      • 6.1.1.3. Prussian blue analogues (PBA)
        • 6.1.1.3.1. Types
        • 6.1.1.3.2. Advantages and disadvantages
        • 6.1.1.3.3. Market prospects for PBA-SIB
    • 6.1.2. Anode materials
      • 6.1.2.1. Hard carbons
      • 6.1.2.2. Carbon black
      • 6.1.2.3. Graphite
      • 6.1.2.4. Carbon nanotubes
      • 6.1.2.5. Graphene
      • 6.1.2.6. Alloying materials
      • 6.1.2.7. Sodium Titanates
      • 6.1.2.8. Sodium Metal
    • 6.1.3. Electrolytes
  • 6.2. Comparative analysis with other battery types
  • 6.3. Cost comparison with Li-ion
  • 6.4. Materials in sodium-ion battery cells
  • 6.5. SWOT analysis
  • 6.6. Global revenues
  • 6.7. Product developers
    • 6.7.1. Battery Manufacturers
    • 6.7.2. Large Corporations
    • 6.7.3. Automotive Companies
    • 6.7.4. Chemicals and Materials Firms

7. SODIUM-SULFUR BATTERIES

  • 7.1. Technology description
  • 7.2. Applications
  • 7.3. SWOT analysis

8. ALUMINIUM-ION BATTERIES

  • 8.1. Technology description
  • 8.2. SWOT analysis
  • 8.3. Commercialization
  • 8.4. Global revenues
  • 8.5. Product developers

9. SOLID STATE BATTERIES

  • 9.1. Technology description
    • 9.1.1. Solid-state electrolytes
  • 9.2. Features and advantages
  • 9.3. Technical specifications
  • 9.4. Types
  • 9.5. Technology Readiness and Manufacturing Status
    • 9.5.1. Manufacturing Process Comparison
    • 9.5.2. Critical Manufacturing Challenges and Solutions
  • 9.6. Automotive OEM Strategies and Deployment Timelines
  • 9.7. Microbatteries
    • 9.7.1. Introduction
    • 9.7.2. Materials
    • 9.7.3. Applications
    • 9.7.4. 3D designs
      • 9.7.4.1. 3D printed batteries
  • 9.8. Bulk type solid-state batteries
  • 9.9. SWOT analysis
  • 9.10. Limitations
  • 9.11. Global revenues
  • 9.12. Product developers

10. STRUCTURAL BATTERY COMPOSITES

  • 10.1. Introduction
  • 10.2. Materials and Architecture
  • 10.3. Applications
    • 10.3.1. Electric Vehicle Applications
    • 10.3.2. Aerospace and Aviation
    • 10.3.3. Consumer Electronics and Portable Devices
    • 10.3.4. Construction and Infrastructure
  • 10.4. Technical Challenges
    • 10.4.1. Energy Density Limitations
    • 10.4.2. Long-term Mechanical and Electrochemical Stability
  • 10.5. Supply chain
  • 10.6. Market Forecasts
  • 10.7. Safety Considerations
    • 10.7.1. Safety Challenges
  • 10.8. Environmental profile of structural battery composites

11. FLEXIBLE BATTERIES

  • 11.1. Technology description
  • 11.2. Technical specifications
    • 11.2.1. Approaches to flexibility
  • 11.3. Flexible electronics
  • 11.4. Flexible materials
  • 11.5. Flexible and wearable Metal-sulfur batteries
  • 11.6. Flexible and wearable Metal-air batteries
  • 11.7. Flexible Lithium-ion Batteries
    • 11.7.1. Types of Flexible/stretchable LIBs
      • 11.7.1.1. Flexible planar LiBs
      • 11.7.1.2. Flexible Fiber LiBs
      • 11.7.1.3. Flexible micro-LiBs
      • 11.7.1.4. Stretchable lithium-ion batteries
      • 11.7.1.5. Origami and kirigami lithium-ion batteries
  • 11.8. Flexible Li/S batteries
    • 11.8.1. Components
    • 11.8.2. Carbon nanomaterials
  • 11.9. Flexible lithium-manganese dioxide (Li-MnO2) batteries
  • 11.10. Flexible zinc-based batteries
    • 11.10.1. Components
      • 11.10.1.1. Anodes
      • 11.10.1.2. Cathodes
    • 11.10.2. Challenges
    • 11.10.3. Flexible zinc-manganese dioxide (Zn-Mn) batteries
    • 11.10.4. Flexible silver-zinc (Ag-Zn) batteries
    • 11.10.5. Flexible Zn-Air batteries
    • 11.10.6. Flexible zinc-vanadium batteries
  • 11.11. Fiber-shaped batteries
    • 11.11.1. Carbon nanotubes
    • 11.11.2. Types
    • 11.11.3. Applications
    • 11.11.4. Challenges
  • 11.12. Energy harvesting combined with wearable energy storage devices
  • 11.13. SWOT analysis
  • 11.14. Global revenues
  • 11.15. Product developers

12. TRANSPARENT BATTERIES

  • 12.1. Technology description
  • 12.2. Components
  • 12.3. SWOT analysis
  • 12.4. Market outlook

13. DEGRADABLE BATTERIES

  • 13.1. Technology description
  • 13.2. Components
  • 13.3. SWOT analysis
  • 13.4. Market outlook
  • 13.5. Product developers

14. PRINTED BATTERIES

  • 14.1. Technical specifications
  • 14.2. Components
  • 14.3. Design
  • 14.4. Key features
  • 14.5. Printable current collectors
  • 14.6. Printable electrodes
  • 14.7. Materials
  • 14.8. Applications
  • 14.9. Printing techniques
  • 14.10. Lithium-ion (LIB) printed batteries
  • 14.11. Zinc-based printed batteries
  • 14.12. 3D Printed batteries
    • 14.12.1. 3D Printing techniques for battery manufacturing
    • 14.12.2. Materials for 3D printed batteries
      • 14.12.2.1. Electrode materials
      • 14.12.2.2. Electrolyte Materials
  • 14.13. SWOT analysis
  • 14.14. Global revenues
  • 14.15. Product developers

15. REDOX FLOW BATTERIES

  • 15.1. Technology description
  • 15.2. Market Overview
  • 15.3. Technology Benchmarking - Chemistry Comparison
  • 15.4. Chemistry Selection Matrix by Application
  • 15.5. Component Technologies and Cost Reduction Pathways
  • 15.6. Component Innovation
  • 15.7. Types
    • 15.7.1. Vanadium redox flow batteries (VRFB)
      • 15.7.1.1. Technology description
      • 15.7.1.2. SWOT analysis
      • 15.7.1.3. Market players
    • 15.7.2. Zinc-bromine flow batteries (ZnBr)
      • 15.7.2.1. Technology description
      • 15.7.2.2. SWOT analysis
      • 15.7.2.3. Market players
    • 15.7.3. Polysulfide bromine flow batteries (PSB)
      • 15.7.3.1. Technology description
      • 15.7.3.2. SWOT analysis
    • 15.7.4. Iron-chromium flow batteries (ICB)
      • 15.7.4.1. Technology description
      • 15.7.4.2. SWOT analysis
      • 15.7.4.3. Market players
    • 15.7.5. All-Iron flow batteries
      • 15.7.5.1. Technology description
      • 15.7.5.2. SWOT analysis
      • 15.7.5.3. Market players
    • 15.7.6. Zinc-iron (Zn-Fe) flow batteries
      • 15.7.6.1. Technology description
      • 15.7.6.2. SWOT analysis
      • 15.7.6.3. Market players
    • 15.7.7. Hydrogen-bromine (H-Br) flow batteries
      • 15.7.7.1. Technology description
      • 15.7.7.2. SWOT analysis
      • 15.7.7.3. Market players
    • 15.7.8. Hydrogen-Manganese (H-Mn) flow batteries
      • 15.7.8.1. Technology description
      • 15.7.8.2. SWOT analysis
      • 15.7.8.3. Market players
    • 15.7.9. Organic flow batteries
      • 15.7.9.1. Technology description
      • 15.7.9.2. SWOT analysis
      • 15.7.9.3. Market players
    • 15.7.10. Emerging Flow-Batteries
      • 15.7.10.1. Semi-Solid Redox Flow Batteries
      • 15.7.10.2. Solar Redox Flow Batteries
      • 15.7.10.3. Air-Breathing Sulfur Flow Batteries
      • 15.7.10.4. Metal-CO2 Batteries
    • 15.7.11. Hybrid Flow Batteries
      • 15.7.11.1. Zinc-Cerium Hybrid Flow Batteries
        • 15.7.11.1.1. Technology description
      • 15.7.11.2. Zinc-Polyiodide Flow Batteries
        • 15.7.11.2.1. Technology description
      • 15.7.11.3. Zinc-Nickel Hybrid Flow Batteries
        • 15.7.11.3.1. Technology description
      • 15.7.11.4. Zinc-Bromine Hybrid Flow Batteries
        • 15.7.11.4.1. Technology description
      • 15.7.11.5. Vanadium-Polyhalide Flow Batteries
        • 15.7.11.5.1. Technology description
  • 15.8. Markets for redox flow batteries
  • 15.9. Global revenues
    • 15.9.1. Regional Market Analysis and Capacity Distribution

16. ZN-BASED BATTERIES

  • 16.1. Technology description
    • 16.1.1. Zinc-Air batteries
    • 16.1.2. Zinc-ion batteries
    • 16.1.3. Zinc-bromide
  • 16.2. Market outlook
  • 16.3. Product developers

17. AI BATTERY TECHNOLOGY

  • 17.1. Overview
  • 17.2. Applications
    • 17.2.1. Machine Learning
      • 17.2.1.1. Overview
    • 17.2.2. Material Informatics
      • 17.2.2.1. Overview
      • 17.2.2.2. Companies
    • 17.2.3. Cell Testing
      • 17.2.3.1. Overview
      • 17.2.3.2. Companies
    • 17.2.4. Cell Assembly and Manufacturing
      • 17.2.4.1. Overview
      • 17.2.4.2. Companies
    • 17.2.5. Battery Analytics
      • 17.2.5.1. Overview
      • 17.2.5.2. Companies
    • 17.2.6. Second Life Assessment
      • 17.2.6.1. Overview
      • 17.2.6.2. Companies

18. PRINTED SUPERCAPACITORS

  • 18.1. Overview
  • 18.2. Printing methods
  • 18.3. Electrode materials
  • 18.4. Electrolytes

19. CELL AND BATTERY DESIGN

  • 19.1. Cell Design
    • 19.1.1. Overview
      • 19.1.1.1. Larger cell formats
      • 19.1.1.2. Bipolar battery architecture
      • 19.1.1.3. Thick Format Electrodes
      • 19.1.1.4. Dual Electrolyte Li-ion
    • 19.1.2. Commercial examples
      • 19.1.2.1. Tesla 4680 Tabless Cell
      • 19.1.2.2. EnPower multi-layer electrode technology
      • 19.1.2.3. Prieto Battery
      • 19.1.2.4. Addionics
    • 19.1.3. Electrolyte Additives
    • 19.1.4. Enhancing battery performance
  • 19.2. Cell Performance
    • 19.2.1. Energy density
      • 19.2.1.1. BEV cell energy
      • 19.2.1.2. Cell energy density
  • 19.3. Battery Packs
    • 19.3.1. Cell-to-pack
    • 19.3.2. Cell-to-chassis/body
    • 19.3.3. Bipolar batteries
    • 19.3.4. Hybrid battery packs
      • 19.3.4.1. CATL
      • 19.3.4.2. Our Next Energy
      • 19.3.4.3. Nio
    • 19.3.5. Battery Management System (BMS)
      • 19.3.5.1. Overview
      • 19.3.5.2. Advantages
      • 19.3.5.3. Innovation
      • 19.3.5.4. Fast charging capabilities
      • 19.3.5.5. Wireless Battery Management System technology

20. COMPANY PROFILES (406 company profiles)

21. RESEARCH METHODOLOGY

  • 21.1. Report scope
  • 21.2. Research methodology

22. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제