시장보고서
상품코드
1891237

합성생물학·바이오제조 세계 시장(2026-2036년)

The Global Synthetic Biology & Biomanufacturing Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 1,135 Pages, 348 Tables, 158 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 합성생물학 및 바이오 제조 시장은 현대 바이오 경제에서 가장 혁신적인 분야 중 하나이며, 첨단 생명공학, 계산생물학, 지속가능한 제조의 교차로에 위치하고 있습니다. 이 시장은 공학 원리를 생물학에 적용하여 화학, 재료, 연료, 의약품, 식품 성분의 산업적 생산을 위한 생물학적 시스템의 설계, 구축, 최적화를 가능하게 하는 것을 포함합니다.

합성생물학 시장은 2036년까지 석유화학 공정 및 기존 제조에 대한 지속가능한 대안을 찾는 기업이 증가함에 따라 거의 모든 산업 부문에서 바이오 생산 방식의 채택이 가속화됨에 따라 상당한 성장을 보일 것으로 예측됩니다. 전체 바이오 제조 산업에서 중요한 구성 요소인 산업용 효소 부문은 세제, 식품 가공, 섬유, 바이오연료, 의약품 제조에 대한 사용 확대로 인해 연평균 8.6% 성장할 것으로 예측됩니다.

시장 변화를 촉진하는 세 가지 핵심 기술 플랫폼이 있습니다. 정밀 발효는 유전자 변형 미생물을 이용하여 특정 단백질, 효소, 대사산물을 전례 없는 효율로 생산하면서 대체 단백질, 유제품 성분, 특수 화학물질에 대한 용도를 찾습니다. 무세포 시스템은 기존 세포의 제약을 피하는 새로운 방법으로, 40-70%의 에너지 효율 향상, 반응 시간 단축, 더 깨끗한 제품 프로파일을 실현합니다. AI 설계 효소는 머신러닝과 계산생물학을 활용하여 효소 개발 기간을 몇년단위에서 몇 주 단위로 단축하고, 산업 공정용 바이오 촉매의 신속한 최적화를 가능하게 합니다.

시장은 6가지 주요 응용 분야로 나뉩니다. 바이오의약품은 여전히 가장 큰 부문으로, 모노클로널 항체, 재조합 단백질, 백신, 세포-유전자치료제, 바이오시밀러 등이 포함됩니다. 산업용 효소는 세제, 식품가공, 섬유, 제지 및 펄프, 가죽가공, 바이오연료 생산 등 다양한 용도로 사용되며, 탄수화물 분해효소가 약 38% 시장 점유율을 차지하고 있습니다. 바이오연료에는 바이오에탄올, 바이오디젤, 바이오가스, 지속가능한 항공 연료, 신흥 바이오수소 생산이 포함됩니다. 바이오플라스틱 및 바이오소재에는 폴리유산(PLA), 폴리하이드록시알카노에이트(PHA), 바이오 폴리에틸렌, 거미줄 단백질, 균사체 복합체 등의 신소재가 포함됩니다. 바이오화학은 유기산, 아미노산, 비타민, 바이오 계면활성제, 바이오 단량체를 포함합니다. 바이오농업은 지속가능한 농업에 사용되는 바이오 농약, 바이오 비료, 생물자극제를 대상으로 합니다.

여러 요인이 시장 성장을 주도하고 있습니다. 규제 압력과 지속가능성에 대한 요구가 바이오프로세스을 점점 더 유리하게 만드는 한편, 탄소 가격 메커니즘은 생물학적 생산의 경제적 경쟁력을 향상시키고 있습니다. CRISPR 유전체 편집, DNA 합성, 하이스루풋 스크리닝의 기술 발전은 개발 기간과 비용을 획기적으로 단축시켰습니다. AI와 생물학적 설계의 융합은 새로운 효소 및 대사 경로의 발견과 최적화를 가속화하고 있습니다. 기업의 지속가능성에 대한 노력과 친환경 제품에 대한 소비자 수요가 공급망 전반에 걸쳐 친환경 제품 채택을 촉진하고 있습니다.

경쟁 환경은 기존 생명공학 및 화학 기업뿐만 아니라 스타트업 기업 및 플랫폼 기술 프로바이더로 구성된 활기찬 생태계를 특징으로 합니다. 기반 기술 프로바이더 및 균주 설계 전문가부터 생산 규모의 제조업체 및 최종 제품 개발업체까지 700개사 이상의 기업이 밸류체인 전반에 걸쳐 적극적으로 참여하고 있습니다. 벤처캐피털, 기업의 전략적 투자, 정부 자금 프로그램의 지원으로 지속적인 혁신과 스케일업이 이루어지고 있으며, 투자 활동도 활발하게 이루어지고 있습니다.

세계의 합성생물학 및 바이오매뉴팩처링 시장에 대해 조사 분석했으며, 시장 규모 예측, 기술 로드맵, 지역별 시장 매출 및 예측, 900개 이상의 기업 개요 등의 정보를 전해드립니다.

프로파일에 포함된 기업

  • 3Bar Biologics
  • 3DBioFibR
  • 3M
  • 9Fiber
  • AB Enzymes
  • AbbVie
  • Absci Corp
  • ADBioplastics
  • Adaptive Symbiotic Technologies
  • Aduro Clean Technologies
  • Advanced Biochemical
  • Aemetis
  • AEP Polymers
  • Afyren
  • AgBiome
  • Agragene
  • AGRANA Staerke
  • Agrinos
  • Agrivida
  • Agrobiomics
  • AgroSpheres
  • Again Bio
  • Agilyx
  • AI Proteins
  • AIO
  • Air Company
  • Aircela
  • Algaeing
  • Algal Bio
  • Algenesis Corporation
  • Algenol
  • Algenie
  • Alginor ASA
  • Algix
  • Allied Carbon Solutions
  • Allozymes
  • Alnylam Pharmaceuticals
  • Alpha Biofuels
  • Alto Neuroscience
  • AM Green
  • Amatera
  • AmicaTerra
  • Amfora
  • Amgen
  • AmphiStar
  • Amphista Therapeutics
  • Amply Discovery
  • AMSilk
  • Amyris
  • Ananas Anam
  • Andermatt Biocontrol
  • Andritz
  • Anellotech
  • An Phat Bioplastics
  • Ankor Bioplastics
  • ANPOLY
  • Anqing He Xing Chemical
  • Antheia
  • Aphea.Bio
  • APChemi
  • Apeiron Bioenergy
  • Applied Bioplastics
  • Applied Research Associates
  • Aqemia
  • Aquafil
  • Aquapak Polymers
  • Arcadia Biosciences
  • Arcadia eFuels
  • Archer Daniel Midland
  • Arctic Biomaterials
  • Ardra Bio
  • Arekapak
  • Arkema
  • Arlanxeo
  • Arrow Greentech
  • Arysta LifeScience
  • Arzeda Corp
  • Asahi Kasei Chemicals
  • Ascribe Bioscience
  • AstraZeneca
  • Athos Therapeutics
  • Atlantica Agricola
  • Atmonia
  • Atomwise
  • Attis Innovations
  • Aurigene Pharmaceutical Services
  • AVA Biochem
  • Avalon BioEnergy
  • Avani Eco
  • Avantium
  • Avicenna Biosciences
  • Avient Corporation
  • Avioxx
  • Axcelon Biopolymers
  • Ayas Renewables
  • Azolla
  • Azotic Technologies
  • Balrampur Chini Mills
  • Bambooder Biobased Fibers
  • Basecamp Research
  • BASF
  • Bast Fiber Technologies
  • Bayer CropScience
  • BBCA Biochemical & GALACTIC
  • Bcomp
  • BDI-BioEnergy International
  • Bee Vectoring Technologies
  • BEE Biofuel
  • BeiGene
  • Benefuel
  • BenevolentAI
  • Benson Hill
  • Better Fibre Technologies
  • Betulium
  • Beyond Leather Materials
  • BigHat Biosciences
  • BigSis
  • Bio2Materials
  • Bio2Oil
  • BioAge Labs
  • Biobest
  • BioBetter
  • Biocatalysts
  • Bioceres Crop Solutions
  • Biocon
  • BioConsortia
  • BIOD Energy
  • Bioextrax
  • Bio Fab NZ
  • BIO-FED
  • Biofibre
  • Biofiber Tech Sweden
  • Biofine Technology
  • Bioform Technologies
  • Biofy
  • Biogen
  • BiogasClean
  • Biojet
  • Biokemik
  • Bioleather
  • Biolevel
  • Biolexis Therapeutics
  • Bioline AgroSciences
  • BioLogiQ
  • BIOLO
  • BIO-LUTIONS International
  • Biome Bioplastics
  • Biome Makers
  • BioMap
  • Biomass Resin Holdings
  • Biomatter Designs
  • Bionema
  • BioNTech
  • BioPhy
  • Biophilica
  • BioPhero
  • Bioplastech
  • Bioplastix
  • Biopolax
  • Bioptimus
  • BioSolutions
  • Biosyntia
  • Biotalys
  • BIOTEC
  • Biotecam
  • Biotelliga
  • Biotensidion
  • Biotic Circular Technologies
  • Biotrem
  • Biotrop
  • Biovox
  • Bioweg
  • BlockTexx
  • Bloom Biorenewables
  • BlueAlp Technology
  • Blue BioFuels
  • Blue Ocean Closures
  • Bluepha
  • BluCon Biotech
  • Bolt Threads
  • Bontera
  • Borealis
  • Boreal Bioproducts
  • Borregaard Chemcell
  • Bosk Bioproducts
  • Botanical Solutions
  • Bowil Biotech
  • B-PREG
  • Braskem
  • Braven Environmental
  • Brightseed
  • Brightmark Energy
  • Bristol Myers Squibb
  • BTG Bioliquids
  • Bucha Bio
  • Burgo Group
  • Buyo Bioplastic
  • Byogy Renewables
  • B'ZEOS
  • C1 Green Chemicals
  • C16 Biosciences
  • Calyxt
  • Cambrium
  • Caphenia
  • CARAPAC Company
  • Carapace Biopolymers
  • Carbonade
  • CarbonBridge
  • Carbon Collect
  • Carbon Crusher
  • Carbon Engineering
  • Carbon Infinity
  • Carbon Recycling International
  • Carbon Sink
  • Carbonwave
  • Carbios
  • Carbiolice
  • Carbyon
  • Cardia Bioplastics
  • Cardolite
  • Cargill
  • Cascade Biocatalysts
  • Cassandra Oil
  • Cass Materials

기타

목차

제1장 개요

  • 리포트 개요와 범위
  • 산업 바이오제조의 정의와 범위
  • 주요 조사 결과와 하이라이트
  • 세계 시장 규모와 성장 예측(2026-2036년)
  • 시장의 세분화의 개요
  • 기술 융합 : 합성생물학, 산업용 효소, 화이트 바이오테크놀러지
  • 주요 동향과 성장 촉진요인
  • 투자환경과 자금조달 동향
  • 기술 로드맵(2026-2036년)
  • 밸류체인 분석
  • 바이오테크놀러지의 색

제2장 바이오제조 서론

  • 합성생물학·바이오제조의 정의
  • 합성생물학과 유전자 공학의 차이
  • 산업 바이오테크놀러지의 역사적 진화
  • 산업용 바이오제조의 주요 컴포넌트
  • 기존 화학 프로세스와의 비교
  • 세계 경제에서의 중요성
  • 지속가능성상 혜택과 환경에 대한 영향

제3장 기술 분석

  • 바이오제조 프로세스 개요
  • 생산 시스템
  • 정밀 발효
  • 무세포 시스템
  • AI 설계 효소, 계산생물학
  • 바이오제조용 세포 공장
  • 지원 기술
  • 업스트림 처리
  • 다운스트림 처리
  • 대체 원료와 지속가능성
  • 기술 전망과 영향

제4장 산업용 효소와 생체 촉매

  • 개요와 분류
  • 기술과 재료 분석
  • 생산 방식
  • 시장 분석

제5장 최종 용도 시장과 용도

  • 바이오의약품·의료
  • 농업·식품
  • 바이오케미컬
  • 바이오플라스틱
  • 바이오연료
  • 환경 용도
  • 소비재

제6장 세계의 시장 매출과 예측

  • 산업용 바이오제조 시장 개요
  • 시장 : 기술 플랫폼별
  • 시장 : 용도별
  • 시장 : 제품 유형별
  • 시장 : 지역별
  • 투자와 자금조달 분석

제7장 시장 분석

  • SWOT 분석
  • Porter's Five Forces 분석
  • 밸류체인 분석
  • 경쟁 구도와 시장 맵
  • 기술 성숙도 레벨(TRL)
  • 규제 상황
  • 업계의 과제
  • 정부의 지원과 정책

제8장 기업 개요(기업 915사의 개요)

제9장 참고 문헌

KSA

'The global synthetic biology and biomanufacturing market' represents one of the most transformative sectors in the modern bioeconomy, positioned at the intersection of advanced biotechnology, computational biology, and sustainable manufacturing. This market encompasses the application of engineering principles to biology, enabling the design, construction, and optimization of biological systems for industrial production of chemicals, materials, fuels, pharmaceuticals, and food ingredients.

The synthetic biology market is projected to experience exceptional growth by 2036 due to the accelerating adoption of bio-based production methods across virtually every industrial sector as companies seek sustainable alternatives to petrochemical processes and traditional manufacturing. The industrial enzymes segment, a critical component of the broader biomanufacturing landscape, is forecast to grow at a CAGR of 8.6%, driven by expanding applications in detergents, food processing, textiles, biofuels, and pharmaceutical manufacturing.

Three core technology platforms are driving market transformation. Precision fermentation utilizes genetically engineered microorganisms to produce specific proteins, enzymes, and metabolites with unprecedented efficiency, finding applications in alternative proteins, dairy ingredients, and specialty chemicals. Cell-free systems represent an emerging approach that bypasses traditional cellular constraints, offering 40-70% energy efficiency improvements, faster reaction times, and cleaner product profiles. AI-designed enzymes leverage machine learning and computational biology to accelerate enzyme development from years to weeks, enabling rapid optimization of biocatalysts for industrial processes.

The market spans six primary application sectors. Biopharmaceuticals remain the largest segment, encompassing monoclonal antibodies, recombinant proteins, vaccines, cell and gene therapies, and biosimilars. Industrial enzymes serve diverse applications including detergents, food processing, textiles, paper and pulp, leather processing, and biofuel production, with carbohydrases commanding approximately 38% market share. Biofuels encompass bioethanol, biodiesel, biogas, sustainable aviation fuel, and emerging biohydrogen production. Bioplastics and biomaterials include polylactic acid (PLA), polyhydroxyalkanoates (PHAs), bio-based polyethylene, and novel materials such as spider silk proteins and mycelium composites. Biochemicals cover organic acids, amino acids, vitamins, biosurfactants, and bio-based monomers. Bio-agritech addresses biopesticides, biofertilizers, and biostimulants for sustainable agriculture.

Multiple factors are propelling market growth. Regulatory pressure and sustainability mandates increasingly favor bio-based processes, while carbon pricing mechanisms improve the economic competitiveness of biological production. Technological advances in CRISPR genome editing, DNA synthesis, and high-throughput screening have dramatically reduced development timelines and costs. The convergence of artificial intelligence with biological design is accelerating the discovery and optimization of novel enzymes and metabolic pathways. Corporate sustainability commitments and consumer demand for environmentally responsible products are driving adoption across supply chains.

The competitive landscape features established biotechnology and chemical companies alongside a vibrant ecosystem of startups and platform technology providers. Over 700 companies actively participate across the value chain, from foundational technology providers and strain engineering specialists to production-scale manufacturers and end-product developers. Investment activity remains robust, with venture capital, corporate strategic investment, and government funding programs supporting continued innovation and scale-up.

This report takes an integrated approach recognizing that synthetic biology, industrial enzymes, and white biotechnology are interconnected segments of the broader industrial biomanufacturing market rather than distinct separate markets. Three revolutionary technology platforms are driving unprecedented market growth: precision fermentation enables production of proteins, enzymes, and specialty ingredients through engineered microorganisms; cell-free systems offer 40-70% energy efficiency improvements with faster reaction times and cleaner product profiles; and AI-designed enzymes leverage machine learning and computational biology to reduce enzyme development timelines from years to weeks.

The biomanufacturing revolution is enabling sustainable alternatives to petrochemical processes across multiple end-use markets. Biopharmaceuticals lead market value with monoclonal antibodies, recombinant proteins, vaccines, cell and gene therapies, and biosimilars. Industrial enzymes serve detergents, food processing, textiles, paper and pulp, leather, biofuels, animal feed, and pharmaceutical applications, with carbohydrases commanding 38% market share. Biofuels encompass bioethanol, biodiesel, biogas, sustainable aviation fuel, biohydrogen, and biomethanol production. Bioplastics and biomaterials include PLA, PHAs, bio-PE, bio-PET, PBS, PEF, and novel materials such as spider silk proteins, mycelium composites, and bacterial cellulose. Biochemicals cover organic acids, amino acids, vitamins, alcohols, biosurfactants, flavors and fragrances, and bio-based monomers. Bio-agritech addresses biopesticides, biofertilizers, and biostimulants for sustainable agriculture.

Market growth is propelled by regulatory mandates favoring bio-based processes, corporate sustainability commitments, carbon pricing mechanisms, and technological breakthroughs in CRISPR genome editing, DNA synthesis, and high-throughput screening. The convergence of artificial intelligence with biological design is accelerating discovery and optimization of novel enzymes and metabolic pathways. Government initiatives including the US Bioeconomy Strategy, EU Green Deal, and China's biotechnology policies provide substantial funding and regulatory support.

Report Contents Include:

  • Executive summary with key findings, market size projections, and technology roadmap 2026-2036
  • Technology analysis covering precision fermentation, cell-free systems, AI-designed enzymes, cell factories, genome editing, metabolic engineering, and bioprocess development
  • Industrial enzymes and biocatalysts analysis by type (carbohydrases, proteases, lipases, amylases, oxidoreductases) and application
  • End-use market analysis for biopharmaceuticals, agriculture/food, biochemicals, bioplastics, biofuels, environmental applications, and consumer goods
  • Global market revenues and forecasts by technology platform, application sector, product type, and region
  • Industry analysis including SWOT, value chain analysis, technology readiness levels, and regulatory landscape
  • 900+ company profiles with comprehensive coverage across all market segments
  • 348 data tables and 158 figures with market forecasts through 2036

Companies Profiled include:

  • 3Bar Biologics
  • 3DBioFibR
  • 3M
  • 9Fiber
  • AB Enzymes
  • AbbVie
  • Absci Corp
  • ADBioplastics
  • Adaptive Symbiotic Technologies
  • Aduro Clean Technologies
  • Advanced Biochemical
  • Aemetis
  • AEP Polymers
  • Afyren
  • AgBiome
  • Agragene
  • AGRANA Staerke
  • Agrinos
  • Agrivida
  • Agrobiomics
  • AgroSpheres
  • Again Bio
  • Agilyx
  • AI Proteins
  • AIO
  • Air Company
  • Aircela
  • Algaeing
  • Algal Bio
  • Algenesis Corporation
  • Algenol
  • Algenie
  • Alginor ASA
  • Algix
  • Allied Carbon Solutions
  • Allozymes
  • Alnylam Pharmaceuticals
  • Alpha Biofuels
  • Alto Neuroscience
  • AM Green
  • Amatera
  • AmicaTerra
  • Amfora
  • Amgen
  • AmphiStar
  • Amphista Therapeutics
  • Amply Discovery
  • AMSilk
  • Amyris
  • Ananas Anam
  • Andermatt Biocontrol
  • Andritz
  • Anellotech
  • An Phat Bioplastics
  • Ankor Bioplastics
  • ANPOLY
  • Anqing He Xing Chemical
  • Antheia
  • Aphea.Bio
  • APChemi
  • Apeiron Bioenergy
  • Applied Bioplastics
  • Applied Research Associates
  • Aqemia
  • Aquafil
  • Aquapak Polymers
  • Arcadia Biosciences
  • Arcadia eFuels
  • Archer Daniel Midland
  • Arctic Biomaterials
  • Ardra Bio
  • Arekapak
  • Arkema
  • Arlanxeo
  • Arrow Greentech
  • Arysta LifeScience
  • Arzeda Corp
  • Asahi Kasei Chemicals
  • Ascribe Bioscience
  • AstraZeneca
  • Athos Therapeutics
  • Atlantica Agricola
  • Atmonia
  • Atomwise
  • Attis Innovations
  • Aurigene Pharmaceutical Services
  • AVA Biochem
  • Avalon BioEnergy
  • Avani Eco
  • Avantium
  • Avicenna Biosciences
  • Avient Corporation
  • Avioxx
  • Axcelon Biopolymers
  • Ayas Renewables
  • Azolla
  • Azotic Technologies
  • Balrampur Chini Mills
  • Bambooder Biobased Fibers
  • Basecamp Research
  • BASF
  • Bast Fiber Technologies
  • Bayer CropScience
  • BBCA Biochemical & GALACTIC
  • Bcomp
  • BDI-BioEnergy International
  • Bee Vectoring Technologies
  • BEE Biofuel
  • BeiGene
  • Benefuel
  • BenevolentAI
  • Benson Hill
  • Better Fibre Technologies
  • Betulium
  • Beyond Leather Materials
  • BigHat Biosciences
  • BigSis
  • Bio2Materials
  • Bio2Oil
  • BioAge Labs
  • Biobest
  • BioBetter
  • Biocatalysts
  • Bioceres Crop Solutions
  • Biocon
  • BioConsortia
  • BIOD Energy
  • Bioextrax
  • Bio Fab NZ
  • BIO-FED
  • Biofibre
  • Biofiber Tech Sweden
  • Biofine Technology
  • Bioform Technologies
  • Biofy
  • Biogen
  • BiogasClean
  • Biojet
  • Biokemik
  • Bioleather
  • Biolevel
  • Biolexis Therapeutics
  • Bioline AgroSciences
  • BioLogiQ
  • BIOLO
  • BIO-LUTIONS International
  • Biome Bioplastics
  • Biome Makers
  • BioMap
  • Biomass Resin Holdings
  • Biomatter Designs
  • Bionema
  • BioNTech
  • BioPhy
  • Biophilica
  • BioPhero
  • Bioplastech
  • Bioplastix
  • Biopolax
  • Bioptimus
  • BioSolutions
  • Biosyntia
  • Biotalys
  • BIOTEC
  • Biotecam
  • Biotelliga
  • Biotensidion
  • Biotic Circular Technologies
  • Biotrem
  • Biotrop
  • Biovox
  • Bioweg
  • BlockTexx
  • Bloom Biorenewables
  • BlueAlp Technology
  • Blue BioFuels
  • Blue Ocean Closures
  • Bluepha
  • BluCon Biotech
  • Bolt Threads
  • Bontera
  • Borealis
  • Boreal Bioproducts
  • Borregaard Chemcell
  • Bosk Bioproducts
  • Botanical Solutions
  • Bowil Biotech
  • B-PREG
  • Braskem
  • Braven Environmental
  • Brightseed
  • Brightmark Energy
  • Bristol Myers Squibb
  • BTG Bioliquids
  • Bucha Bio
  • Burgo Group
  • Buyo Bioplastic
  • Byogy Renewables
  • B'ZEOS
  • C1 Green Chemicals
  • C16 Biosciences
  • Calyxt
  • Cambrium
  • Caphenia
  • CARAPAC Company
  • Carapace Biopolymers
  • Carbonade
  • CarbonBridge
  • Carbon Collect
  • Carbon Crusher
  • Carbon Engineering
  • Carbon Infinity
  • Carbon Recycling International
  • Carbon Sink
  • Carbonwave
  • Carbios
  • Carbiolice
  • Carbyon
  • Cardia Bioplastics
  • Cardolite
  • Cargill
  • Cascade Biocatalysts
  • Cassandra Oil
  • Cass Materials

and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report Overview and Scope
    • 1.1.1. Report Scope and Coverage
    • 1.1.2. Analytical Framework
    • 1.1.3. Geographic Coverage
  • 1.2. Definition and Scope of Industrial Biomanufacturing
    • 1.2.1. Defining Industrial Biomanufacturing
    • 1.2.2. Scope of Technologies Covered
    • 1.2.3. Market Boundaries
    • 1.2.4. Relationship to Adjacent Markets
  • 1.3. Key Findings and Highlights
    • 1.3.1. Technology Advancement Has Dramatically Reduced Barriers
    • 1.3.2. Commercial Validation Continues to Expand
    • 1.3.3. Investment Momentum Remains Strong
    • 1.3.4. Sustainability Is Becoming a Competitive Advantage
    • 1.3.5. Scale-Up Remains the Critical Challenge
  • 1.4. Global Market Size and Growth Projections 2026-2036
    • 1.4.1. Market Size Evolution
    • 1.4.2. Growth Drivers
    • 1.4.3. Growth Rate Analysis by Segment
  • 1.5. Market Segmentation Overview
    • 1.5.1. Segmentation by Technology Platform
    • 1.5.2. Segmentation by Application Sector
    • 1.5.3. Segmentation by Product Type
    • 1.5.4. Segmentation by Geography
  • 1.6. Technology Convergence: Synthetic Biology, Industrial Enzymes, and White Biotechnology
    • 1.6.1. Historical Separation of Markets
    • 1.6.2. Drivers of Convergence
    • 1.6.3. Implications for Market Analysis
    • 1.6.4. Competitive Implications
  • 1.7. Major Trends and Growth Drivers
    • 1.7.1. Sustainability Mandates
    • 1.7.2. Technology Cost Reduction
    • 1.7.3. Scale-Up Success
    • 1.7.4. AI/ML Integration
    • 1.7.5. Consumer Demand
  • 1.8. Investment Landscape and Funding Trends
    • 1.8.1. Venture Capital Investment
    • 1.8.2. Corporate Strategic Investment
    • 1.8.3. Government Funding
    • 1.8.4. Investment Focus Areas
  • 1.9. Technology Roadmap 2026-2036
    • 1.9.1. Near-Term Developments (2026-2028)
    • 1.9.2. Mid-Term Developments (2029-2032)
    • 1.9.3. Long-Term Vision (2033-2036)
  • 1.10. Value Chain Analysis
    • 1.10.1. Feedstock Supply
    • 1.10.2. Technology and Intellectual Property
    • 1.10.3. Production and Manufacturing
    • 1.10.4. Distribution and End-Users
    • 1.10.5. Value Capture Analysis
  • 1.11. Colours of Biotechnology
    • 1.11.1. Red Biotechnology (Medical/Pharmaceutical)
    • 1.11.2. White Biotechnology (Industrial)
    • 1.11.3. Green Biotechnology (Agricultural)
    • 1.11.4. Blue Biotechnology (Marine)
    • 1.11.5. Yellow Biotechnology (Food)
    • 1.11.6. Grey Biotechnology (Environmental)
    • 1.11.7. Gold Biotechnology (Bioinformatics/Computational)
    • 1.11.8. Report Focus

2. INTRODUCTION TO BIOMANUFACTURING

  • 2.1. Definition of Synthetic Biology and Biomanufacturing
    • 2.1.1. Foundational Principles of Synthetic Biology
    • 2.1.2. Genetic Circuits and Metabolic Engineering
    • 2.1.3. Definition of Biomanufacturing
  • 2.2. Difference Between Synthetic Biology and Genetic Engineering
    • 2.2.1. Traditional Genetic Engineering
    • 2.2.2. Synthetic Biology Approach
    • 2.2.3. Practical Implications
  • 2.3. Historical Evolution of Industrial Biotechnology
    • 2.3.1. Traditional Fermentation Era (Pre-1970s)
    • 2.3.2. Recombinant DNA Era (1970s-1990s)
    • 2.3.3. Genomics and Systems Biology Era (1990s-2000s)
    • 2.3.4. Synthetic Biology Era (2000s-Present)
    • 2.3.5. AI Integration Era (2020s-Future)
  • 2.4. Key Components of Industrial Biomanufacturing
    • 2.4.1. Strain Engineering
    • 2.4.2. Fermentation and Cell Culture
    • 2.4.3. Downstream Processing
    • 2.4.4. Process Analytical Technology (PAT)
    • 2.4.5. Quality Control and Assurance
  • 2.5. Comparison with Conventional Chemical Processes
    • 2.5.1. Selectivity and Stereochemistry
    • 2.5.2. Complex Molecule Synthesis
    • 2.5.3. Reaction Conditions
    • 2.5.4. Feedstock and Sustainability
    • 2.5.5. Limitations of Biomanufacturing
    • 2.5.6. Hybrid Processes
  • 2.6. Importance in the Global Economy
    • 2.6.1. Role in Healthcare and Pharmaceuticals
    • 2.6.2. Biopharmaceutical Market Scale
    • 2.6.3. Manufacturing Complexity
      • 2.6.3.1. Emerging Modalities
    • 2.6.4. Impact on Industrial Sustainability
      • 2.6.4.1. Carbon Footprint Reduction
      • 2.6.4.2. Resource Efficiency
      • 2.6.4.3. Corporate and Regulatory Drivers
    • 2.6.5. Food Security Applications
      • 2.6.5.1. Alternative Proteins
      • 2.6.5.2. Agricultural Biotechnology
      • 2.6.5.3. Food Ingredients
    • 2.6.6. Circular Economy Integration
      • 2.6.6.1. Waste Valorization
      • 2.6.6.2. Enzymatic Recycling
      • 2.6.6.3. Biodegradable Materials
  • 2.7. Sustainability Benefits and Environmental Impact
    • 2.7.1. Life Cycle Assessment Framework
    • 2.7.2. Emissions
    • 2.7.3. Energy Consumption
    • 2.7.4. Water Use
    • 2.7.5. Land Use
    • 2.7.6. Toxicity and Environmental Release

3. TECHNOLOGY ANALYSIS

  • 3.1. Biomanufacturing Processes Overview
    • 3.1.1. Batch Production
    • 3.1.2. Fed-Batch Production
    • 3.1.3. Continuous Production
    • 3.1.4. Perfusion Culture
  • 3.2. Production Systems
    • 3.2.1. Bacterial Systems
    • 3.2.2. Yeast Systems
    • 3.2.3. Mammalian Cell Culture
    • 3.2.4. Other Production Systems
  • 3.3. Precision Fermentation
    • 3.3.1. Technology Overview and Principles
    • 3.3.2. Production Methods and Scale-Up
    • 3.3.3. Commercial Applications
      • 3.3.3.1. Alternative Proteins
      • 3.3.3.2. Specialty Ingredients
    • 3.3.4. Market Outlook
  • 3.4. Cell-Free Systems
    • 3.4.1. Technology Overview
    • 3.4.2. Advantages Over Cell-Based Systems
    • 3.4.3. Commercial Applications
    • 3.4.4. Market Outlook
  • 3.5. AI-Designed Enzymes and Computational Biology
    • 3.5.1. Computational Enzyme Design
    • 3.5.2. Machine Learning Integration
    • 3.5.3. Traditional vs AI-Driven Development
  • 3.6. Cell Factories for Biomanufacturing
    • 3.6.1. Established Chassis Organisms
    • 3.6.2. Emerging and Specialized Organisms
  • 3.7. Supporting Technologies
    • 3.7.1. DNA Synthesis and Gene Assembly
    • 3.7.2. Genome Editing Technologies
    • 3.7.3. Metabolic Engineering
    • 3.7.4. Protein Engineering
  • 3.8. Upstream Processing
    • 3.8.1. Bioreactor Systems
    • 3.8.2. Process Analytical Technology (PAT)
  • 3.9. Downstream Processing
    • 3.9.1. Primary Recovery
    • 3.9.2. Purification Technologies
    • 3.9.3. Formulation
  • 3.10. Alternative Feedstocks and Sustainability
    • 3.10.1. Traditional Feedstocks
    • 3.10.2. C1 Feedstocks
    • 3.10.3. Lignocellulosic Biomass
    • 3.10.4. Waste Stream Valorization
    • 3.10.5. Carbon Capture Integration
  • 3.11. Technology Outlook and Implications

4. INDUSTRIAL ENZYMES AND BIOCATALYSTS

  • 4.1. Overview and Classification
    • 4.1.1. Bio-Manufactured Enzymes
    • 4.1.2. Enzyme Types and Functions
      • 4.1.2.1. Carbohydrases
      • 4.1.2.2. Proteases
      • 4.1.2.3. Lipases
      • 4.1.2.4. Amylases
      • 4.1.2.5. Oxidoreductases
  • 4.2. Technology and Materials Analysis
    • 4.2.1. Detergent Enzymes
    • 4.2.2. Food Processing Enzymes
    • 4.2.3. Textile Processing Enzymes
    • 4.2.4. Paper and Pulp Enzymes
    • 4.2.5. Leather Processing Enzymes
    • 4.2.6. Biofuel Production Enzymes
      • 4.2.6.1. Cellulases for Lignocellulosic Bioethanol
      • 4.2.6.2. Hemicellulases and Synergistic Cocktails
      • 4.2.6.3. Thermostable and Extremophilic Enzymes
    • 4.2.7. Animal Feed Enzymes
    • 4.2.8. Pharmaceutical and Diagnostic Enzymes
    • 4.2.9. Waste Management and Bioremediation Enzymes
      • 4.2.9.1. Enzymes for Plastics Recycling
      • 4.2.9.2. Enzymatic Depolymerization
    • 4.2.10. Agriculture and Crop Improvement Enzymes
    • 4.2.11. Enzymes for Decarbonization and CO2 Utilization
      • 4.2.11.1. Carbonic Anhydrase in CO2 Capture
      • 4.2.11.2. Formate Dehydrogenase Pathways
  • 4.3. Production Methods
    • 4.3.1. Extraction from Natural Sources
    • 4.3.2. Microbial Fermentation Production
    • 4.3.3. Genetically Engineered Organisms
    • 4.3.4. Cell-Free Systems Production
    • 4.3.5. Immobilized Enzyme Systems
  • 4.4. Market Analysis
    • 4.4.1. Key Players and Competitive Landscape
    • 4.4.2. Market Growth Drivers and Trends
    • 4.4.3. Technology Challenges and Opportunities
    • 4.4.4. Economic Competitiveness Analysis
    • 4.4.5. Pricing Dynamics
    • 4.4.6. Regulatory Landscape
    • 4.4.7. Value Chain Analysis
    • 4.4.8. Risks and Opportunities

5. END-USE MARKETS AND APPLICATIONS

  • 5.1. Biopharmaceuticals and Healthcare
    • 5.1.1. Monoclonal Antibodies (mAbs)
    • 5.1.2. Recombinant Proteins
    • 5.1.3. Vaccines
    • 5.1.4. Cell and Gene Therapies
    • 5.1.5. Blood Factors
    • 5.1.6. Nucleic Acid Therapeutics
    • 5.1.7. Peptide Therapeutics
    • 5.1.8. Biosimilars and Biobetters
    • 5.1.9. Nanobodies and Antibody Fragments
    • 5.1.10. Tissue Engineering Products
    • 5.1.11. Drug Discovery and Personalized Medicine
    • 5.1.12. Biopharmaceuticals Regulations
    • 5.1.13. Market Analysis and Outlook
      • 5.1.13.1. Value Chain
      • 5.1.13.2. Market Growth Drivers and Trends
      • 5.1.13.3. Key players
  • 5.2. Agriculture and Food
    • 5.2.1. Alternative Proteins
      • 5.2.1.1. Precision Fermentation for Food Proteins
      • 5.2.1.2. Cultivated Meat
      • 5.2.1.3. Microbial Protein (Single-Cell Protein)
    • 5.2.2. Food Ingredients
      • 5.2.2.1. Natural Flavours and Fragrances
      • 5.2.2.2. Natural Sweeteners
      • 5.2.2.3. Food Colourants and Other Ingredients
    • 5.2.3. Agricultural Biologicals
      • 5.2.3.1. Biofertilizers
      • 5.2.3.2. Biopesticides
      • 5.2.3.3. Biostimulants
    • 5.2.4. Feed Additives and Animal Nutrition
    • 5.2.5. Crop Improvement and Gene Editing
    • 5.2.6. Market Analysis and Outlook
      • 5.2.6.1. Key players
  • 5.3. Biochemicals
    • 5.3.1. Organic Acids
      • 5.3.1.1. Lactic Acid
      • 5.3.1.2. Succinic Acid
      • 5.3.1.3. Citric Acid
      • 5.3.1.4. Other Organic Acids
    • 5.3.2. Platform Chemicals and Diols
      • 5.3.2.1. 1,3-Propanediol (1,3-PDO)
      • 5.3.2.2. 1,4-Butanediol (BDO)
    • 5.3.3. Alcohols and Solvents
      • 5.3.3.1. Bioethanol
      • 5.3.3.2. Isobutanol
      • 5.3.3.3. n-Butanol
    • 5.3.4. Amino Acids
      • 5.3.4.1. L-Glutamate
      • 5.3.4.2. L-Lysine
      • 5.3.4.3. Other Amino Acids
    • 5.3.5. Biosurfactants
      • 5.3.5.1. Rhamnolipids
      • 5.3.5.2. Sophorolipids
      • 5.3.5.3. Mannosylerythritol Lipids (MELs)
    • 5.3.6. Vitamins and Nutraceuticals
    • 5.3.7. Specialty Chemicals and Polymer Intermediates
      • 5.3.7.1. Polybutylene Succinate (PBS) Intermediates
      • 5.3.7.2. Polyethylene Furanoate (PEF) Intermediates
    • 5.3.8. Gas Fermentation and C1 Chemicals
    • 5.3.9. Market Analysis and Outlook
      • 5.3.9.1. Key players
  • 5.4. Bioplastics
    • 5.4.1. Polylactic Acid (PLA)
    • 5.4.2. Polyhydroxyalkanoates (PHAs)
    • 5.4.3. Bio-based Polyethylene (Bio-PE)
    • 5.4.4. Bio-based PET
    • 5.4.5. Polybutylene Succinate (PBS)
    • 5.4.6. Starch-based Plastics
    • 5.4.7. PBAT (Polybutylene Adipate Terephthalate)
    • 5.4.8. Polyethylene Furanoate (PEF)
    • 5.4.9. Bio-based Polyamides (Nylons)
    • 5.4.10. Cellulose-Based Bioplastics.
    • 5.4.11. Emerging Bioplastic Technologies
      • 5.4.11.1. Mycelium-based Materials
      • 5.4.11.2. Algae-based Plastics
    • 5.4.12. Bioplastic Blends and Compounds
    • 5.4.13. Bioplastics End-of-Life Options
    • 5.4.14. Market Analysis and Outlook
      • 5.4.14.1. Market Growth Drivers and Trends
      • 5.4.14.2. Value Chain
      • 5.4.14.3. Addressable Market Size
      • 5.4.14.4. Risks and Opportunities in Bioplastics
    • 5.4.15. Global Revenues for Bioplastics by Type 2020-2036
      • 5.4.15.1. Bioplastics Regulations
      • 5.4.15.2. Key players
  • 5.5. Biofuels
    • 5.5.1. Biofuel Feedstocks
    • 5.5.2. Bioethanol
      • 5.5.2.1. First-Generation Bioethanol
      • 5.5.2.2. Second-Generation (Cellulosic) Bioethanol
    • 5.5.3. Biodiesel
    • 5.5.4. Renewable Diesel (HVO)
    • 5.5.5. Sustainable Aviation Fuel (SAF)
    • 5.5.6. Gas Fermentation
    • 5.5.7. Biogas and Biomethane
      • 5.5.7.1. Anaerobic Digestion
      • 5.5.7.2. Biomass Gasification
      • 5.5.7.3. Power-to-Methane
    • 5.5.8. Biochar and Bio-oil
    • 5.5.9. Biobutanol
    • 5.5.10. Algal Biofuels
    • 5.5.11. Future Trends in Biofuels
    • 5.5.12. Market Analysis and Outlook
      • 5.5.12.1. Market Growth Drivers
      • 5.5.12.2. Biofuels Regulations
      • 5.5.12.3. Value Chain
      • 5.5.12.4. Key players
  • 5.6. Environmental Applications
    • 5.6.1. Market Overview
    • 5.6.2. Bioremediation Technologies
    • 5.6.3. Wastewater Treatment
    • 5.6.4. Plastic Biodegradation
    • 5.6.5. Carbon Capture and Utilization
    • 5.6.6. Air Biotreatment
    • 5.6.7. Value Chain Analysis
    • 5.6.8. Regulatory Landscape
    • 5.6.9. Key Players
    • 5.6.10. Market Trends and Drivers
    • 5.6.11. Future Outlook
  • 5.7. Consumer Goods
    • 5.7.1. Market Overview
    • 5.7.2. Personal Care and Cosmetics
    • 5.7.3. Home Care and Cleaning Products
    • 5.7.4. Fragrances and Flavours
    • 5.7.5. Textiles and Fashion
    • 5.7.6. Value Chain Analysis
    • 5.7.7. Regulations and Certifications
    • 5.7.8. Key Players
    • 5.7.9. Market Drivers and Trends
    • 5.7.10. Future Outlook

6. GLOBAL MARKET REVENUES AND FORECASTS

  • 6.1. Industrial Biomanufacturing Market Overview
    • 6.1.1. Total Addressable Market 2026-2036
    • 6.1.2. Market Integration and Overlaps
    • 6.1.3. Technology Convergence Drivers
      • 6.1.3.1. Cost Reduction Drivers
      • 6.1.3.2. Precision Engineering Capabilities
      • 6.1.3.3. AI Integration
  • 6.2. Market by Technology Platform
    • 6.2.1. Synthetic Biology Technologies
    • 6.2.2. Precision Fermentation
    • 6.2.3. Cell-Free Systems
    • 6.2.4. AI and Computational Biology Platforms
    • 6.2.5. Traditional Fermentation Systems
    • 6.2.6. Technology Platform Comparison
  • 6.3. Market by Application Sector
    • 6.3.1. Biopharmaceuticals
      • 6.3.1.1. Market Overview and Global Revenues 2020-2036
      • 6.3.1.2. Market Segmentation by Product Type
      • 6.3.1.3. Regional Market Analysis
    • 6.3.2. Industrial Enzymes and Biocatalysts
      • 6.3.2.1. Market Overview and Global Revenues 2020-2036
      • 6.3.2.2. Market Segmentation by Enzyme Type
      • 6.3.2.3. Market Segmentation by Source
    • 6.3.3. Biofuels
      • 6.3.3.1. Market Overview and Global Revenues 2020-2036
      • 6.3.3.2. Market Segmentation by Application
      • 6.3.3.3. Regional Market Analysis
    • 6.3.4. Bioplastics and Biomaterials
      • 6.3.4.1. Market Overview and Global Revenues 2020-2036
      • 6.3.4.2. Material Type Analysis
      • 6.3.4.3. Application Market Analysis
      • 6.3.4.4. Regional Market Analysis
    • 6.3.5. Biochemicals
      • 6.3.5.1. Market Overview and Global Revenues 2020-2036
      • 6.3.5.2. Application Market Analysis
      • 6.3.5.3. Regional Market Analysis
    • 6.3.6. Bio-Agritech
      • 6.3.6.1. Market Overview and Global Revenues 2020-2036
      • 6.3.6.2. Regional Market Analysis
  • 6.4. Market by Product Type
    • 6.4.1. Synthetic Biology Products
  • 6.5. Market by Region
    • 6.5.1. North America
    • 6.5.2. Europe
    • 6.5.3. Asia-Pacific
    • 6.5.4. Rest of World
  • 6.6. Investment and Funding Analysis
    • 6.6.1. Venture Capital Trends
    • 6.6.2. Corporate Investment
    • 6.6.3. Government Funding Programs

7. MARKET ANALYSIS

  • 7.1. SWOT Analysis
    • 7.1.1. Industrial Biomanufacturing SWOT
    • 7.1.2. Precision Fermentation SWOT
    • 7.1.3. Cell-Free Systems SWOT
    • 7.1.4. AI-Designed Enzymes SWOT
  • 7.2. Porter's Five Forces Analysis
  • 7.3. Value Chain Analysis
    • 7.3.1. Feedstock Suppliers
      • 7.3.1.1. Primary Feedstock Categories
      • 7.3.1.2. Production and Manufacturing
    • 7.3.2. Distribution and End-Users
      • 7.3.2.1. Distribution Models
      • 7.3.2.2. End-User Segments
    • 7.3.3. Economic Viability Factors
      • 7.3.3.1. Cost Structure Components
    • 7.3.4. Scale-Up Cost Analysis
      • 7.3.4.1. Scale-Up Economics
  • 7.4. Competitive Landscape and Market Map
    • 7.4.1. Market Map by Category
    • 7.4.2. Competitive Positioning
      • 7.4.2.1. Positioning Dimensions
    • 7.4.3. Strategic Groups Analysis
  • 7.5. Technology Readiness Levels (TRL)
    • 7.5.1. Biopharmaceuticals TRL
    • 7.5.2. Industrial Enzymes TRL
    • 7.5.3. Biofuels TRL
    • 7.5.4. Bioplastics TRL
    • 7.5.5. Biochemicals TRL
  • 7.6. Regulatory Landscape
    • 7.6.1. United States Regulations
    • 7.6.2. European Union Regulations
    • 7.6.3. Asia-Pacific Regulations
    • 7.6.4. International Standards
      • 7.6.4.1. Key International Bodies
    • 7.6.5. Biosafety and Biosecurity
  • 7.7. Industry Challenges
    • 7.7.1. Production Cost Challenges
    • 7.7.2. Scale-Up Barriers
    • 7.7.3. Public Perception
    • 7.7.4. Technical Challenges
    • 7.7.5. Feedstock Price Impacts
  • 7.8. Government Support and Policy
    • 7.8.1. US Bioeconomy Initiatives
    • 7.8.2. EU Green Deal and Bioeconomy Strategy
    • 7.8.3. China Biotechnology Policy
    • 7.8.4. Carbon Tax Implications

8. COMPANY PROFILES (915 company profiles)

9. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제