![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1540729
6G ¹«¼± ±â¼ú¿ë ¹ÝµµÃ¼ÀÇ ¼ºÀå ±âȸGrowth Opportunities in Semiconductors for 6G Wireless Technology |
AI Ĩ¼Â°ú ÈÇÕ¹° ¹ÝµµÃ¼´Â Â÷¼¼´ë ¼¿·ê·¯ ¹«¼± ±â¼úÀÇ ¿î¿µ ¹× °æÁ¦Àû ¸ñÇ¥¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â Çõ½ÅÀûÀÎ ¿ªÇÒÀ» ÇÒ °Í
¹«¼± Åë½Å ½Ã½ºÅÛÀº PA, LNA, Æ®·£½Ã¹ö(ÅëĪ RF FEM)¿Í °°Àº ¹ÝµµÃ¼ ºÎǰ¿¡ ÀÇÁ¸ÇÏ¿© ¹«¼± À¯´Ö(RU), º£À̽º¹êµå À¯´Ö(BBU), ³×Æ®¿öÅ© ÄÚ¾î¿Í ½ÅÈ£¸¦ ó¸®ÇÏ¿© °í°´ÀÌ µ¥ÀÌÅÍ ¹× ¼ºñ½º¸¦ Àü¼ÛÇÏ´Â ¹«¼± ½ÅÈ£¸¦ µ¥ÀÌÅÍ¿Í ¼ºñ½º¸¦ Àü¼ÛÇÏ´Â ¹«¼± ½ÅÈ£¸¦ ¾ÈÁ¤ÀûÀ¸·Î ¼ö½ÅÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
Åë½Å ½Ã½ºÅÛÀº ¾ÈÅ׳ª ÁýÀûȸ·Î(IC), ¿£º§·ÎÇÁ Æ®·¡Ä¿, ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼, ¾Æ³¯·Î±× ÀåÄ¡, ±¤ÇÐ ºÎǰ°ú °°Àº ´Ù¸¥ ¹ÝµµÃ¼ ºÎǰ¿¡ ÀÇÁ¸ÇÏ¿© ÇÊ¿äÇÑ ½ÅÈ£¸¦ ó¸®ÇÕ´Ï´Ù. ¹«¼± Åë½ÅÀÌ »ç¿ëÇÏ´Â ¹ÝµµÃ¼ Á¾·ù´Â 2G¿¡¼ 5G·Î ±â¼úÀÌ ¹ßÀüÇØµµ Å©°Ô ´Þ¶óÁöÁö ¾Ê¾Ò½À´Ï´Ù. ÇÏÁö¸¸ ¹ÝµµÃ¼ ºÎǰ¿¡ ¿ä±¸µÇ´Â ¼º´ÉÀº Çâ»óµÇ°í ÀÖ½À´Ï´Ù. µû¶ó¼ ¼³°è, Àç·á, Á¦Á¶, ÆÐŰ¡ ±â¼úÀº »õ·Î¿î ¼¼´ëÀÇ ¹«¼± Åë½ÅÀÌ µîÀåÇÒ ¶§¸¶´Ù ÁøÈÇϰí ÀÖ½À´Ï´Ù.
5G ¹«¼± ±â¼úÀÌ Àü°³ ´Ü°è¿¡ Àֱ⠶§¹®¿¡ ¾÷°è ¸®´õµéÀº Â÷¼¼´ë ¹«¼±±â¼ú(6G) °³¹ß¿¡ ´ëÇÑ ³íÀǸ¦ ½ÃÀÛÇßÀ¸¸ç, 2030³â¿¡ Á¶±â »ó¿ëȸ¦ ½ÃÀÛÇÒ ¿¹Á¤À̸ç, 6GÀÇ °³¸·Àº µ¥ÀÌÅ͸¦ ³Ñ¾î »õ·Î¿î ¼ºñ½º¸¦ Á¦°øÇÏ´Â »õ·Î¿î Åë½Å½Ã´ë¸¦ ÀǹÌÇÕ´Ï´Ù. ÀÌ Á¶»ç´Â ¿¡Áö¿¡¼ÀÇ ºÐ»ê ÇнÀ°ú ¿¬ÇÕ ÇнÀ, ¿¡Áö¿Í ÄÚ¾î °£ÀÇ °øµ¿ Ãß·Ð, ¿£µå µð¹ÙÀ̽ºÀÇ ÀÚÀ² ±â´É, AI¸¦ Ȱ¿ëÇÑ Àΰ£ Á᫐ Åë½Å ¼ºñ½º °³¹ß, °øµ¿ Åë½Å, ÄÄÇ»ÆÃ, ¼¾½Ì, Á¦¾î ¹× ±âŸ ¿©·¯ °³³ä¿¡ ´ëÇØ ³íÀÇÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¹«¼± ¾×¼¼½º ³×Æ®¿öÅ©(RAN) ¾ÆÅ°ÅØÃ³¿¡¼ ¼ºñ½º·ÎÀÇ ÀüȯÀ» ÀǹÌÇÕ´Ï´Ù.
6G¸¦ °³¹ßÇϱâ À§ÇØ ¾÷°è ÀÌÇØ°ü°èÀÚµéÀº Â÷¼¼´ë ¹«¼± ±â¼ú °³¹ß·Î À̾îÁú °¢ ÇÏÀ§ ±â¼úÀÇ ±¸¼º¿ä¼Ò¿Í ºôµù ºí·ÏÀ» °èȹÇϱâ À§ÇØ Çù·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌÇØ°ü°èÀÚµéÀÇ Ãʱ⠳íÀÇ¿¡ µû¸£¸é, °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÏ°í °íÁ֯ļö¿¡¼ ÀÛµ¿Çϱâ À§Çؼ´Â (ÄÄÇ»ÆÃ ¹× RF¿¡¼) °í¼º´É ±â´ÉÀ» °®Ãá ÷´Ü ¹ÝµµÃ¼°¡ ÇÊ¿äÇÏ´Ù´Â µ¥¿¡ °ø°¨´ë¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù.
AI Chipsets and Compound Semiconductors Will Play a Transformational Role, Enabling the Operational and Economic Targets of Next-gen Cellular Wireless Technology
Wireless communication systems rely on semiconductor components, such as PAs, LNAs, and transceivers (together known as RF FEMs), to process signals to and from the radio unit (RU), baseband unit (BBU), and the network core to ensure customers receive the radio signals that carry the data and services.
The communication system relies on other semiconductor components, such as antenna integrated circuits (ICs), envelope trackers, microprocessors, analog devices, and optical components, to process signals as necessary. The type of semiconductors that wireless telecom communication uses has not changed much with the 2G to 5G evolution of technologies. However, the semiconductor components' performance requirements have increased. Hence, the designs, materials, manufacturing, and packaging technologies have evolved with each new wireless communication generation.
Because 5G wireless technology is in the deployment stage, industry leaders have begun discussions about developing the next-gen wireless technology (6G) and plan to begin early commercialization in 2030. The dawn of 6G will represent a new era of communication that will provide new services beyond data. The study discusses distributed and federated learning at the edge, co-inferencing between edge and core, autonomous functioning of end devices, the development of AI-powered human-centric telecom services, joint communication, computing, sensing, and control, and several other concepts, which represent a transformation from radio access network (RAN) architecture to services.
To develop 6G, industry stakeholders are collaborating to plan the components and building blocks of each sub-technology that will lead to the development of the next-gen wireless technology. Initial stakeholder discussions are leading to an understanding that advanced semiconductors with high-performance capabilities (in computing and RF) will be necessary to enable high-speed data transfer and operate at high frequencies.