![]() |
½ÃÀ庸°í¼
»óÇ°ÄÚµå
1568894
AI ±â¹Ý ÀǾàÇ° ÀçÀÌ¿ë ½ÃÀå : ¼ºÀå ±âȸ(2024-2029³â)AI-based Drug Repurposing Market, Growth Opportunities, Global, 2024-2029 |
AI¸¦ È°¿ëÇÑ Drug RepurposingÀº ÀǾàÇ°À» ȯÀÚ¿¡°Ô Àü´ÞÇϱâ À§ÇÑ »õ·Ó°í ½Å¼ÓÇÑ Á¢±Ù¹ýÀ¸·Î ºÎ»óÇÏ°í ÀÖ½À´Ï´Ù.
º» Á¶»ç¿¡¼´Â AI¸¦ È°¿ëÇÑ ¾à¹° ÀçâÃâÀÇ ÃâÇöÀ» ºÐ¼®ÇÏ°í, äÅÃÀ» ÃËÁøÇÏ´Â ¿äÀΰú ÀúÇØÇÏ´Â ¿äÀÎÀ» »ìÆ캾´Ï´Ù. ±âÁ¸ ½Å¾à°³¹ßÀÇ ÇÑ°è·Î ÀÎÇØ ½Ã°£, ¼Óµµ, ºñ¿ë Ãø¸é¿¡¼ ¸¹Àº ÀÌÁ¡À» Á¦°øÇÏ´Â AI ±â¹Ý ¾à¹° Àç»ç¿ë¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡ÇÏ°í ÀÖÀ¸¸ç, AI ±â¹Ý ¾à¹° Àç»ç¿ëÀº Èñ±ÍÁúȯ, Á¾¾ç, ´ë»ç¼º Áúȯ, ÀÚ°¡¸é¿ªÁúȯ, ½Å°æÅðÇ༺ Áúȯ µî ´Ù¾çÇÑ ÀûÀÀÁõ¿¡¼ °ËÅäµÇ°í ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼´Â ¸Ó½Å·¯´×, µö·¯´×, »ý¼ºÇü AI µî ´Ù¾çÇÑ AI ±â¼ú¿¡ ÃÊÁ¡À» ¸ÂÃß°í, À̵éÀÌ ¾î¶»°Ô AI¸¦ È°¿ëÇÑ ¾à¹° ÀçâÃâÀ» °¡´ÉÄÉ ÇÏ´ÂÁö¿¡ ´ëÇØ »ìÆ캾´Ï´Ù. ¶ÇÇÑ, AI ±â¹Ý ÀǾàÇ° ÀçÀÌ¿ë¿¡ Âü¿©ÇÏ´Â ÁÖ¿ä Âü¿©ÀÚµéÀÇ AI Á¢±Ù ¹æ½Ä, ÁßÁ¡ Áúȯ ºÐ¾ß, ÇâÈÄ Àü¸Á¿¡ ´ëÇؼµµ »ìÆ캾´Ï´Ù. ÀÌ º¸°í¼´Â AI ±â¹Ý ÀǾàÇ° ÀçÀÌ¿ëÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ°í ¾ïÁ¦ÇÏ´Â ÁÖ¿ä ¿äÀÎÀ» »ìÆ캸°í, ÁÖ¿ä Âü¿©ÀÚ ¹× ÀÌÇØ°ü°èÀÚµéÀÌ È°¿ëÇÒ ¼ö ÀÖ´Â ÀÌ ºÐ¾ßÀÇ º¯È¿¡¼ ºñ·ÔµÈ ¼ºÀå ±âȸ¸¦ ÆľÇÇÕ´Ï´Ù.
º» Á¶»ç¿¡¼ ´äº¯À» ¾òÀ» ¼ö ÀÖ´Â ÁÖ¿ä Áú¹®
AI¸¦ È°¿ëÇÑ µå·¡±× ¸®ÆÛÆÐ½Ì °³¿ä
Äڷγª19 ¹ß»ý ÀÌÈÄ ¾à¹° Àç»ç¿ë¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ½Å¾à °³¹ßÀº Ç¥Àû ¹ß±¼, ¸®µå ÈÇÕ¹° ¹ß±¼, ÀÓ»ó½ÃÇè, ½ÂÀÎ µî ¿©·¯ ´Ü°è¸¦ °ÅÃÄ¾ß ÇÏ´Â ½Ã°£ÀÌ ¿À·¡ °É¸®´Â °úÁ¤ÀÔ´Ï´Ù. ÀǾàÇ°ÀÌ ½ÃÀå¿¡ Ãâ½ÃµÇ±â±îÁö 17³âÀÌ °É¸®°í 20¾ï ´Þ·¯°¡ ¼Ò¿äµÉ ¼ö ÀÖÀ¸¸ç, ÀÓ»ó½ÃÇèÀÇ ¾î´À ´Ü°è¿¡¼µç ½ÇÆÐÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾à¹° ÀçâÃâ(Drug Repurposing)Àº ÀÌ¹Ì ½ÂÀÎµÈ ÀǾàÇ°ÀÇ »õ·Î¿î Ä¡·á ¿ëµµ¸¦ ã¾Æ³»´Â °ÍÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ½ÂÀÎ ±â°£À» ´ÜÃàÇÏ°í ½ÇÆÐÀ²À» ³·Ã߸ç, ½ÂÀÎµÈ ÀǾàÇ°ÀÇ ¾ÈÀü¼º µ¥ÀÌÅÍ¿Í ¾à¸®ÇÐÀû ÇÁ·ÎÆÄÀÏÀ» »ç¿ëÇÏ¿© °³¹ß ±â°£°ú ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀǾàÇ° Àç»ç¿ëÀº ÀÌ¹Ì ½ÂÀÎµÈ ÀǾàÇ°ÀÇ »õ·Î¿î Ä¡·á ¿ëµµ¸¦ ã±â À§ÇÑ ¸Å·ÂÀûÀÌ°í ¼º°øÀûÀÎ Àü·«À¸·Î ºÎ»óÇÏ°í ÀÖ½À´Ï´Ù. °³¹ß ±â°£ÀÌ Âª±â ¶§¹®¿¡ Á¦¾à»ç¿Í ȯÀÚ ¸ðµÎ¿¡°Ô ¸Å·ÂÀûÀÎ Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. Àç»ç¿ëµÈ ÀǾàÇ°ÀÇ °ÅÀÇ 30%°¡ ÃÖÁ¾ÀûÀ¸·Î ȯÀÚÀÇ ¼Õ¿¡ µé¾î°¡¸ç, ÀÌ´Â ±âÁ¸ ÇÁ·Î¼¼½ºÀÇ ¼º°ø·üÀÎ 10%¸¦ Å©°Ô »óȸÇÏ´Â ¼öÄ¡ÀÔ´Ï´Ù.
ÀǾàÇ° Àç»ç¿ë¿¡´Â ÀûÀÀÁõ È®´ë, ´Ù¸¥ Ä¡·á ¿µ¿ª¿¡¼ ÀǾàÇ°ÀÇ »õ·Î¿î ¿ëµµ ¹ß±¼, ½ÇÆÐÇϰųª Áß´ÜµÈ ÀǾàÇ°ÀÇ Àç»ç¿ë, º´¿ë¿ä¹ý µî ³× °¡Áö ¿ëµµ°¡ ÀÖ½À´Ï´Ù.
ML, DL, ÀÚ¿¬¾î ó¸®(NLP), ¿¹Ãø AI, ¿¹Ãø ¸ðµ¨¸µ, »ý¼ºÇü AI¿Í °°Àº ±â¼úÀº °úÇÐ ¹®Çå, Ŭ·¹ÀÓ µ¥ÀÌÅÍ, ÀüÀÚ ÀÇ·á ±â·Ï(EHR), »ý¹° Á¤º¸ÇÐ µ¥ÀÌÅÍ¿Í °°Àº ´Ù¾çÇÑ ÃâóÀÇ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ¾à¹° Àç»ç¿ë¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¼ö¹é¸¸ °³ÀÇ µ¥ÀÌÅÍ Æ÷ÀÎÆ®¸¦ ºÐ¼®ÇÏ¿© ºÐÀÚ ¼öÁØ¿¡¼ ¾à¹°°ú ´Ü¹éÁúÀÇ »óÈ£ ÀÛ¿ëÀ» ½Äº°ÇÏ°í, ±â¾÷ÀÌ ´Ù¸¥ Áúº´ ÀûÀÀÁõ¿¡ »ç¿ëÇÒ ÀǾàÇ°À» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ EHR°ú Ŭ·¹ÀÓ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© »ç¶÷µéÀÌ ÀûÀÀÁõ ¿Ü·Î »ç¿ëÇÏ´Â ÀǾàÇ°¿¡ ´ëÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. µû¶ó¼ AI´Â ½Å¾à °³¹ß Ÿ°Ù, Áúº´ ¸ÞÄ¿´ÏÁò, ±×¸®°í ±â¾÷ÀÌ ±âÁ¸ ¾à¹°·Î Ÿ°ÙÀ¸·Î »ïÀ» ¼ö ÀÖ´Â »õ·Î¿î Áúº´À» ¿¬°áÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÓ»ó½ÃÇè¿¡¼ ÀÌ¹Ì ¾ÈÀü¼ºÀÌ È®ÀÎµÈ ÀǾàÇ°ÀÌ È¯ÀÚ¿¡°Ô µµ´ÞÇÏ´Â ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ °úÁ¤Àº ´Ù¸¥ Ä¡·á ¿É¼ÇÀÌ °ÅÀÇ ¾ø°Å³ª ÀüÇô ¾ø´Â Èñ±ÍÁúȯ¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.
AI¸¦ È°¿ëÇÑ ÀǾàÇ° ÀçÀÌ¿ë ÇÁ·Î¼¼½ºÀÇ ¼Óµµ¸¦ ³ô¿© ±âÁ¸ ¾à¹°ÀÇ »õ·Î¿î Ä¡·á¿ëµµ °¡´É¼ºÀ» ¹àÈü´Ï´Ù. ÀÌ °úÁ¤¿¡´Â ±âÁ¸ ¾à¹°¿¡ ´ëÇÑ µ¥ÀÌÅÍ ºÎÁ·, »õ·Î¿î Áúº´ ÀûÀÀÁõ¿¡ ¸®ÆÄ½ÌµÈ ¾à¹°À» Àû¿ëÇϱâ À§ÇØ ´õ ¸¹Àº ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù´Â µîÀÇ ¾î·Á¿òÀÌ ÀÖÁö¸¸, AI´Â ¾à¹° ¸®ÆÄ½Ì °úÁ¤ÀÇ ¼Óµµ¸¦ Å©°Ô ³ô¿© ȯÀÚ¿¡°Ô »õ·Î¿î Ä¡·á ¿É¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. »õ·Î¿î Ä¡·á ¿É¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
Á¶»ç ¹üÀ§
AI¸¦ È°¿ëÇÑ ÀǾàÇ° ÀçÀÌ¿ë ¼¼ºÐÈ
¾à¹° Á᫐ Á¢±Ù¹ý
Áúº´ Á᫐ Á¢±Ù¹ý
AI¸¦ È°¿ëÇÑ ÀǾàÇ° ÀçÀÌ¿ë ÃËÁø¿äÀÎ
È¿À²ÈÀÇ Çʿ伺
AI µµÀÔ Áõ°¡
»õ·Î¿î À§Çù¿¡ ´ëÇÑ ´ëÀÀÀÇ Çʿ伺
Èñ±ÍÁúȯ ÆÄÀÌÇÁ¶óÀÎÀÇ °¡¼ÓÈ
AI¸¦ È°¿ëÇÑ ÀǾàÇ° ÀçÀÌ¿ëÀÇ ¼ºÀå ÀúÇØ ¿äÀÎ
Á¦ÇÑµÈ µ¥ÀÌÅÍ
AI¸ðµ¨ÀÇ Çؼ® °¡´É¼º
±ÔÁ¦»óÀÇ ¹®Á¦
³ôÀº ÀÎÇÁ¶ó ºñ¿ë
AI-based Drug Repurposing is emerging as a new and faster approach to bringing drugs to patients.
This study analyzes the emergence of AI-based drug repurposing and examines the factors driving and hindering adoption. The limitation of traditional drug discovery has led to the growing interest in AI -based drug repurposing, which offers numerous advantages in terms of time, speed, and cost. AI-based drug repurposing has been explored across different disease indications, such as rare diseases, oncology, metabolic diseases, autoimmune diseases, and neurodegenerative diseases.
The study focuses on the different AI-technologies, such as machine learning, deep learning, and generative AI, and how they are enabling AI-based drug repurposing. In addition, the report looks at key participants involved in AI-based drug repurposing, including their AI approaches, disease focus areas, and future outlook. The study examines the key factors driving and restraining the growth of AI-based drug repurposing and identifies the growth opportunities emerging from the changes in this space that key participants and stakeholders can leverage.
Key Questions This Study Answers:
AI-based Drug Repurposing Overview
Interest in drug repurposing has been increasing since the COVID-19 outbreak. Drug discovery is a time-consuming process that requires several stages, including target identification, lead identification, clinical studies, and approval. The process of bringing a drug to market can take 17 years, can cost $2 billion, and can fail at any stage in the clinical study. Drug repurposing, or drug repositioning, identifies novel therapeutic uses for already-approved drugs. This approach shortens the approval time, lowers the failure rate, and uses approved drug safety data and pharmacological profiles, thereby lowering development time and cost.
Drug repurposing has emerged as an appealing and successful strategy for finding novel therapeutic applications for already-approved medications. The shorter timeframe makes the approach attractive for pharmaceutical industries and patients. Almost 30% of repurposed medications eventually reach patients, which is a significant advance over the 10% success rate of conventional processes.
Drug repurposing has the following 4 applications: indication expansion, identification of new uses of drugs in different therapeutic areas, repurposing of failed or discontinued drugs, and combination therapies.
Technologies such as ML, DL, natural language processing (NLP), predictive AI, predictive modeling, and generative AI are revolutionizing drug repurposing by analyzing a large amount of data from different sources, such as scientific literature, claim data, electronic health records (EHRs), and bioinformatics data. These technologies can identify drug–protein interactions at the molecular level by analyzing millions of data points and identifying drugs companies’ use for different disease indications. They analyze EHRs and claim data to provide information on the drugs people use off-label. AI, therefore, helps establish connections between drug targets, disease mechanisms, and novel diseases that companies can target with established drugs. Clinical trials have already confirmed their safety, thus shortening the time these drugs take to reach patients. The process will be especially beneficial for orphan diseases with few or no other treatment options.
AI will speed up the drug repurposing process and uncover the additional potential therapeutic uses of existing drugs. While the process presents challenges, such as a lack of available data for older drugs and the necessity to conduct more studies to apply repurposed drugs for new disease indications, AI could significantly speed up the drug repurposing process, providing patients with novel therapeutic options.
Research Scope
AI-based Drug Repurposing Segmentation
Drug-centric Approach:
Disease-centric Approach
AI-based Drug Repurposing Growth Drivers
Need for efficiency
Increased AI adoption
Need to address emerging threats
Accelerated pipeline for rare diseases
AI-based Drug Repurposing Growth Restraints
Limited data
Interpretability of AI models
Regulatory issues
High infrastructure costs