½ÃÀ庸°í¼­
»óǰÄÚµå
1572442

°íºÐÀÚ Á¤¹Ð±â°è ½ÃÀå : ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2024-2032³â)

Precision Machine for Polymers Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 160 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è °íºÐÀÚ Á¤¹Ð±â°è ½ÃÀåÀº 2023³â 13¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù.

2024³âºÎÅÍ 2032³â±îÁö ¿¬Æò±Õ 5.5%ÀÇ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÀüÀÚ, ÀÇ·á±â±â µî ºÐ¾ß¿¡¼­ °í¼º´É °íºÐÀÚ Ã¤ÅÃÀÌ Áõ°¡Çϸ鼭 ÀÌ·¯ÇÑ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷°è´Â °í¼º´É °íºÐÀÚ¸¦ ÀÌ¿ëÇÑ º¹ÀâÇϰí Á¤¹ÐÇÑ ºÎǰÀ» ¿ä±¸ÇÏ´Â °æÇâÀÌ °­ÇØÁö¸é¼­ ÷´Ü Á¤¹Ð °¡°ø ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä´Â ÷´Ü Àç·á¸¦ °ü¸®ÇÒ ¼ö ÀÖ´Â Á¤¹Ð °¡°ø ÀåºñÀÇ ÁøÈ­¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, CNC(Computer Numerical Control) °¡°ø, ·¹ÀÌÀú Àý´Ü, ÀûÃþ °¡°ø°ú °°Àº ±â¼úÀÇ ¹ßÀüÀº °íºÐÀÚ °¡°øÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. °í¼Ó °¡°ø ¹× ¿ì¼öÇÑ °ø±¸ Àç·á¿Í °°Àº ±â¼ú Çõ½ÅÀº Á¤¹Ð ±â°èÀÇ ´É·ÂÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ »óȲÀ» º¯È­½ÃŰ´Â µÎµå·¯Áø Ãß¼¼´Â ÷´Ü Á¦Á¶ ±â¼úÀÇ ÅëÇÕÀÔ´Ï´Ù. ÀûÃþ °¡°ø(3D ÇÁ¸°ÆÃ)´Â ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇΰú º¹ÀâÇÑ Çü»óÀÇ Á¦ÀÛÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á °íºÐÀÚ ºÎǰÀÇ Á¦Á¶¸¦ Çõ½ÅÀûÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ¼³°è ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϰí, ¹Ýº¹À» °¡¼ÓÈ­Çϸç, ¸ÂÃãÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀüÅëÀûÀÎ ¹æ¹ý°ú ÀûÃþ °øÁ¤À» °áÇÕÇÑ ÇÏÀ̺긮µå °¡°ø ±â¼úÀº µðÅ×ÀÏÇÑ ºÎǰ Á¦ÀÛ ´É·ÂÀ» Çâ»ó½ÃŰ°í °íºÐÀÚ Àç·áÀÇ ´É·ÂÀÇ ÇѰ踦 ¶Ù¾î ³ÑÀ» ¼ö ÀÖ½À´Ï´Ù.

2023³â¿¡´Â Æú¸®Åׯ®¶óÇ÷ç¿À·Î¿¡Æ¿·» ºÎ¹®ÀÌ 5¾ï ´Þ·¯ ±Ô¸ð·Î ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2032³â¿¡´Â 8¾ï ´Þ·¯·Î ±Þ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. °íºÐÀÚ Á¤¹Ð °¡°ø ½ÃÀå ¼ö¿ä ÃËÁø¿äÀÎÀº °íºÐÀÚ À¯Çü¿¡ µû¶ó ´Ù¸£¸ç, °¢±â ´Ù¸¥ »ê¾÷ ¿ä±¸»çÇ׿¡ ¸Â°Ô Á¶Á¤µË´Ï´Ù. Æú¸®¿¡Æ¿·»(PE), Æú¸®ÇÁ·ÎÇÊ·»(PP), Æú¸®Ä«º¸³×ÀÌÆ®(PC)¿Í °°Àº ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½Àº ¹ü¿ë¼º°ú °¡°ø ¿ëÀ̼ºÀ¸·Î ÀÎÇØ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ ¼ö¿ä´Â ÁÖ·Î ¼ÒºñÀç, ÀÚµ¿Â÷ ºÎǰ, Æ÷Àå µîÀÇ ¿ëµµ¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½ÀÇ °íÀ¯ÇÑ Æ¯¼ºÀº ¿©·¯ ¹ø ¿ëÀ¶ ¹× °³ÁúÇÒ ¼ö ÀÖ¾î ´ë·® »ý»ê°ú º¹ÀâÇÑ ¼³°è¿¡ ÀûÇÕÇϸç, ÀÌ´Â Á¤¹Ðµµ¿Í ºñ¿ë È¿À²¼ºÀ» ¿ì¼±½ÃÇÏ´Â »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

±â°è À¯Çüº°·Î´Â ¼±¹Ý ºÎ¹®ÀÌ 2023³â 31%·Î °¡Àå ³ôÀº Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¾ÕÀ¸·Îµµ ¼ºÀå¼¼°¡ Áö¼ÓµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¼±¹Ý, ƯÈ÷ CNC ¼±¹ÝÀº ¿øÅëÇü ¶Ç´Â ¿øÃßÇü °íºÐÀÚ ºÎǰÀ» ÃÖ°íÀÇ Á¤¹Ðµµ·Î Á¦Á¶ÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ƯÈ÷ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÀÇ·á±â±â µîÀÇ ºÐ¾ß¿¡¼­ ¾ö°ÝÇÑ °øÂ÷ ¹× ¿¬¸¶ ¸¶°¨À» °¡Áø ºÎǰÀ» »ý»êÇÒ ¼ö ÀÖ´Â ¼±¹ÝÀÌ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. °íºÐÀÚ ºÎǰÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Á¤¹ÐÇÑ ¼³°è¿Í °í±Þ Ç¥¸é ó¸®ÀÇ Á¤¹Ðµµ°¡ ¿ä±¸µÊ¿¡ µû¶ó °í±Þ ¼±¹Ý °¡°ø ±â¼úÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ´õ¿í Á¤±³ÇÑ ¸ÂÃãÇü °íºÐÀÚ ºÎǰÀ» ¿ä±¸ÇÔ¿¡ µû¶ó ¼±¹ÝÀÇ ÀûÀÀ¼º°ú È¿À²¼ºÀº Á¤¹Ð °¡°ø¿¡¼­ ±× Á߿伺À» ´õ¿í È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

2023³â ºÏ¹Ì °íºÐÀÚ Á¤¹Ð±â°è ½ÃÀå ±Ô¸ð´Â ¾à 3¾ï ´Þ·¯À̸ç, 2032³â¿¡´Â 5¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ƯÈ÷ ¹Ì±¹Àº Ç×°ø¿ìÁÖ ¹× ¹æ»ê ºÐ¾ß°¡ °­¼¼¸¦ º¸À̰í ÀÖ¾î ÀÌ Áö¿ª Á¤¹Ð±â°è °¡°ø ¼ö¿äÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­´Â °æ·®, °í¼º´ÉÀÇ Æ¯¼ºÀ» Ȱ¿ëÇÏ¿© Ç×°ø±â ³»ÀåÀç, ¿£Áø ºÎǰ, ¹æÀ§ Àåºñ µîÀÇ ºÎǰ¿¡ ÷´Ü °íºÐÀÚ¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Æú¸®¿¡Å׸£¿¡Å׸£ÄÉÅæ(PEEK)°ú Æú¸®Åׯ®¶óÇ÷ç¿À·Î¿¡Æ¿·»(PTFE)°ú °°Àº Æú¸®¸Ó´Â ¶Ù¾î³­ ±â°èÀû Ư¼º, ³»È­Çмº, °¡È¤ÇÑ Á¶°Ç¿¡¼­ÀÇ ³»±¸¼ºÀ¸·Î ÀÎÇØ ¼±È£µÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
    • ¹ë·ùüÀο¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎ
    • ÀÌÀÍ·ü ºÐ¼®
    • ÆÄ±«
    • ÇâÈÄ Àü¸Á
    • Á¦Á¶¾÷ü
    • À¯Åë¾÷ü
  • °ø±Þ¾÷ü »óȲ
  • ÀÌÀÍ·ü ºÐ¼®
  • ¿øÀç·á ºÐ¼®
  • ÁÖ¿ä ´º½º¿Í ÀÌ´Ï¼ÅÆ¼ºê
  • ±ÔÁ¦ »óȲ
  • ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¾÷°èÀÇ ÀáÀçÀû ¸®½ºÅ©£¦°úÁ¦
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« Àü¸Á ¸ÅÆ®¸¯½º

Á¦5Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : °íºÐÀÚ À¯Çüº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • Æú¸®Åׯ®¶óÇ÷ç¿À·Î¿¡Æ¿·»(PTFE)
  • ºÒ¼ÒÈ­ ¿¡Æ¿·» ÇÁ·ÎÆÄÀÏ·»(FEP)
  • ÆÛÇ÷ç¿À·Î ¾ËÄ۽à ¾ËÄ­(PFA)
  • Æú¸® ºÒÈ­ ºñ´Ò¸®µ§(PVDF)
  • ¿¡Æ¿·» Åׯ®¶ó Ç÷ç¿À¸£ ¿¡Æ¿·»(ETFE)
  • ±âŸ(Æú¸®¿¡Æ¿·», PVC, ¿¡Æø½Ã µî)

Á¦6Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ±â°è À¯Çüº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ¼±¹Ý °¡°ø
  • ÇÁ¶óÀÌÁî °¡°ø
  • µå¸± °¡°ø
  • ¿¬»è°¡°ø
  • ·¹ÀÌÀú Àý´Ü
  • ±âŸ(¹æÀü °¡°ø±â)

Á¦7Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : °¡°øº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ¼öµ¿
  • ¹ÝÀÚµ¿
  • ÀÚµ¿

Á¦8Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ¿ëµµº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ÄÚÆÃ ¹× ¸¶°¨
  • Àü±â Àý¿¬
  • ±â±â ¹× ºÎǰ
  • ÷°¡Á¦
  • ±âŸ

Á¦9Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ÃÖÁ¾ ¿ëµµº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ÀÚµ¿Â÷
  • Ç×°ø¿ìÁÖ
  • ÀÇ·á
  • ±âŸ(¼ÒºñÀç)

Á¦10Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : À¯Åë ä³Îº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • Á÷Á¢
  • °£Á¢

Á¦11Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : Áö¿ªº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ±â¾÷ °³¿ä

  • Advent Tool and Manufacturing
  • American Industrial Plastics
  • Ensinger
  • I.M.P. International, Inc.
  • Mitsubishi Chemical Advanced Materials
  • Nordson EFD
  • Plastics Plus
  • Precision Polymer Engineering(PPE)
  • Proto Labs
  • Quadrant Engineering Plastic Products
  • Rochling Engineering Plastics
  • Rogers Corporation
  • Saint-Gobain Performance Plastics
  • Trelleborg Sealing Solutions
  • Victrex
LSH 24.10.28

The Global Precision Machine for Polymers Market was valued at USD 1.3 billion in 2023. Projections indicate a growth at a CAGR of 5.5% from 2024 to 2032. The rising adoption of high-performance polymers across sectors such as aerospace, automotive, electronics, and medical devices drives this growth.

Industries increasingly seek intricate and precise components made from high-performance polymers, boosting the demand for advanced precision machining technologies. This demand propels the evolution of precision machining equipment capable of managing advanced materials. Technological strides in CNC (Computer Numerical Control) machining, laser cutting, and additive manufacturing enhance the precision and efficiency of polymer processing. Innovations like high-speed machining and superior tool materials further amplify the capabilities of precision machines.

A prominent trend reshaping the landscape is the integration of advanced manufacturing technologies. Additive manufacturing, or 3D printing, transforms polymer component production by enabling rapid prototyping and the creation of intricate geometries. This shift streamlines design processes, accelerates iterations, and allows for customization. Additionally, hybrid machining techniques, which combine traditional methods with additive processes, enhance the ability to craft detailed parts, pushing the boundaries of polymer material capabilities.

The overall precision machine for polymers industry is categorized based on machine type, polymer type, operations, application, end-use industry, distribution channel, and region.

In 2023, Polytetrafluoroethylene segment dominated the market with a valuation of USD 500 million, projected to surge to USD 800 million by 2032. Demand drivers in the precision machining for polymers market vary across different polymer types, each tailored to distinct industrial requirements. Thermoplastics, including Polyethylene (PE), Polypropylene (PP), and Polycarbonate (PC), are favored for their versatility and ease of processing. Their demand is primarily fueled by applications in consumer goods, automotive components, and packaging. The unique property of thermoplastics, allowing them to be melted and reformed multiple times, makes them ideal for high-volume production and intricate designs, crucial for industries prioritizing precision and cost-effectiveness.

By machine type, turning machines segment captured a leading market share of 31% in 2023 and is set for continued growth. Turning machines, notably CNC lathes, play a pivotal role in crafting cylindrical or conical polymer components with utmost precision. Their capability to produce parts with stringent tolerances and polished finishes drives demand, especially in sectors like aerospace, automotive, and medical devices. The growing intricacy of polymer components, alongside the demand for precision in detailed designs and premium surface finishes, propels the need for advanced turning technologies. As industries demand more sophisticated and tailored polymer components, the adaptability and efficacy of turning machines solidify their importance in precision machining.

In 2023, North America precision machine for polymers market was worth approximately USD 300 million, with projections reaching USD 500 million by 2032. The U.S., particularly, boasts a robust aerospace and defense sector, a significant driver for the region's precision machining demand. This sector leverages advanced polymers for components like aircraft interiors, engine parts, and defense equipment, capitalizing on their lightweight and high-performance traits. Polymers such as Polyetheretherketone (PEEK) and Polytetrafluoroethylene (PTFE) are favored for their exceptional mechanical properties, chemical resilience, and durability in extreme conditions.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Base estimates and calculations
  • 1.3 Forecast calculations
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Supplier landscape
  • 3.3 Profit margin analysis
  • 3.4 Raw material analysis
  • 3.5 Key news and initiatives
  • 3.6 Regulatory landscape
  • 3.7 Impact forces
    • 3.7.1 Growth drivers
      • 3.7.1.1 Growing electronics industry
      • 3.7.1.2 Increasing production of medical devices
      • 3.7.1.3 Advancements in technology
      • 3.7.1.4 Expanding automotive industry
    • 3.7.2 Industry pitfalls and challenges
      • 3.7.2.1 High costs of precision machining equipment
      • 3.7.2.2 Tool wear and maintenance issues
  • 3.8 Growth potential analysis
  • 3.9 Porter's analysis
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates and Forecast, By Polymer Type, 2021-2032 (USD Billion) (Million Units)

  • 5.1 Key trends
  • 5.2 Polytetrafluoroethylene (PTFE)
  • 5.3 Fluorinated ethylene propylene (FEP)
  • 5.4 Perfluoro alkoxy alkanes (PFA)
  • 5.5 Polyvinylidene fluoride (PVDF)
  • 5.6 Ethylene tetrafluoroethylene (ETFE)
  • 5.7 Others (Polyethylene, PVC, Epoxy, etc.)

Chapter 6 Market Estimates and Forecast, By Machine Type, 2021-2032 (USD Billion) (Million Units)

  • 6.1 Key trends
  • 6.2 Turning
  • 6.3 Milling
  • 6.4 Drilling
  • 6.5 Grinding
  • 6.6 Laser cutting
  • 6.7 Others (electrical discharge machine)

Chapter 7 Market Estimates and Forecast, By Operations, 2021-2032 (USD Billion) (Million Units)

  • 7.1 Key trends
  • 7.2 Manual
  • 7.3 Semi-automatic
  • 7.4 Automatic

Chapter 8 Market Estimates and Forecast, By Application, 2021-2032 (USD Billion) (Million Units)

  • 8.1 Key Trends
  • 8.2 Coatings and finishes
  • 8.3 Electrical insulation
  • 8.4 Equipment and components
  • 8.5 Additives
  • 8.6 Others

Chapter 9 Market Estimates and Forecast, By End-use, 2021-2032 (USD Billion) (Million Units)

  • 9.1 Key trends
  • 9.2 Automotive
  • 9.3 Aerospace
  • 9.4 Medical
  • 9.5 Others (consumer goods)

Chapter 10 Market Estimates and Forecast, By Distribution Channel, 2021-2032 (USD Billion) (Million Units)

  • 10.1 Key trends
  • 10.2 Direct
  • 10.3 Indirect

Chapter 11 Market Estimates and Forecast, By Region, 2021-2032 (USD Billion) (Million Units)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 U.S.
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 UK
    • 11.3.2 Germany
    • 11.3.3 France
    • 11.3.4 Italy
    • 11.3.5 Spain
    • 11.3.6 Russia
    • 11.3.7 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 South Korea
    • 11.4.5 Australia
    • 11.4.6 Rest of Asia Pacific
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Rest of Latin America
  • 11.6 MEA
    • 11.6.1 South Africa
    • 11.6.2 Saudi Arabia
    • 11.6.3 UAE
    • 11.6.4 Rest of MEA

Chapter 12 Company Profiles

  • 12.1 Advent Tool and Manufacturing
  • 12.2 American Industrial Plastics
  • 12.3 Ensinger
  • 12.4 I.M.P. International, Inc.
  • 12.5 Mitsubishi Chemical Advanced Materials
  • 12.6 Nordson EFD
  • 12.7 Plastics Plus
  • 12.8 Precision Polymer Engineering (PPE)
  • 12.9 Proto Labs
  • 12.10 Quadrant Engineering Plastic Products
  • 12.11 Rochling Engineering Plastics
  • 12.12 Rogers Corporation
  • 12.13 Saint-Gobain Performance Plastics
  • 12.14 Trelleborg Sealing Solutions
  • 12.15 Victrex
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦