½ÃÀ庸°í¼­
»óǰÄÚµå
1684805

Æ®·° Ç÷¡Åõ´× ½ÃÀå ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м®, ¿¹Ãø(2025-2034³â)

Truck Platooning Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 180 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ Æ®·° Ç÷¡Åõ´× ½ÃÀåÀº 2024³â¿¡ 23¾ï ´Þ·¯¿¡ À̸£·¶°í, 2025³âºÎÅÍ 2034³â¿¡ °ÉÃÄ 21.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³» °ßÁ¶ÇÏ°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¼¼°è°¡ Áö¼Ó°¡´É¼º, ¾÷¹« È¿À²¼º, ¾ÈÀü¼ºÀ» Áß½ÃÇÏ°Ô µÇ¸é¼­ Æ®·° Ç÷¡Åõ´×ÀÌ ±Þ¼ÓÈ÷ º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ¿©·¯ Æ®·°ÀÌ ¹ÐÁ¢ÇÏ°Ô µ¿±âÈ­µÈ ´ë¿­À» Â¥°í ÁÖÇàÇÏ´Â ÀÌ Çõ½ÅÀûÀÎ ±â¼úÀº ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÏ´Â Áß¿äÇÑ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. °ø±â ÀúÇ×À» ÁÙÀÓÀ¸·Î½á ÇöóÅ÷Àº ¿¬·á ºñ¿ëÀ» Å©°Ô ÁÙÀ̰í ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÔ´Ï´Ù.

Truck Platooning Market-IMG1

µ¿½Ã¿¡ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×À» Æ÷ÇÔÇÑ ÀÚµ¿È­ ±â¼úÀÇ Áøº¸·Î ´õ ³ôÀº È¿À²¼º°ú ½Å·Ú¼ºÀ» ¿ä±¸ÇÏ´Â Çø´ ¿ÀÆÛ·¹ÀÌÅÍ¿¡°Ô Ç÷¡Å÷Àº ½ÇÇö °¡´ÉÇÑ ¿É¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â ÀÌ Ã·´Ü±â¼úÀÇ °³¹ßÀ» ÃËÁøÇÏ´Â Àμ¾Æ¼ºê¸¦ Á¦°øÇÏ°í ¿¬±¸ ÇÁ·Î±×·¥¿¡ ÀÚ±ÝÀ» Á¦°øÇÔÀ¸·Î½á ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó ¾÷±×·¹ÀÌµå ¹× ±ÔÁ¦ Áö¿øµµ ä¿ëÀ» µÞ¹ÞħÇϰí ÀÖÀ¸¸ç, Æ®·° Ç÷¡Åõ´×Àº ¹Ì·¡ ¿î¼ÛÀÇ Áß¿äÇÑ ±¸¼º ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå ¹üÀ§
½ÃÀÛ ¿¬µµ 2024³â
¿¹Ãø ¿¬µµ 2025-2034³â
½ÃÀÛ ±Ý¾× 23¾ï ´Þ·¯
¿¹Ãø ±Ý¾× 161¾ï ´Þ·¯
CAGR 21.9%

Æ®·° Ç÷¡Åõ´× ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â Á¤ºÎ¿Í ¹Î°£ ºÎ¹® ¸ðµÎÀÇ Áö¼ÓÀûÀÎ Áö¿øÀÔ´Ï´Ù. Æ®·° ¿î¼Û ¾÷°è¿¡¼­ ÀÚµ¿È­·ÎÀÇ ÀüȯÀº ¾÷¹«¸¦ °£¼ÒÈ­Çϰí, ¿¬·áºñ¸¦ ÁÙÀ̰í, µµ·Î ¾ÈÀü¼ºÀ» ³ôÀÌ´Â ÃÖ÷´Ü ±â¼úÀÇ Ã¤ÅÃÀ» »ó¿ë Çø´À¸·Î Ã˱¸ÇÕ´Ï´Ù. ¹°·ù ÃÖÀûÈ­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Æ®·° Ç÷¡Åõ´×Àº Àΰ£ ¿îÀüÀÚ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̸鼭 È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â °ÍÀ» ¸ñÇ¥·ÎÇÏ´Â »ç¾÷ÀÚ¿¡°Ô ÀÌ»óÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ E-CommerceÀÇ ¼ºÀå°ú ¹è¼Û±âÇÑÀ» ÁöÄÑ¾ß ÇÑ´Ù´Â ¾Ð·ÂÀÌ ¾ÈÀü¼ºÀ» È®º¸Çϸ鼭 ¼Óµµ¸¦ ³ôÀÌ´Â ¹æ¹ýÀ» ¸ð»öÇϵµ·Ï ¿î¼Û»ç¾÷ÀÚ¿¡°Ô Ã˱¸Çϰí ÀÖÀ¸¸ç, Ç÷¡Åä´×ÀÇ Ã¤¿ëÀ» ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀº Åë½Å±â¼úº°·Î ±¸ºÐµÇ¸ç, Â÷Â÷°£(V2V), Â÷Â÷°£(V2X), Â÷Â÷°£ ÀÎÇÁ¶ó(V2I)¸¦ Æ÷ÇÔÇÕ´Ï´Ù. 2024³â V2X ºÎ¹®Àº ½ÃÀå Á¡À¯À²ÀÇ 40%¸¦ Â÷ÁöÇßÀ¸¸ç 2034³â±îÁö 80¾ï ´Þ·¯¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. V2X ±â¼úÀº Ç÷¡Åä´× Æ®·°°ú µµ·Î ½Ã½ºÅÛ, ±³Åë ½ÅÈ£ ¹× ±âŸ Â÷·®°ú °°Àº ÁÖº¯ ÀÎÇÁ¶ó °£ÀÇ ¿øÈ°ÇÑ Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ½Ç½Ã°£ µ¥ÀÌÅÍ ±³È¯Àº Â÷·®ÀÇ ÇùÁ¶¸¦ ÃÖÀûÈ­Çϰí, ƯÈ÷ »óÈ£ ¿¬°áµÈ µµ·Î¿¡¼­ Ç÷¡Åä´×À» ´õ¿í ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ¸¸µì´Ï´Ù.

Æ®·° Ç÷¡Åõ´×Àº Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. 2024³â ½ÃÀåÀÇ 46%¸¦ Â÷ÁöÇÑ Çϵå¿þ¾î ºÎ¹®Àº Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó ¹× ÃÊÀ½ÆÄ ¼¾¼­¸¦ Æ÷ÇÔÇÑ °í±Þ ¼¾¼­´Â ºÎµå·´°í ¾ÈÀüÇÑ Ç÷¡Å÷ ¿îÇàÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ±â¼úÀº Æ®·¢ÀÌ Á¤È®ÇÑ °Å¸®¸¦ À¯ÁöÇϰí Àå¾Ö¹°À» °¨ÁöÇÏ°í ¿òÁ÷ÀÓÀ» µ¿±âÈ­ÇÏ´Â µ¥ µµ¿òÀ̵Ǹç Çϵå¿þ¾î¸¦ Æ®·° Ç÷¡Åõ´× ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ °³¹ß¿¡ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ¸¸µì´Ï´Ù.

¹Ì±¹ÀÇ Æ®·° Ç÷¡Åõ´× ½ÃÀå¿¡¼­¸¸ 2024³â ¼¼°è Á¡À¯À²ÀÇ 80%¸¦ Â÷ÁöÇß½À´Ï´Ù. AI ¾Ë°í¸®Áò°ú ¼¾¼­ ±â¹Ý ÀÚµ¿È­ÀÇ Áö¼ÓÀûÀÎ ÁøÈ­¸¦ Æ÷ÇÔÇÑ ÀÚÀ²ÁÖÇàÂ÷ ±â¼úÀÇ ¹Ì±¹ ¸®´õ½ÊÀÌ Ç÷¡Åä´× ½Ã½ºÅÛÀÇ Ã¤¿ëÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ² ÁÖÇà Æ®·°ÀÇ ½Å·Ú¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¹Ì±¹ÀÇ ÇÔ´ë ¿î¿µÀÚ´Â ¿¬·á ºñ¿ëÀ» ÁÙÀÌ°í ¹°·ù¸¦ °£¼ÒÈ­ÇÏ°í ±³Åë ¾ÈÀüÀ» °­È­Çϱâ À§ÇØ Ç÷¡Åä´× ±â¼úÀÇ Ã¤ÅÃÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÚµ¿È­ÀÇ Áö¼ÓÀûÀÎ Áøº¸·Î ¹Ì±¹ ½ÃÀåÀº Àå±âÀûÀ¸·Î Å©°Ô ¼ºÀåÇϴ ż¼°¡ °®Ãß¾îÁö°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

  • Á¶»ç µðÀÚÀÎ
    • Á¶»ç Á¢±Ù
    • µ¥ÀÌÅÍ ¼öÁý ¹æ¹ý
  • ±âº» ÃßÁ¤°ú °è»ê
    • ±âÁØ¿¬µµÀÇ »êÃâ
    • ½ÃÀåÃß°èÀÇ ÁÖ¿ä µ¿Çâ
  • ¿¹Ãø ¸ðµ¨
  • 1Â÷ Á¶»ç¿Í °ËÁõ
    • 1Â÷ Á¤º¸
    • µ¥ÀÌÅÍ ¸¶ÀÌ´× ¼Ò½º
  • ½ÃÀå ¹üÀ§¿Í Á¤ÀÇ

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
    • Çϵå¿þ¾î Á¦°ø¾÷ü
    • ¼ÒÇÁÆ®¿þ¾î Á¦°ø¾÷ü
    • ¼­ºñ½º Á¦°ø¾÷ü
    • ±â¼ú °ø±ÞÀÚ
    • ÃÖÁ¾ »ç¿ëÀÚ
  • °ø±ÞÀÚÀÇ »óȲ
  • ÀÌÀÍ·ü ºÐ¼®
  • ±â¼ú°ú Çõ½ÅÀÇ Àü¸Á
  • ƯÇ㠺м®
  • ÁÖ¿ä ´º½º ¹× ÀÌ´Ï¼ÅÆ¼ºê
  • ±ÔÁ¦ »óȲ
  • ÀÌ¿ë »ç·Ê
  • ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • »ó¿ëÂ÷ ÆÇ¸Å È®´ë
      • Â÷·®ÀÇ ¿îÇà ºñ¿ë°ú ¿¬·á ¼Òºñ¸¦ »è°¨ÇÏ´Â ¼ö¿ä Áõ°¡
      • Ä¿³ØÆ¼µåÄ«¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
      • ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í ±³Åë ¾ÈÀü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
      • ±â¼ú°ú Çϵå¿þ¾îÀÇ °íºñ¿ë
      • ÀÎÇÁ¶ó ºÎÁ·
    • ¾÷°èÀÇ ÀáÀçÀû À§Çè ¹× °úÁ¦
      • ¹°·ù °ü¸® ºÎÁ·
      • ±¹°æÀ» ³ÑÀº ¿î¼Û¿¡ ¼ö¹ÝÇÏ´Â À§Çè
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« Àü¸Á ¸ÅÆ®¸¯½º

Á¦5Àå ½ÃÀå Ã߰衤¿¹Ãø : ±¸¼º ¿ä¼Òº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • Çϵå¿þ¾î
    • ¼¾¼­
    • °¨Áö ½Ã½ºÅÛ
    • Ä«¸Þ¶ó
    • ±âŸ
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ½ÃÀå Ã߰衤¿¹Ãø : Â÷·®º°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ¼ÒÇü »ó¿ëÂ÷(LCV)
  • ´ëÇü »ó¿ëÂ÷(HCV)

Á¦7Àå ½ÃÀå Ã߰衤¿¹Ãø : ÀÚÀ² ÁÖÇà ·¹º§º°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÎºÐ ÀÚÀ²Çü
  • ¿ÏÀü ÀÚÀ²Çü

Á¦8Àå ½ÃÀå Ã߰衤¿¹Ãø : Åë½Å ±â¼úº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • Â÷·® ´ë Â÷·®(V2V)
  • Â÷·® ´ë ¸ðµç °Í(V2X)
  • Â÷·® ´ë ÀÎÇÁ¶ó(V2I)

Á¦9Àå ½ÃÀå Ã߰衤¿¹Ãø : Áö¿ªº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ºÏÀ¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ´ºÁú·£µå
    • µ¿³²¾Æ½Ã¾Æ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • UAE
    • ³²¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ÅÍŰ

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • AB Volvo
  • Bendix
  • Bosch
  • Continental
  • Daimler
  • Hino Motors
  • IVECO
  • NVIDIA
  • Omnitracs
  • Peloton
  • Scania
  • TomTom
  • TuSimple
  • Veddel
  • ZF Friedrichshafen
KTH 25.04.14

The Global Truck Platooning Market reached USD 2.3 billion in 2024 and is projected to grow at a robust CAGR of 21.9% from 2025 to 2034. As the world becomes more focused on sustainability, operational efficiency, and safety, truck platooning is rapidly gaining traction. This innovative technology, where multiple trucks travel in a closely synchronized formation, is becoming a crucial solution for reducing fuel consumption and minimizing environmental impact. By reducing aerodynamic drag, these platoons significantly cut fuel costs while lowering carbon emissions.

Truck Platooning Market - IMG1

At the same time, advancements in automation technology, including artificial intelligence (AI) and machine learning, make platooning a feasible option for fleet operators seeking greater efficiency and reliability. Governments are also contributing to the market's growth by offering incentives and funding research programs that promote the development of this advanced technology. Infrastructure upgrades and regulatory support are also helping drive adoption, making truck platooning a key component of the future of transportation.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$2.3 Billion
Forecast Value$16.1 Billion
CAGR21.9%

One of the primary drivers of the truck platooning market is the ongoing support from both governments and private sectors. The shift toward automation in the trucking industry is pushing commercial fleets to adopt cutting-edge technologies that streamline operations, reduce fuel expenses, and enhance safety on the roads. With the increasing demand for logistics optimization, truck platooning offers an ideal solution for operators aiming to improve efficiency while reducing reliance on human drivers. Additionally, the growth in e-commerce and the pressure to meet delivery deadlines are prompting fleet operators to seek ways to increase speed while ensuring safety, further boosting the adoption of platooning.

The market is segmented by communication technology, which includes Vehicle-to-Vehicle (V2V), Vehicle-to-Everything (V2X), and Vehicle-to-Infrastructure (V2I). In 2024, the V2X segment captured 40% of the market share and is expected to generate USD 8 billion by 2034. V2X technology is fueling this growth by enabling seamless communication between platooning trucks and surrounding infrastructure, such as road systems, traffic signals, and other vehicles. This real-time data exchange optimizes vehicle coordination, making platooning safer and more efficient, especially on interconnected roadways.

Truck platooning also relies heavily on hardware, software, and services. The hardware segment, which accounted for 46% of the market in 2024, is experiencing significant growth. Advanced sensors, including LiDAR, radar, cameras, and ultrasonic sensors, are integral to ensuring smooth, safe platooning operations. These technologies help trucks maintain precise distances, detect obstacles, and synchronize their movements, making hardware a critical component for the ongoing development of truck platooning systems.

The U.S. truck platooning market alone made up 80% of the global share in 2024. The nation's leadership in autonomous vehicle technology, including the continuous evolution of AI algorithms and sensor-based automation, is accelerating the adoption of platooning systems. As autonomous trucks become more reliable, fleet operators in the U.S. are increasingly adopting platooning technology to reduce fuel costs, streamline logistics, and enhance road safety. With continued advancements in automation, the U.S. market is poised for substantial long-term growth.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
  • 1.2 Base estimates & calculations
    • 1.2.1 Base year calculation
    • 1.2.2 Key trends for market estimation
  • 1.3 Forecast model
  • 1.4 Primary research and validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market scope & definition

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Hardware providers
    • 3.1.2 Software providers
    • 3.1.3 Service providers
    • 3.1.4 Technology providers
    • 3.1.5 End users
  • 3.2 Supplier landscape
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Use case
  • 3.9 Impact forces
    • 3.9.1 Growth drivers
      • 3.9.1.1 Growing sales of commercial vehicles
      • 3.9.1.2 Increase in demand to reduce operating cost and fuel consumption by fleet
      • 3.9.1.3 Rising demand for connected vehicles
      • 3.9.1.4 Stringent environmental regulations and rising demand for road safety
      • 3.9.1.5 High cost of technology and hardware
      • 3.9.1.6 Lack of infrastructure
    • 3.9.2 Industry pitfalls & challenges
      • 3.9.2.1 Lack of logistics control
      • 3.9.2.2 Risks associated with cross-border transportation
  • 3.10 Growth potential analysis
  • 3.11 Porter’s analysis
  • 3.12 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 ($Bn)

  • 5.1 Key trends
  • 5.2 Hardware
    • 5.2.1 Sensors
    • 5.2.2 Detection systems
    • 5.2.3 Camera
    • 5.2.4 Others
  • 5.3 Software
  • 5.4 Services

Chapter 6 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($Bn)

  • 6.1 Key trends
  • 6.2 Light Commercial Vehicle (LCV)
  • 6.3 Heavy Commercial Vehicle (HCV)

Chapter 7 Market Estimates & Forecast, By Autonomous Level, 2021 - 2034 ($Bn)

  • 7.1 Key trends
  • 7.2 Partially-autonomous
  • 7.3 Fully autonomous

Chapter 8 Market Estimates & Forecast, By Communication Technology, 2021 - 2034 ($Bn)

  • 8.1 Key trends
  • 8.2 Vehicle to Vehicle (V to V)
  • 8.3 Vehicle to Everything (V to X)
  • 8.4 Vehicle to Infrastructure (V to I)

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
    • 9.3.7 Nordics
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Southeast Asia
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Turkey

Chapter 10 Company Profiles

  • 10.1 AB Volvo
  • 10.2 Bendix
  • 10.3 Bosch
  • 10.4 Continental
  • 10.5 Daimler
  • 10.6 Hino Motors
  • 10.7 IVECO
  • 10.8 NVIDIA
  • 10.9 Omnitracs
  • 10.10 Peloton
  • 10.11 Scania
  • 10.12 TomTom
  • 10.13 TuSimple
  • 10.14 Veddel
  • 10.15 ZF Friedrichshafen
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦