![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1625171
Æ®·° Ç÷¡Åõ´× ½ÃÀå ¿¹Ãø(-2030³â) : Â÷Á¾, Ç÷¡Å÷ ±¸¼º, ÀÚµ¿È ·¹º§, Åë½Å ¸ðµ¨, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®Truck Platooning Market Forecasts to 2030 - Global Analysis By Vehicle Type (Light-duty Trucks, Heavy-duty Trucks and Electric Trucks), Platoon Configuration, Automation Level, Communication Model, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Æ®·° Ç÷¡Åõ´× ½ÃÀåÀº 2024³â¿¡ 13¾ï 8,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϸç 2030³â¿¡´Â 32¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 11.5%ÀÔ´Ï´Ù.
Æ®·° Ç÷¡Åõ´×Àº ¿©·¯ ´ëÀÇ Æ®·°À» ÀüÀÚÀûÀ¸·Î ¿¬°áÇÏ¿© ±ÙÁ¢ÇÑ ´ë¿·Î ÁÖÇàÇÏ¿© °ø±â ÀúÇ×À» ÁÙÀÌ°í ¿¬·á È¿À²À» Çâ»ó½ÃŰ´Â ¿î¼Û Àü·«ÀÔ´Ï´Ù. ¼±µÎ Æ®·°ÀÌ ¼Óµµ¸¦ ³»°í, µÚµû¶ó¿À´Â Æ®·°Àº ÀÚÀ²ÀûÀ¸·Î Á¦¾îµÇ¸ç ¹«¼±Åë½ÅÀ» ÅëÇØ ¾ÈÀüÇÑ °Å¸®¸¦ À¯ÁöÇÏ°í ¼Óµµ¸¦ µ¿±âÈÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ±³Åë¾ÈÀüÀ» ³ôÀ̰í, ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í, ±³Åë È¥ÀâÀ» ÃÖ¼ÒÈÇÏ¿© ±³Åë È帧À» °³¼±ÇÕ´Ï´Ù. Æ®·° Ç÷¡Åõ´×Àº ÀϹÝÀûÀ¸·Î ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)°¡ ÀåÂøµÈ °í¼Óµµ·Î¿¡¼ ½ÃÇàµÇ°í ÀÖÀ¸¸ç, ÀÚÀ²ÁÖÇà ¹× ¹°·ù ºÐ¾ß¿¡¼ À¯¸ÁÇÑ ¹ßÀüÀ¸·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù.
Å׳׽à ÁÖ ±³Åë±¹(TDOT)¿¡ µû¸£¸é Ç÷¡Åõ´×Àº ¹ÐÁ¢ÇÏ°Ô ¿¬°áµÈ Æ®·° »çÀÌÀÇ °ø±â ÀúÇ×À» ÁÙÀÓÀ¸·Î½á 18·û Â÷·®ÀÇ ¿¬·á ºñ¿ëÀ» 5-10% Àý°¨ÇÒ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.
ÀÚÀ²ÁÖÇàÂ÷ ÅëÇÕ¿¡ ´ëÇÑ °ü½É Áõ´ë
´ë±â¾÷ÀÌ Â÷·®¿ë ÀÚÀ²ÁÖÇà ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ´Â °¡¿îµ¥, Ç÷¡Åõ´×Àº ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» °ÈÇÏ¿© ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í, ¾ÈÀü¼ºÀ» Çâ»ó½Ã۸ç, °æ·Î¸¦ ÃÖÀûÈÇÏ´Â È¿À²ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇà Â÷·®Àº Ç÷¡Åõ´× ±â¼úÀ» ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖÀ¸¸ç, Æ®·°Àº »ç¶÷ÀÇ °³ÀÔÀ» ÃÖ¼ÒÈÇÏ¸é¼ Á¼Àº ´ë¿·Î ÁÖÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ¹°·ù È¿À²À» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÏ¸ç ¾÷°è ÀüüÀÇ ¹è¼Û ´É·ÂÀ» °ÈÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» º¸¿©ÁÜÀ¸·Î½á Æ®·° Ç÷¡Åõ´×ÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
±â¼úÀû ÇѰè
Æ®·° Ç÷¡Åõ´×ÀÇ ±â¼úÀû ÇѰè´Â ÷´Ü ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ, Â÷·® °£ Åë½Å ¹× ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®ÀÇ Çʿ伺¿¡¼ ºñ·ÔµË´Ï´Ù. ÇöÀç ½Ã½ºÅÛÀº º¹ÀâÇÑ µµ·Î »óȲ, ¾ÇõÈÄ ¶Ç´Â ¿¹»óÄ¡ ¸øÇÑ ±³Åë ½Ã³ª¸®¿À¿¡¼ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖÀ¸¸ç, ±× È¿°ú¸¦ Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ¹°·ù ±â¾÷°ú ±ÔÁ¦ ´ç±¹ÀÌ ¾ÈÀü°ú ½Å·Ú¼ºÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, ÀÌ·¯ÇÑ ±â¼ú °ÝÂ÷´Â º¸±Þ¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ½Å·ÚÇÒ ¼ö ÀÖ°í °ß°íÇÑ ½Ã½ºÅÛÀÌ ¾ø´Ù¸é, Æ®·° Ç÷¡Åõ´×Àº ±× ÀáÀç·ÂÀ» ÃæºÐÈ÷ ¹ßÈÖÇÏÁö ¸øÇÏ°í ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ°í ´ë±Ô¸ð µµÀÔÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù.
µµ·Î ¹× Åë½Å ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
Ç÷¡Åõ´× Æ®·° Àü¿ë Â÷¼±, µµ·Î »óȲ °³¼±, ÷´Ü ¼¾¼ ¹× Åë½Å ³×Æ®¿öÅ© ¼³Ä¡¿Í °°Àº ÀÎÇÁ¶ó °È´Â º¸´Ù ¿øÈ°ÇÑ ¿îÇàÀ» º¸ÀåÇϸç, V2V ¹× V2I Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ´Â ½Ç½Ã°£ Á¶Á¤À» ÃËÁøÇϰí Ç÷¡Åõ´×ÀÇ È¿À²¼ºÀ» ÃÖÀûÈÇÕ´Ï´Ù. ÃÖÀûÈÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¾÷±×·¹À̵å´Â ÀÚÀ²ÁÖÇà ±â¼ú °³¹ßÀ» Áö¿øÇÏ°í ¾ÈÀüÀ» °³¼±ÇÏ¸ç ±³Åë üÁõÀ» ¿ÏÈÇÕ´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ ºÎ¹®ÀÌ ÀÌ·¯ÇÑ ¹ßÀüÀÇ ¿ì¼± ¼øÀ§¸¦ Á¤ÇÏ¸é Æ®·° Ç÷¡Åõ´×ÀÇ º¸±Þ¿¡ µµ¿òÀÌ µÇ´Â ȯ°æÀÌ Á¶¼ºµÇ¾î ½ÃÀå È®´ë°¡ °¡¼Ó鵃 °ÍÀÔ´Ï´Ù.
°í°¡ÀÇ ±â¼ú ¹× ÀÎÇÁ¶ó ¾÷±×·¹À̵å
Æ®·° Ç÷¡Åõ´×ÀÇ ±â¼ú ¹× ÀÎÇÁ¶ó ¾÷±×·¹ÀÌµå ºñ¿ëÀÌ ³ôÀº ÀÌÀ¯´Â ÷´Ü ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ, ¼¾¼, Â÷·® °£ Åë½Å ±â¼ú, µµ·Î ÀÎÇÁ¶óÀÇ ¼öÁ¤ÀÌ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¿¬±¸°³¹ß, Á¦Á¶ ¹× ¹èÄ¡¿¡ ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ µµ·Î¿Í Åë½Å¸ÁÀ» ¾÷±×·¹À̵åÇϰí Ç÷¡Åõ´×À» Áö¿øÇÏ´Â µ¥´Â ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. µû¶ó¼ Àú·ÅÇÑ ¼Ö·ç¼ÇÀÇ ºÎÀç¿Í ±ä ÅõÀÚ È¸¼ö ±â°£À¸·Î ÀÎÇØ Ç÷¡Åõ´×ÀÇ ´ëÁßȸ¦ °¡·Î¸·°í ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº Æ®·° Ç÷¡Åõ´× ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â ¼¼°è °ø±Þ¸Á°ú ¿î¼ÛÀÇ È¥¶õÀ¸·Î ÀÎÇØ ½Å±â¼ú äÅÃÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, È¿À²ÀûÀÎ ¹°·ù ¹× ºñÁ¢ÃË½Ä ¿î¿µ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚÀ²ÁÖÇà ¹× Ç÷¡Åõ´× ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ °¡¼ÓȵǾú½À´Ï´Ù. ¶ÇÇÑ ÆÒµ¥¹ÍÀº º¸´Ù ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¿î¼Û ½Ã½ºÅÛÀÇ Çʿ伺À» °Á¶ÇÏ°í Æ®·° Ç÷¡Åõ´× ±â¼ú°ú ÀÎÇÁ¶ó¿¡ ´ëÇÑ Àå±âÀûÀÎ ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Áö¿ª ¹× µµ½Ã ±³Åë ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Áö¿ª ¹× µµ½Ã ±³Åë ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áö¿ª ¹× µµ½Ã ±³Åë¿¡¼ Æ®·° Ç÷¡Åõ´×Àº ±³Åë È帧À» °ÈÇÏ°í ±³Åë üÁõÀ» ¿ÏÈÇϸç, Æ®·°ÀÌ ¼·Î ¼Óµµ¸¦ Á¶Á¤ÇÏ°í ¹ÐÁ¢ÇÏ°Ô ÁÖÇàÇÏ¿© ¿¬ºñ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ ÀÎÀû ¿À·ù¸¦ ÃÖ¼ÒÈÇÏ°í Æ®·° °£ÀÇ ½Ç½Ã°£ Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¾ÈÀü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. µµ½Ã°¡ º¸´Ù ģȯ°æÀûÀ̰í È¿À²ÀûÀÎ ¿î¼Û ½Ã½ºÅÛÀ» ÃßÁøÇÔ¿¡ µû¶ó Æ®·° Ç÷¡Åõ´×Àº µµ½Ã ¹°·ù ¹× Áö¿ª ȹ° ¿î¼ÛÀ» À§ÇÑ ¸Å·ÂÀûÀÎ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¹°·ù ±â¾÷ ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¹°·ù ±â¾÷ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹°·ù ±â¾÷¿¡¼ Æ®·° Ç÷¡Åõ´×Àº ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í, °æ·Î °èȹÀ» °ÈÇϰí, ¹è¼Û ÀÏÁ¤À» ÃÖÀûÈÇÏ¿© È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. Æ®·°ÀÌ ¹ÐÂø ÁÖÇàÇÏ¸é °ø±â ÀúÇ×À» ÁÙ¿© ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹°·ù ±â¾÷Àº ¹è¼Û ½Ã°£ ´ÜÃà, ¿î¿µ ºñ¿ë Àý°¨, ¹èÃâ·® °¨¼Ò µîÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖÀ¸¸ç, Æ®·° Ç÷¡Åõ´×Àº °ø±Þ¸Á°ú ȹ° ¿î¼ÛÀ» Çö´ëÈÇÒ ¼ö ÀÖ´Â °¡Ä¡ ÀÖ´Â ¼Ö·ç¼ÇÀÌ µÇ¾ú½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¬ºñ È¿À²¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¿î¼Û ºñ¿ë »ó½Â, Á¤ºÎÀÇ ½º¸¶Æ® ¹°·ù ÃßÁø ³ë·Â µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º¼º¸ ±×·ì, ´ÙÀÓ·¯ AG, µµ¿äŸ µî ÁÖ¿ä ±â¾÷ÀÌ ÀÌ Áö¿ªÀÇ ±â¼ú ¹ßÀü°ú ÀÚÀ²ÁÖÇàÂ÷ °³¹ßÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Æ®·° Ç÷¡Åõ´×ÀÇ Ã¤ÅÃÀº ¹è±â°¡½º ¹èÃâÀ» ÁÙÀÌ°í ±³Åë¾ÈÀüÀ» °³¼±ÇØ¾ß ÇÒ Çʿ伺¿¡ ÀÇÇØ ´õ¿í Áö¿øµÇ°í ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó °³¹ßÀÇ ¹ßÀü°ú À¯¸®ÇÑ ±ÔÁ¦·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Æ®·° Ç÷¡Åõ´× ½ÃÀåÀº ÇâÈÄ ¼ö³â°£ Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÏ¹Ì´Â ÀÚÀ²ÁÖÇà ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, º¼º¸, Daimler Trucks, Peloton Technology¿Í °°Àº ÁÖ¿ä ±â¾÷ÀÌ Çõ½ÅÀ» ÁÖµµÇÏ°í ¾÷°è ¸®´õµé°ú Çù·ÂÇÏ¿© Â÷·® °£ Åë½Å ¹× ¾ÈÀü ½Ã½ºÅÛÀ» °ÈÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó°¡ °³¼±µÇ°í ±ÔÁ¦°¡ ¿Ïȵʿ¡ µû¶ó ºÏ¹Ì Æ®·° Ç÷¡Åõ´× ½ÃÀåÀº Å©°Ô ¼ºÀåÇÏ¿© ÀÌ Áö¿ªÀÇ ¹°·ù ¹× ¿î¼Û¿¡ º¯È¸¦ °¡Á®¿Ã °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Truck Platooning Market is accounted for $1.38 billion in 2024 and is expected to reach $3.25 billion by 2030 growing at a CAGR of 11.5% during the forecast period. Truck platooning is a transportation strategy where multiple trucks are electronically linked to travel in a close formation, reducing air resistance and improving fuel efficiency. The lead truck sets the pace, while the following trucks are autonomously controlled, maintaining safe distances and synchronizing speeds through wireless communication. This technique enhances road safety, reduces fuel consumption, and improves traffic flow by minimizing congestion. Truck platooning is typically implemented on highways with advanced driver-assistance systems and is seen as a promising development in autonomous driving and logistics.
According to Tennessee Department of Transportation (TDOT), platooning can cut fuel costs by 5-10% for 18-wheelers through reduced air resistance between closely connected trucks.
Growing interest in autonomous fleet integration
With rising investments by major companies in autonomous technologies for their fleets, platooning offers an efficient way to enhance these systems, reducing fuel consumption, improving safety, and optimizing routes. Autonomous fleets can seamlessly integrate platooning technologies, allowing trucks to travel in tight formations with minimal human intervention. This integration not only improves operational efficiency but also accelerates the adoption of truck platooning by demonstrating its potential to streamline logistics, reduce costs, and enhance delivery capabilities across industries.
Technological limitations
Technological limitations in truck platooning stem from the need for advanced autonomous driving systems, vehicle-to-vehicle communication, and real-time data processing. Current systems may struggle in complex road conditions, poor weather, or unexpected traffic scenarios, limiting their effectiveness. These technological gaps hinder widespread adoption, as logistics companies and regulators prioritize safety and reliability. Without reliable, robust systems, truck platooning cannot reach its full potential, impeding market growth and delaying large-scale implementation.
Rising investments in road & communication infrastructure
Enhanced infrastructure, such as dedicated lanes for platooning trucks, improved road conditions, and the installation of advanced sensors and communication networks, ensures smoother operations. Investments in V2V and V2I communication systems facilitate real-time coordination, optimizing platooning efficiency. These upgrades support the development of autonomous driving technology, improve safety, and reduce congestion. As governments and private sectors prioritize these advancements, they create an environment conducive to the widespread adoption of truck platooning, accelerating market expansion.
Expensive technology and infrastructure upgrades
The high cost of technology and infrastructure upgrades in truck platooning arises from the need for advanced autonomous driving systems, sensors, vehicle-to-vehicle communication technology, and road infrastructure modifications. These systems require significant investment in R&D, manufacturing, and deployment. Additionally, upgrading roads and communication networks to support platooning is costly. Therefore, the lack of affordable solutions and the long return on investment period hinder its widespread implementation.
Covid-19 Impact
The covid-19 pandemic had a mixed impact on the truck platooning market. On one hand, disruptions in global supply chains and transportation led to delays in the adoption of new technologies. On the other hand, the increased demand for efficient logistics and contactless operations accelerated interest in autonomous driving and platooning solutions. Additionally, the pandemic highlighted the need for safer, more efficient transportation systems, driving long-term investments in truck platooning technologies and infrastructure.
The regional & urban transportation segment is expected to be the largest during the forecast period
The regional & urban transportation segment is predicted to secure the largest market share throughout the forecast period. In regional and urban transportation, truck platooning enhances traffic flow, reduces congestion, and boosts fuel efficiency by allowing trucks to travel closely together with coordinated speeds. It also improves safety by minimizing human error and enabling real-time communication between trucks. As cities push for greener and more efficient transportation systems, truck platooning becomes an attractive solution for urban logistics and regional freight movement.
The logistics companies segment is expected to have the highest CAGR during the forecast period
The logistics companies segment is anticipated to witness the highest CAGR during the forecast period. In logistics companies, truck platooning improves efficiency by reducing fuel consumption, enhancing route planning, and optimizing delivery schedules. By allowing trucks to travel closely together, it reduces aerodynamic drag, leading to significant cost savings. Logistics companies benefit from faster delivery times, lower operational costs, and reduced emissions, making truck platooning a valuable solution for modernizing supply chain and freight transportation.
Asia Pacific is expected to register the largest market share during the forecast period driven by factors such as increasing demand for fuel efficiency, rising transportation costs, and government initiatives promoting smart logistics. Key players like Volvo Group, Daimler AG, and Toyota are spearheading technological advancements and autonomous vehicle development in the region. The adoption of truck platooning is further supported by the need to reduce emissions and improve road safety. With growing infrastructure development and favorable regulations, the Asia Pacific truck platooning market is expected to experience significant growth in the coming years.
North America is expected to witness the highest CAGR over the forecast period due to advancements in autonomous driving technology. Key players such as Volvo, Daimler Trucks, and Peloton Technology are driving innovation, collaborating with industry leaders to enhance vehicle-to-vehicle communication and safety systems. As infrastructure improves and regulations become more favourable, North America's truck platooning market is expected to grow significantly, transforming logistics and transportation in the region.
Key players in the market
Some of the key players profiled in the Truck Platooning Market include Continental AG, ZF Friedrichshafen AG, Denso Corporation, Aisin Seiki Corporation, Toyota Industries Corporation, Krone Group, Uber Freight, Bosch Mobility Solutions, Tesla Inc., Daimler AG, Volvo Group, Pony.ai Inc., MAN Truck & Bus AG, Peloton Technology, Navistar International Corporation, Aurora Innovation, Embark Trucks Inc., TuSimple, Scania AB and Kratos Defense & Security Solutions.
In March 2024, Kratos Defense announced plans to deploy its self-driving Class 8 trucks in a Leader-Follower Platoon configuration. The platoons will operate along a major freight corridor between Ohio and Indiana, aiming to address driver shortages by pairing a human-driven truck with a self-driving follower.
In November 2023, Pony.ai received permission to conduct Level 4 autonomous truck platooning tests in Guangzhou, China. This initiative involves autonomous trucks operating in a "1+N" formation, where one lead truck guides multiple follower trucks. The tests aim to enhance operational efficiency, reduce carbon emissions, and improve road safety.