½ÃÀ庸°í¼­
»óǰÄÚµå
1740948

Ç×°ø±â À¯¾Ð ½Ã½ºÅÛ ½ÃÀå : ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2025-2034³â)

Aircraft Hydraulic Systems Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 180 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ Ç×°ø±â À¯¾Ð ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡´Â 122¾ï ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2034³â¿¡´Â 360¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, CAGR 11.5%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÀÌ·¯ÇÑ ¼ºÀåÀº Ç×°ø ¿©Çà¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¼ö¿ä Áõ°¡¿Í »ó¾÷¿ë, ±º¿ë, ¹«ÀÎ Ç×°ø±â Ç÷§Æû Àü¹Ý¿¡ °ÉÄ£ À¯¾Ð ½Ã½ºÅÛÀÇ ÅëÇÕ Áõ°¡¿¡ ÈûÀÔÀº ¹Ù°¡ Å®´Ï´Ù. Ç×°ø»ç°¡ Ç×°ø±â¸¦ ¾÷±×·¹À̵åÇϰí Á¤ºÎ°¡ ¹æÀ§ ¿ª·®À» °­È­ÇÔ¿¡ µû¶ó À¯¾Ð ½Ã½ºÅÛÀº ¿î¿µ È¿À²¼º, ½Å·Ú¼º ¹× ¾ÈÀü¼ºÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇØÁ³½À´Ï´Ù. Àü ¼¼°è Ç×°ø ¿©°´ ¼ö¼Û·®ÀÌ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó Ç×°ø¿ìÁÖ ±â¾÷µéÀº ´õ¿í Á¤±³ÇÑ Ç×°ø±â¿¡ ÅõÀÚÇØ¾ß ÇÑ´Ù´Â ¾Ð¹ÚÀ» ¹Þ°í ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ÷´Ü À¯¾Ð ÀÛµ¿ ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±âµ¿, ºñÇà Á¦¾î, Á¦µ¿, ·£µù ±â¾î ÀÛµ¿ µî ´Ù¾çÇÑ Ç×°ø±â ±â´É¿¡ ÇʼöÀûÀÔ´Ï´Ù.

Ç×°ø±â À¯¾Ð ½Ã½ºÅÛ Market-IMG1

ÃÖ±Ù ¸î ³â°£ °ü¼¼ µµÀÔÀ» ºñ·ÔÇÑ ÁöÁ¤ÇÐÀû ¹«¿ª ±äÀåÀ¸·Î ÀÎÇØ ƯÈ÷ ÇØ¿Ü¿¡¼­ Á¶´ÞÇÏ´Â Ç×°ø¿ìÁÖ ºÎǰÀÇ °ø±Þ¸Á¿¡ »ó´çÇÑ È¥¶õÀÌ ¹ß»ýÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­·Î ÀÎÇØ Á¦Á¶¾÷ü¿Í °ø±Þ¾÷ü´Â ´Ù°¢È­µÈ ¼Ò½Ì Àü·«, ÇöÁö »ý»ê, Á¶´Þ ¸ðµ¨ÀÇ ÀçÆò°¡¸¦ ÅëÇØ ºñ¿ë º¯µ¿°ú Áö¿¬À» ¿ÏÈ­Çϱâ À§ÇØ ÀûÀÀÇØ¾ß Çß½À´Ï´Ù. ±× °á°ú, ÇöÁöÈ­µÇ°í ź·ÂÀûÀÎ °ø±Þ¸ÁÀ¸·ÎÀÇ ÀüȯÀÌ ½ÃÀå ȯ°æÀ» Çü¼ºÇÏ´Â Áß¿äÇÑ Æ®·»µå°¡ µÇ°í ÀÖ½À´Ï´Ù. ±â¼ú Ãø¸é¿¡¼­´Â ¸¶ÀÌÅ©·Î ¹× ÀüÀÚ À¯¾Ð ½Ã½ºÅÛÀÇ »ç¿ë Áõ°¡·Î ÀÎÇØ ½ÃÀåÀÌ °­·ÂÇÑ ¸ð¸àÅÒÀ» °æÇèÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº µå·Ð, ÀÚÀ² Ç×°ø±â, µµ½É Ç×°ø ¸ðºô¸®Æ¼ Â÷·®°ú °°Àº »õ·Î¿î ¿ëµµ¿¡¼­ ÄÄÆÑÆ®ÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ºÅÚ½º, ¹«±â Ãë±Þ, Çâ»óµÈ Á¦¾î ¸ÞÄ¿´ÏÁò°ú °°Àº ÷´Ü Ç×°ø±â ±â´ÉÀ» Áö¿øÇÏ´Â °í¼º´É À¯¾Ð ½Ã½ºÅÛ¿¡ ´ëÇÑ ±¹¹æ ÅõÀÚ·Î ÀÎÇØ ¼ö¿ä°¡ °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¹üÀ§
½ÃÀÛ ¿¬µµ 2024³â
¿¹Ãø ¿¬µµ 2025-2034³â
½ÃÀÛ ±Ý¾× 122¾ï ´Þ·¯
¿¹Ãø ±Ý¾× 360¾ï ´Þ·¯
CAGR 11.5%

Ç÷§Æû Ãø¸é¿¡¼­ ½ÃÀåÀº ȸÀüÀÍ, °íÁ¤ÀÍ, ¹«ÀÎ Ç×°ø±â(UAV)·Î ¼¼ºÐÈ­µË´Ï´Ù. °íÁ¤ÀÍ Ä«Å×°í¸®´Â 2024³â 72¾ï ´Þ·¯ÀÇ °¡Ä¡·Î ½ÃÀåÀ» ÁÖµµÇß½À´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº Â÷¼¼´ë »ó¾÷¿ë ¹× ¹æÀ§¿ë Ç×°ø±âÀÇ Á¶´Þ Áõ°¡¿Í ±âÁ¸ Ç×°ø±âÀÇ Áö¼ÓÀûÀÎ ¾÷±×·¹À̵忡 ÈûÀÔÀº °ÍÀÔ´Ï´Ù. Ç×°ø ±³Åë·®ÀÌ Áõ°¡ÇÏ°í ±º ¿¹»êÀÌ È®´ëµÇ¸é¼­ ºñÇà Á¦¾î, Á¦µ¿ ¹× ±â¾î ¹èÄ¡¿Í °°Àº ÀÛ¾÷À» À§ÇØ º¹ÀâÇÑ À¯¾Ð ÇÏÀ§ ½Ã½ºÅÛÀÌ ÇÊ¿äÇÑ ±â¼úÀûÀ¸·Î Áøº¸µÈ Á¦Æ®±âÀÇ µµÀÔÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

ÄÄÆ÷³ÍÆ®º°·Î ½ÃÀåÀº ÀúÀå¼Ò, ÆßÇÁ, ¾îÅ¥¹Ä·¹ÀÌÅÍ, ¾×Ãß¿¡ÀÌÅÍ, À¯¾Ð Ç»Áî, ¹ëºê µîÀ¸·Î ³ª´¹´Ï´Ù. ¾×Ãß¿¡ÀÌÅÍ´Â 2024³â¿¡ 35¾ï ´Þ·¯ÀÇ ¼öÀÍÀ» âÃâÇÏ¸ç °¡Àå ½ÇÀûÀÌ ÁÁÀº ºÎ¹®À¸·Î ºÎ»óÇß½À´Ï´Ù. ºñÇà Á¦¾î ½Ã½ºÅÛÀÇ Á¤È®¼º°ú ½Å·Ú¼º¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÛ°í ¿¬·á È¿À²ÀûÀÌ¸ç °í¼º´É Ãâ·ÂÀÌ °¡´ÉÇÑ Â÷¼¼´ë ¾×Ãß¿¡ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÃֽŠÇ×°ø±â°¡ ¹«°Ô °¨¼Ò¿Í Á¦¾î ÀÀ´ä¼º Çâ»ó¿¡ ÁßÁ¡À» µÎ¸é¼­ Á¦Á¶¾÷ü´Â ÁøÈ­ÇÏ´Â ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ ÀüÀÚ À¯¾Ð½Ä ¾×Ãß¿¡ÀÌÅÍ ±â¼ú¿¡ Á¡Á¡ ´õ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù.

¿ëµµº°·Î ½ÃÀåÀº ºñÇà Á¦¾î ½Ã½ºÅÛ, Ãß·Â ¹ÝÀü ½Ã½ºÅÛ, Âø·ú ¹× Á¦µ¿ ½Ã½ºÅÛ ¹× ±âŸ ±â´ÉÀ¸·Î ³ª´¹´Ï´Ù. Âø·ú ¹× Á¦µ¿ ½Ã½ºÅÛ ºÎ¹®Àº 2024³â 52¾ï ´Þ·¯·Î °¡Àå ³ôÀº ±â¿©¸¦ ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ƯÈ÷ Ç×°ø±âÀÇ ÀÌÂø·úÀÌ ÀæÀº Áö¿ª¿¡¼­ Ç×°ø±âÀÇ ¾ÈÀüÇÑ ¿îÇ׿¡ ÇʼöÀûÀÔ´Ï´Ù. ¹Ì²ô·³ ¹æÁö ±â´É, Çâ»óµÈ ¾Ð·Â °ü¸®, ³»ÀåÇü ¸®´ø´ø½Ã µîÀÇ ±â´ÉÀ» °®Ãá °í±Þ À¯¾Ð ºÎǰÀ» ¿ä±¸ÇÏ´Â ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¤ÀÌ ¼ö¿ä¸¦ ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

Áö¿ªº°·Î´Â ¹Ì±¹ÀÌ Ç×°ø±â À¯¾Ð ½Ã½ºÅÛ ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖÀ¸¸ç(2024³â)¿¡´Â 38¾ï ´Þ·¯¸¦ Â÷ÁöÇß½À´Ï´Ù. ¹Ì±¹ ½ÃÀåÀÇ ¿ìÀ§´Â ¹æÀ§ ÇÁ·Î±×·¥, »ó¾÷¿ë Ç×°ø ¾÷±×·¹À̵å, Ç×°ø¿ìÁÖ ±â¼ú Àü¹Ý¿¡ °ÉÄ£ R&D ³ë·Â¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ ¹Ì±¹Àº À¯¾Ð ½Ã½ºÅÛ ±â¼úÀ» Áö¼ÓÀûÀ¸·Î ¹ßÀü½Ã۰í ÀÖ´Â ÁÖ¿ä Ç×°ø¿ìÁÖ Á¦Á¶¾÷ü ¹× °ø±Þ¾÷üÀÇ Á¸Àç·Î ÀÎÇØ ÀÌÁ¡À» ´©¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº °æ·® ±¸Á¶, Àü±â-À¯¾Ð ÅëÇÕ, Àü±â Ç×°ø±â(MEA) ³ë·Â¿¡ ºÎÇÕÇÏ´Â ½Ã½ºÅÛ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

½ÃÀå °æÀïÀº ¿©ÀüÈ÷ Ä¡¿­Çϸç, ±âÁ¸ ´Ù±¹Àû ±â¾÷°ú Çõ½ÅÀûÀÎ ½ºÅ¸Æ®¾÷ ¸ðµÎ Á¡À¯À²À» ³õ°í °æÀïÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¾÷üµéÀº ½º¸¶Æ® À¯¾Ð ±â¼ú, ÅëÇÕ Áø´Ü, Àü±â ¹× ÇÏÀ̺긮µå Ç÷§Æû¿ëÀ¸·Î ¼³°èµÈ ¼Ö·ç¼Ç¿¡ Àû±ØÀûÀ¸·Î ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¿¬·á È¿À²¼º°ú ȯ°æ ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ FAA, EASA, AS9100°ú °°Àº ±Û·Î¹ú ¾ÈÀü Ç¥ÁØÀ» ÃæÁ·ÇÏ´Â À¯¾Ð ½Ã½ºÅÛ °³¹ß·Î ´«¿¡ ¶ç´Â ÀüȯÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
  • Æ®·³ÇÁ Á¤±Ç¿¡ ÀÇÇÑ °ü¼¼¿¡ ´ëÇÑ ¿µÇâ
    • ¹«¿ª¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¹«¿ª·®ÀÇ È¥¶õ
      • º¸º¹ Á¶Ä¡
    • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • °ø±ÞÃøÀÇ ¿µÇâ
        • ÁÖ¿ä ºÎǰÀÇ °¡°Ý º¯µ¿
        • °ø±Þ¸Á À籸¼º
        • »ý»ê ºñ¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¼ö¿äÃøÀÇ ¿µÇâ(ÆÇ¸Å°¡°Ý)
        • ÃÖÁ¾ ½ÃÀå¿¡ÀÇ °¡°Ý Àü´Þ
        • ½ÃÀå Á¡À¯À² µ¿Çâ
        • ¼ÒºñÀÚÀÇ ¹ÝÀÀ ÆÐÅÏ
    • ¿µÇâÀ» ¹Þ´Â ÁÖ¿ä ±â¾÷
    • Àü·«ÀûÀÎ ¾÷°è ´ëÀÀ
      • °ø±Þ¸Á À籸¼º
      • °¡°Ý ¼³Á¤ ¹× Á¦Ç° Àü·«
      • Á¤Ã¥°ü¿©
    • Àü¸Á°ú ÇâÈÄ °ËÅä »çÇ×
  • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Àü ¼¼°è Ç×°ø ¿©°´ ¼ö¼Û·® Áõ°¡
      • Ç×°ø±â ±â´ÜÀÇ È®Àå ¹× Çö´ëÈ­
      • »ó¾÷¿ë, ±º¿ë ¹× UAV Ç÷§Æû¿¡¼­ÀÇ »ç¿ë Áõ°¡
      • ´õ ³ôÀº Áß·® ´ëºñ Ãâ·Â ºñÀ² ¹× ÇÏÁß Ãë±Þ
      • À¯¾Ð ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀü
    • ¾÷°èÀÇ ÀáÀçÀû À§Çè ¹× °úÁ¦
      • Àü±â ¹× ´ëü ½Ã½ºÅÛ°úÀÇ °æÀï
      • ³ôÀº À¯Áö º¸¼ö ¹× ¿î¿µ ºñ¿ë
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • ±ÔÁ¦ »óȲ
  • ±â¼úÀÇ »óȲ
  • Àå·¡ ½ÃÀå µ¿Çâ
  • °¸ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼Ò°³
  • ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ °æÀï ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« ´ë½Ãº¸µå

Á¦5Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Ç÷§Æûº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • °íÁ¤ÀÍ
  • ȸÀüÀÍ
  • ¹«ÀÎ Ç×°ø±â

Á¦6Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ÄÄÆ÷³ÍÆ®º°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ÀúÀå¼Ò
  • ÆßÇÁ
  • ¾îÅ¥¹Ä·¹ÀÌÅÍ
  • ¾×Ãß¿¡ÀÌÅÍ
  • À¯¾Ð Ç»Áî
  • ¹ëºê
  • ±âŸ

Á¦7Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ¿ëµµº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºñÇà Á¦¾î ½Ã½ºÅÛ
  • Ãß·Â ¹ÝÀü ½Ã½ºÅÛ
  • Âø·ú ¹× Á¦µ¿ ½Ã½ºÅÛ
  • ±âŸ

Á¦8Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Áö¿ªº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ³×´ú¶õµå
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)

Á¦9Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • AeroControlex
  • Circor Aerospace
  • Collins Aerospace
  • Crane Aerospace and Electronics
  • Eaton
  • Gar Kenyon
  • Liebherr Aerospace
  • Moog
  • Parker Hannifin
  • PTI Technologies
  • Safran
  • Senior
  • Triumph Group
  • Woodward
HBR 25.06.13

The Global Aircraft Hydraulic Systems Market was valued at USD 12.2 billion in 2024 and is estimated to grow at a CAGR of 11.5% to reach USD 36 billion by 2034. This growth is largely driven by the increasing global demand for air travel and the rising integration of hydraulic systems across commercial, military, and unmanned aerial vehicle platforms. As airlines upgrade fleets and governments ramp up defense capabilities, hydraulic systems have become critical for ensuring operational efficiency, reliability, and safety. The continued rise in global air passenger traffic is putting pressure on aerospace companies to invest in more sophisticated aircraft, which in turn is driving the need for advanced hydraulic actuation systems. These systems are essential for various aircraft functions, including maneuvering, flight control, braking, and landing gear operation.

Aircraft Hydraulic Systems Market - IMG1

Geopolitical trade tensions in recent years, including the introduction of tariffs, have caused significant disruption in the supply chain, particularly for aerospace components sourced from overseas. These changes forced manufacturers and suppliers to adapt through diversified sourcing strategies, local production, and reevaluation of procurement models to mitigate cost fluctuations and delays. As a result, the shift toward localized and resilient supply chains is becoming a crucial trend shaping the market landscape. On the technology front, the market is experiencing strong momentum due to the rising use of micro and electro-hydraulic systems. These innovations cater to the growing need for compact and energy-efficient solutions in emerging applications such as drones, autonomous aircraft, and urban air mobility vehicles. Moreover, defense investments continue to boost the demand for high-performance hydraulic systems that support advanced aircraft functionalities like stealth, weapons handling, and enhanced control mechanisms.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$12.2 Billion
Forecast Value$36 Billion
CAGR11.5%

In terms of platform, the market is segmented into rotary wing, fixed wing, and unmanned aerial vehicles (UAVs). The fixed wing category led the market in 2024 with a valuation of USD 7.2 billion. The growth of this segment is fueled by an increase in procurement of new-generation commercial and defense aircraft as well as ongoing upgrades to existing fleets. Rising air traffic and expanded military budgets are encouraging the adoption of technologically advanced jets that require complex hydraulic subsystems for tasks such as flight control, braking, and gear deployment.

By component, the market is divided into reservoirs, pumps, accumulators, actuators, hydraulic fuses, valves, and others. Actuators emerged as the top-performing segment in 2024, generating USD 3.5 billion in revenue. The heightened need for accuracy and reliability in flight control systems is spurring demand for next-generation actuators that are compact, fuel-efficient, and capable of high-performance output. As modern aircraft focus on weight reduction and improved control responsiveness, manufacturers are increasingly investing in electro-hydraulic actuator technologies to meet evolving requirements.

On the basis of application, the market includes flight control systems, thrust reversal systems, landing and braking systems, and other functions. The landing and braking systems segment was the highest contributor in 2024, valued at USD 5.2 billion. These systems are essential for the safe operation of aircraft, especially in regions where aircraft perform frequent takeoffs and landings. Demand is further supported by stricter safety regulations, which require more advanced hydraulic components with features like anti-skid capabilities, improved pressure management, and built-in redundancies.

Regionally, the United States held the largest share of the aircraft hydraulic systems market, accounting for USD 3.8 billion in 2024. The dominance of the US market can be attributed to rising investments in defense programs, commercial aviation upgrades, and R&D efforts across aerospace technologies. The country also benefits from the presence of major aerospace manufacturers and suppliers who are consistently advancing hydraulic system technologies. These companies are placing emphasis on lightweight construction, electro-hydraulic integrations, and systems that align with More Electric Aircraft (MEA) initiatives.

Market competition remains intense, with both established multinational companies and innovative startups competing for share. Leading players are actively focusing on smart hydraulic technologies, integrated diagnostics, and solutions designed for electric and hybrid platforms. There is a noticeable shift toward developing hydraulic systems that offer enhanced fuel efficiency and environmental performance while meeting global safety standards such as FAA, EASA, and AS9100.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Trump administration tariffs
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact
        • 3.2.2.1.1 Price volatility in key components
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact (selling price)
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
      • 3.2.4.1 Supply chain reconfiguration
      • 3.2.4.2 Pricing and product strategies
      • 3.2.4.3 Policy engagement
    • 3.2.5 Outlook and future considerations
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Rising global air passenger traffic
      • 3.3.1.2 Expansion and modernization of aircraft fleets
      • 3.3.1.3 Increased use in commercial, military, and UAV platforms
      • 3.3.1.4 Higher power-to-weight ratios and load handling
      • 3.3.1.5 Technological advancements in hydraulic systems
    • 3.3.2 Industry pitfalls and challenges
      • 3.3.2.1 Competition from electric and alternative systems
      • 3.3.2.2 High maintenance and operational costs
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
  • 3.6 Technology landscape
  • 3.7 Future market trends
  • 3.8 Gap analysis
  • 3.9 Porter's analysis
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Platform, 2021 – 2034 (USD Million & Million Units)

  • 5.1 Key trends
  • 5.2 Fixed wing
  • 5.3 Rotary wing
  • 5.4 Unmanned aerial vehicles

Chapter 6 Market Estimates and Forecast, By Component, 2021 – 2034 (USD Million & Million Units)

  • 6.1 Key trends
  • 6.2 Reservoir
  • 6.3 Pumps
  • 6.4 Accumulators
  • 6.5 Actuators
  • 6.6 Hydraulic fuse
  • 6.7 Valves
  • 6.8 Others

Chapter 7 Market Estimates and Forecast, By Application, 2021 – 2034 (USD Million & Million Units)

  • 7.1 Key trends
  • 7.2 Flight control system
  • 7.3 Thrust reversal system
  • 7.4 Landing & braking system
  • 7.5 Others

Chapter 8 Market Estimates and Forecast, By Region, 2021 – 2034 (USD Million & Million Units)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Netherlands
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 Middle East and Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 AeroControlex
  • 9.2 Circor Aerospace
  • 9.3 Collins Aerospace
  • 9.4 Crane Aerospace and Electronics
  • 9.5 Eaton
  • 9.6 Gar Kenyon
  • 9.7 Liebherr Aerospace
  • 9.8 Moog
  • 9.9 Parker Hannifin
  • 9.10 PTI Technologies
  • 9.11 Safran
  • 9.12 Senior
  • 9.13 Triumph Group
  • 9.14 Woodward
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦