½ÃÀ庸°í¼­
»óǰÄÚµå
1741046

È­ÇÐ ¾×ü ¼ö¼Ò ½ÃÀå : ½ÃÀå ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2025-2034³â)

Chemical Liquid Hydrogen Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 125 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ È­ÇÐ ¾×ü ¼ö¼Ò ½ÃÀå ±Ô¸ð´Â 2024³â 176¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, È­ÇÐ Á¦Á¶ÀÚ°¡ ¼¼°è ±âÈÄ º¯È­ ¸ñÇ¥¿¡ ¸ÂÃß¾î Àú¹èÃâ °¡½º ¿ø·á¸¦ Ãß±¸ÇÏ´Â °¡¿îµ¥ CAGR 4.9%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2034³â¿¡´Â 284¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¼¼°è »ê¾÷°è°¡ Żź¼Ò Àü·«¿¡ Àû±ØÀûÀ¸·Î Âü¿©Çϰí Àֱ⠶§¹®¿¡ È­ÇÐ ¾×ü ¼ö¼Ò ¼ö¿ä´Â °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ³ª ¹Î°£ ±â¾÷Àº, ³Ý Á¦·Î ¸ñÇ¥ ´Þ¼ºÀÇ ±ä±Þ¼ºÀ¸·ÎºÎÅÍ, ¼ö¼Ò ÀÎÇÁ¶ó ´ëÇÑ °í¾×ÀÇ ÅõÀÚ¸¦ ½Ç½ÃÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀº ½ÅÀç»ý ¿¡³ÊÁö ºñ¿ëÀÇ ÀúÇÏ¿Í ±â¼úÀû µ¹ÆÄ¿¡ ÈûÀÔ¾î ±×¸° ¼ö¼Ò Á¦Á¶·ÎÀÇ ÀüȯÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. Á¤Ã¥ Áö¿ø, ÅõÀÚÀÚ ½Å·Ú Á¦°í, Àü·«Àû ¹Î°ü ÆÄÆ®³Ê½ÊÀ¸·Î ¼ö¼Ò °³¹ßÀ» À§ÇÑ È°±âÂù »ýŰ谡 Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ÀüÇØÁ¶ÀÇ Áøº¸, ź¼Ò ȸ¼ö ±â¼ú, È®Àå °¡´ÉÇÑ ¾×È­ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÚ±Ý Á¦°øÀÇ Áõ°¡´Â È­ÇÐ ¾×ü ¼ö¼Ò¸¦ º¸´Ù »ó¾÷ÀûÀ¸·Î ½ÇÇö °¡´ÉÇϰí ȯ°æÀûÀ¸·Î Áö¼Ó °¡´ÉÇÑ °ÍÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. È­ÇÐ, Áß°ø¾÷, ¿î¼ö µîÀÇ »ê¾÷ ºÎ¹®ÀÌ Ã»Á¤ ¿¡³ÊÁö¿¡ ´ëÇÑ ´ëó¸¦ °­È­ÇÔ¿¡ µû¶ó ÀÌ¿ëÇϱ⠽±°í À¯¿¬¼ºÀÌ ÀÖ´Â ¼ö¼Ò ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼¼´Â ¾ÕÀ¸·Î 10³â¿¡ °ÉÄ£ ½ÃÀåÀÇ ÈûÂù ¼ºÀåÀÇ ¹«´ë¸¦ °®Ãß¾î °¡°í ÀÖ½À´Ï´Ù.

È­ÇÐ ¾×ü ¼ö¼Ò Market-IMG1

±×¸° ¼ö¼Ò·ÎÀÇ º¯È­°¡ Áõ°¡ÇÔ¿¡ µû¶ó »ê¾÷ ºÐ¾ß¿¡¼­ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ½ÅÀç»ý ¿¡³ÊÁö, ƯÈ÷ ž籤 ¹ßÀü°ú dz·Â ¹ßÀüÀÇ ºñ¿ë Àý°¨À¸·Î ÀüÇØ ¼ö¼ÒÀÇ »ó¾÷Àû ½ÇÇö¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ÀüÇØÁ¶ ±â¼ú°ú ź¼Ò ȸ¼ö ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î Á¦Á¶ °øÁ¤ÀÇ È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀ¸·Î »ê¾÷°è´Â º¸´Ù ½Å¼ÓÇÏ°Ô Å»Åº¼ÒÈ­µÇ°í ±ÔÁ¦ ±â´ë¿¡ ºÎÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

½ÃÀå ¹üÀ§
½ÃÀÛ ¿¬µµ 2024³â
¿¹Ãø ¿¬µµ 2025-2034³â
½ÃÀÛ ±Ý¾× 176¾ï ´Þ·¯
¿¹Ãø ±Ý¾× 284¾ï ´Þ·¯
CAGR 4.9%

À¯¿¬ÇÑ ÀÎÇÁ¶ó¿Í °¡°Ý ¼³Á¤ ¸ðµ¨ÀÇ µµÀÔÀÌ ÁøÇàµÊ¿¡ µû¶ó ¼ö¼Ò´Â »ê¾÷¿ë »ç¿ëÀÚ¿¡°Ô º¸´Ù ÀÌ¿ëÇϱ⠽¬¿öÁö°í ÀÖ½À´Ï´Ù. Åõ¸í¼ºÀÌ ³ôÀº ½ºÆÌ °¡°ÝÀº Àå±âÀûÀÎ Çå½ÅÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê´Â ÁÖ¹®Çü °ø±ÞÀ» ¼±È£ÇÏ´Â ±¸¸ÅÀÚ¿¡°Ô »õ·Î¿î ±âȸ¸¦ ¸¸µé¾î ºÐ¾ß¸¦ ³Ñ¾î ±¤¹üÀ§ÇÑ Âü¿©¸¦ Àå·ÁÇÕ´Ï´Ù. ÀÌ ÁøÀüÀº ÅõÀÚÀÚÀÇ ½Å·Ú¸¦ ³ôÀ̰í Ŭ¸° ¼ö¼Ò ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ ÀÚ±Ý Á¶´ÞÀ» °¡¼ÓÈ­ÇÕ´Ï´Ù. °ü¹Î ÆÄÆ®³Ê½ÊÀº ƯÈ÷ ¾×ü ¼ö¼ÒÀÇ ÀúÀå°ú ¿î¼ÛÀ» À§ÇÑ ÀÎÇÁ¶ó Á¤ºñ¸¦ ÃßÁøÇÏ´Â µ¥ ÀÖ¾î °è¼Ó µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¼ö¼Ò À¯ÅëÀ» À§ÇÑ ´ë±Ô¸ð ¾Ï¸ð´Ï¾Æ º¯È¯ ¹× ¾×È­ ½Ã½ºÅÛÀÇ »ó¾÷È­¿¡ ´ëÇÑ ´ëó°¡ °ßÀηÂÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº, Àå°Å¸® ¼ö¼ÛÀÇ °æÁ¦¼ºÀ» Çâ»ó½ÃÄÑ, ¼¼°èÀÇ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÏ´Â °Í¿¡ ÀÏÁ¶Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ¼ö¼Ò °ü·Ã ±â±âÀÇ ¼öÀÔ °ü¼¼¸¦ ÀλóÇÏ´Â ±¹Á¦ ¹«¿ª Á¤Ã¥ÀÌ ÁøÇàµÇ°í Àֱ⠶§¹®¿¡ ¹Ì·¡ Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇÏ°í ¼¼°è °ø±Þ¸Á¿¡ ¸¶ÂûÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ƯÈ÷ ûÁ¤ ¿¡³ÊÁö ÀÎÇÁ¶ó°¡ ¾ÆÁ÷ Ãâ¹üÇÏÁö ¾ÊÀº ¸î¸î Áö¿ª¿¡¼­´Â ±â¼ú Çõ½ÅÀÌ Á¦ÇѵнÃÀå È®´ë°¡ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù.

¼®Åº°¡½ºÈ­ ºÐ¾ß´Â 2024³â¿¡ 11¾ï ´Þ·¯¸¦ âÃâÇßÀ¸¸ç, 2034³â±îÁö ´õ¿í ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù. ±× ¸Å·ÂÀº dzºÎÇÏ°Ô ¸ÅÀåµÈ ¼®ÅºÀ» ¼ö¼Ò·Î º¯È¯ÇÏ°í ¿¡³ÊÁö ´Ù¾çÈ­ Àü·«À» Áö¿øÇÏ´Â µ¥ ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ¾Èº¸°¡ Á߽õǸ鼭 ±âÁ¸ ¿¬·á ¼öÀÔ ÀÇÁ¸µµ°¡ ¶³¾îÁö´Â °¡¿îµ¥ ÀÌ ¹æ¹ý¿¡ ´ëÇÑ °ü½ÉÀº ¿©ÀüÈ÷ ³ô½À´Ï´Ù. ¼®Åº ±â¹ÝÀÇ ¼ö¼Ò Á¦Á¶¿¡ ź¼Ò ȸ¼ö¸¦ Æ÷ÇÔ½ÃÅ´À¸·Î½á ÇÁ·Î¼¼½º°¡ º¸´Ù ±ú²ýÇØÁö°í ¿ÏÀüÈ÷ Àç»ý °¡´ÉÇÑ ´ëü ¿¡³ÊÁö·ÎÀÇ ÀÌÇàÀÇ °¡±³°¡ µË´Ï´Ù.

À¯Åë¸é¿¡¼­ ÆÄÀÌÇÁ¶óÀΰú ±ØÀú¿Â ÅÊÅ©°¡ ¿©ÀüÈ÷ 2´ë ¼ö¼Û ¹æ¹ýÀ̸ç, °¢°¢ÀÌ ÀÌ¿ë »ç·Ê³ª Áö¸®Àû ¿ä±¸¿¡ ±Ù°ÅÇÑ ¸íÈ®ÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ±ØÀú¿Â ÅÊÅ©´Â 2024³â 86%ÀÇ Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, È­ÇÐ »ý»ê ȯ°æ¿¡¼­ ´ë·®ÀÇ ¾×ü ¼ö¼ÒÀÇ ÀúÀå°ú À̵¿À» °¡´ÉÇÏ°Ô ÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ÀÌ ÅÊÅ©µéÀº ±ØÀú¿Â¿¡ °ßµðµµ·Ï ¼³°èµÇ¾î ¼ö¼Ò¸¦ ¾×È­ÇÑ »óÅ·ΠÀúÀåÇÏ¿© ÀúÀå ¹× ¼ö¼Û Áß ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ÀÌ ÅÊÅ©ÀÇ ¿ìÀ§¼ºÀº Áø°ø ´Ü¿­Àç¿Í ´ÙÃþ º¹ÇÕ Àç·áÀÇ ±â¼ú Çõ½Å¿¡ ÀÇÇØ ´õ¿í µÞ¹ÞħµÇ°í ÀÖÀ¸¸ç, º¸ÀÏ ¿ÀÇÁÀ²À» ´ëÆø Àú°¨Çϰí ÀüüÀûÀÎ ¾ÈÀü¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

¹Ì±¹ÀÇ È­ÇÐ ¾×ü ¼ö¼Ò 2024³â ½ÃÀå ±Ô¸ð´Â 41¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, °ü¹ÎÀÇ ´ë±Ô¸ð ÅõÀÚ¿¡ ÁöÁöµÈ ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ Àû±ØÀûÀÎ ±¹°¡Àû µÞ¹ÞħÀÌ ±× ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿¬¹æÁ¤ºÎÀÇ Àμ¾Æ¼ºê, Á¶¼º±Ý, Á¤Ã¥ Ʋ¿¡ ÀÇÇØ ÁÖ¿ä »ê¾÷Áö¿ª Àüü¿¡¼­ ¼ö¼Ò Á¦Á¶ ¹× ÀúÀå ½Ã¼³ÀÇ ±Þ¼ÓÇÑ °³¹ßÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. È­ÇÐ, Áß°ø¾÷, ¿î¼ö µî ºÐ¾ß·ÎºÎÅÍÀÇ °ü½É °íÁ¶°¡, °ß°íÇÑ ¼ö¼Ò °ø±Þ¸ÁÀÇ Çʿ伺À» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

Ballard Power Systems, TotalEnergies, Chart Industries, Messer Group, Linde, Plug Power, ENGIE, Air Products and Chemicals, Iwatani Corporation, ENEOS Corporation, Taiyo Nippon Sanso Corporation, Air Liquide, and Nel ASA µîÀÇ ±â¾÷Àº ½ÃÀå Á¡À¯À²À» È®º¸Çϱâ À§ÇØ ¿©·¯ Àü·«¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÁÖµÈ ´ëó¿¡´Â, °íÈ¿À² Á¦Á¶ ±â¼ú¿¡ÀÇ ÅõÀÚ, ¿¡³ÊÁö¡¤È­ÇÐ ±â¾÷°úÀÇ Àü·«Àû Á¦ÈÞ, ¸ðµâ½ÄÀ¸·Î È®À强ÀÌ ³ôÀº ¼ö¼Ò Ç÷£Æ®ÀÇ °Ç¼³µîÀÌ ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº °ø±Þ °¨½Ã¸¦ À§ÇÑ µðÁöÅÐ ÅëÇÕÀ» ¿ì¼±½ÃÇϰí, Áö¿ªÀÇ Ã»Á¤ ¿¡³ÊÁö Á¤Ã¥¿¡ ¸ÂÃ߸鼭 ½Å·Ú¼º ³ôÀº À¯ÅëÀ» È®º¸Çϱâ À§ÇÑ ÀÎÇÁ¶ó¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý ¹× ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • ¾÷°è ¿¡ÄڽýºÅÛ
  • Æ®·³ÇÁ Á¤±ÇÀÇ °ü¼¼ ºÐ¼®
    • ¹«¿ª¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¹«¿ª·®ÀÇ È¥¶õ
      • º¸º¹ Á¶Ä¡
    • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • °ø±ÞÃøÀÇ ¿µÇâ(¿øÀç·á)
        • ÁÖ¿ä ¿øÀç·áÀÇ °¡°Ý º¯µ¿
        • °ø±Þ¸Á À籸¼º
        • »ý»ê ºñ¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¼ö¿äÃøÀÇ ¿µÇâ(ÆÇ¸Å°¡°Ý)
        • ÃÖÁ¾ ½ÃÀå¿¡ ´ëÇÑ °¡°Ý Àü´Þ
        • ½ÃÀå Á¡À¯À² µ¿Çâ
        • ¼ÒºñÀÚÀÇ ¹ÝÀÀ ÆÐÅÏ
    • ¿µÇâÀ» ¹Þ´Â ÁÖ¿ä ±â¾÷
    • Àü·«ÀûÀÎ ¾÷°è ´ëÀÀ
      • °ø±Þ¸Á À籸¼º
      • °¡°Ý ¼³Á¤ ¹× Á¦Ç° Àü·«
      • Á¤Ã¥°ü¿©
    • Àü¸Á ¹× ÇâÈÄ °ËÅä »çÇ×
  • ±ÔÁ¦ »óȲ
  • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¾÷°èÀÇ ÀáÀçÀû À§Çè ¹× °úÁ¦
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­¹®
  • Àü·«Àû ´ë½Ãº¸µå
  • Çõ½Å ¹× Áö¼Ó°¡´É¼ºÀÇ Á¤¼¼

Á¦5Àå ½ÃÀå ±Ô¸ð ¹× ¿¹Ãø : »ý»êº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ¼®Åº °¡½ºÈ­
  • SMR
  • ÀüÇØ

Á¦6Àå ½ÃÀå ±Ô¸ð ¹× ¿¹Ãø : Àü´Þº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ÆÄÀÌÇÁ¶óÀÎ
  • ±ØÀú¿Â ÅÊÅ©

Á¦7Àå ½ÃÀå ±Ô¸ð ¹× ¿¹Ãø : Áö¿ªº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ
  • ¼¼°è ±âŸ Áö¿ª

Á¦8Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Air Liquide
  • Air Products and Chemicals
  • Ballard Power Systems
  • Chart Industries
  • ENGIE
  • ENEOS Corporation
  • Hexagon Composites
  • Iwatani Corporation
  • Linde
  • Messer Group
  • Nel ASA
  • Plug Power
  • TotalEnergies
  • Taiyo Nippon Sanso Corporation
AJY 25.06.13

The Global Chemical Liquid Hydrogen Market was valued at USD 17.6 billion in 2024 and is estimated to grow at a CAGR of 4.9% to reach USD 28.4 billion by 2034 as chemical producers pursue low-emission feedstocks to align with global climate targets. Demand for chemical liquid hydrogen is accelerating as industries worldwide move aggressively toward decarbonization strategies. Governments and private players are investing heavily in hydrogen infrastructure, driven by the urgency to meet net-zero goals. The market is witnessing a shift toward green hydrogen production, fueled by lower renewable energy costs and technological breakthroughs. Policy support, growing investor confidence, and strategic public-private partnerships are creating a vibrant ecosystem for hydrogen development. Increasing funding in electrolyzer advancements, carbon capture technologies, and scalable liquefaction systems is making chemical liquid hydrogen more commercially feasible and environmentally sustainable. As industrial sectors such as chemicals, heavy industries, and transportation sectors ramp up their clean energy commitments, the need for accessible and flexible hydrogen solutions is becoming even more critical. This momentum is setting the stage for robust market growth through the next decade.

Chemical Liquid Hydrogen Market - IMG1

A growing shift toward green hydrogen is driving adoption across industrial applications. Cost reductions in renewable energy, particularly solar and wind, are making electrolytic hydrogen more commercially viable. Simultaneously, advancements in electrolyzer technology and carbon capture systems are improving the efficiency and sustainability of production processes. These innovations are allowing industries to decarbonize more rapidly and meet regulatory expectations.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$17.6 Billion
Forecast Value$28.4 Billion
CAGR4.9%

The increased deployment of flexible infrastructure and pricing models makes hydrogen more accessible to industrial users. Transparent spot pricing creates new opportunities for buyers who prefer on-demand supply without long-term commitments, encouraging broader participation across sectors. This progress boosts investor confidence, accelerating funding for clean hydrogen initiatives. Public-private partnerships continue to help in advancing infrastructure, particularly for liquid hydrogen storage and transportation.

Efforts to commercialize large-scale ammonia conversion and liquefaction systems for hydrogen distribution are gaining traction. These developments are improving the economic viability of long-distance transport, helping meet rising global demand. However, ongoing international trade policies that raise import tariffs on hydrogen-related equipment may inflate future production costs, creating friction in global supply chains. This may also restrict innovation and slow market expansion in several regions, particularly where clean energy infrastructure is still emerging.

The coal gasification segment generated USD 1.1 billion in 2024 and is poised to grow further by 2034. Its appeal lies in converting abundant coal reserves into hydrogen, supporting energy diversification strategies. As more emphasis is placed on energy security and reducing reliance on traditional fuel imports, interest in this method remains strong. Integrating carbon capture into coal-based hydrogen production makes the process cleaner, helping bridge the transition to fully renewable alternatives.

In terms of distribution, pipelines and cryogenic tanks remain the two primary methods for transporting chemical liquid hydrogen, each offering distinct advantages based on use cases and geographic needs. Cryogenic tanks held an 86% share in 2024, underscoring their critical role in enabling the storage and movement of large volumes of liquid hydrogen within chemical production environments. These tanks are engineered to withstand extreme cold temperatures, preserving hydrogen in its liquefied state and minimizing energy losses during storage and transport. Their dominance is further supported by innovations in vacuum insulation and multilayer composite materials, which significantly reduce boil-off rates and improve overall safety.

U.S. Chemical Liquid Hydrogen Market generated USD 4.1 billion in 2024, fueled by an aggressive national push toward clean energy, backed by significant public and private sector investments. Federal incentives, grants, and policy frameworks have enabled the rapid development of hydrogen production and storage facilities across key industrial regions. Increased interest from sectors such as chemicals, heavy industry, and transportation is driving the need for robust hydrogen supply chains.

Companies like Ballard Power Systems, TotalEnergies, Chart Industries, Messer Group, Linde, Plug Power, ENGIE, Air Products and Chemicals, Iwatani Corporation, ENEOS Corporation, Taiyo Nippon Sanso Corporation, Air Liquide, and Nel ASA are focusing on multiple strategies to secure market share. Key initiatives include investing in high-efficiency production technologies, forming strategic alliances with energy and chemical firms, and building modular, scalable hydrogen plants. These players prioritize digital integration for supply monitoring and investing in infrastructure to ensure reliable distribution while aligning with regional clean energy policies.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021 – 2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem
  • 3.2 Trump administration tariff analysis
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (raw materials)
        • 3.2.2.1.1 Price volatility in key materials
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact (selling price)
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
      • 3.2.4.1 Supply chain reconfiguration
      • 3.2.4.2 Pricing and product strategies
      • 3.2.4.3 Policy engagement
    • 3.2.5 Outlook and future considerations
  • 3.3 Regulatory landscape
  • 3.4 Industry impact forces
    • 3.4.1 Growth drivers
    • 3.4.2 Industry pitfalls & challenges
  • 3.5 Growth potential analysis
  • 3.6 Porter's analysis
    • 3.6.1 Bargaining power of suppliers
    • 3.6.2 Bargaining power of buyers
    • 3.6.3 Threat of new entrants
    • 3.6.4 Threat of substitutes
  • 3.7 PESTEL analysis

Chapter 4 Competitive landscape, 2024

  • 4.1 Introduction
  • 4.2 Strategic dashboard
  • 4.3 Innovation & sustainability landscape

Chapter 5 Market Size and Forecast, By Production, 2021 – 2034 (USD Billion & MT)

  • 5.1 Key trends
  • 5.2 Coal gasification
  • 5.3 SMR
  • 5.4 Electrolysis

Chapter 6 Market Size and Forecast, By Distribution, 2021 – 2034 (USD Billion & MT)

  • 6.1 Key trends
  • 6.2 Pipelines
  • 6.3 Cryogenic tanks

Chapter 7 Market Size and Forecast, By Region, 2021 – 2034 (USD Billion & MT)

  • 7.1 Key trends
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 UK
    • 7.3.3 France
    • 7.3.4 Italy
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 India
    • 7.4.3 Japan
    • 7.4.4 South Korea
    • 7.4.5 Australia
  • 7.5 Rest of World

Chapter 8 Company Profiles

  • 8.1 Air Liquide
  • 8.2 Air Products and Chemicals
  • 8.3 Ballard Power Systems
  • 8.4 Chart Industries
  • 8.5 ENGIE
  • 8.6 ENEOS Corporation
  • 8.7 Hexagon Composites
  • 8.8 Iwatani Corporation
  • 8.9 Linde
  • 8.10 Messer Group
  • 8.11 Nel ASA
  • 8.12 Plug Power
  • 8.13 TotalEnergies
  • 8.14 Taiyo Nippon Sanso Corporation
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦