½ÃÀ庸°í¼­
»óǰÄÚµå
1750485

¼¼°èÀÇ °í¿Â ÃÊÀüµµÃ¼ ½ÃÀå : ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2025-2034³â)

High-Temperature Superconductors (HTS) Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 165 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ °í¿Â ÃÊÀüµµÃ¼ ½ÃÀåÀº 2024³â¿¡ 7¾ï 2,960¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í 2034³â¿¡´Â 16¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 8.5%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

°í¿Â ÃÊÀüµµÃ¼(HTS)´Â ÀüÅëÀûÀÎ ÃÊÀüµµÃ¼º¸´Ù ÈξÀ ³ôÀº ¿Âµµ¿¡¼­ ÀúÇ× ¾øÀÌ Àü±â¸¦ Àü´ÞÇÒ ¼ö ÀÖ´Â °í±Þ Àç·áÀÔ´Ï´Ù. ÀüÅëÀûÀÎ ÃÊÀüµµÃ¼´Â Àý´ë ¿µµµ¿¡ °¡±î¿î ¿Âµµ¿¡¼­ ÀÛµ¿ÇÏÁö¸¸, HTS Àç·á´Â 77Ä̺ó À̻󿡼­ ÀÛµ¿ÇÏ¸ç ¾×ü Áú¼Ò ³Ã°¢ ½Ã½ºÅÛ°ú ȣȯµË´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ºñ¿ë È¿À²ÀûÀÌ°í °ü¸®°¡ ¿ëÀÌÇØ HTS¸¦ °í¿¡³ÊÁö È¿À²ÀÌ ¿ä±¸µÇ´Â ÀÀ¿ë ºÐ¾ß, ¿¹¸¦ µé¾î Â÷¼¼´ë Àü·Â ½Ã½ºÅÛ, ±³Åë, °í±Þ ÀÇ·á ¿µ»ó ±â¼ú µî¿¡¼­ À¯¸ÁÇÑ ¿É¼ÇÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

°í¿Â ÃÊÀüµµÃ¼(HTS) Market-IMG1

¸ðµç ºÐ¾ß¿¡¼­ Àü±â ¼º´É °³¼±¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 HTS Àç·áÀÇ Ã¤ÅÃÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃÊÀüµµÃ¼´Â ƯÈ÷ ¼ÛÀü ±×¸®µå¸¦ ¾÷±×·¹À̵åÇÏ°í ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ Çö´ëÀûÀÎ ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. Àü ¼¼°è Á¤ºÎ¿Í À¯Æ¿¸®Æ¼ ¾÷üµéÀº ³ëÈÄÈ­µÈ ½Ã½ºÅÛÀÇ °³Æí¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, HTS ±â¹Ý ¼Ö·ç¼ÇÀº È¿À²¼º°ú ³·Àº ¿î¿µ ¼Õ½Ç·Î ´õ ³ôÀº Àü·Â ºÎÇϸ¦ ó¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ÇʼöÀûÀÎ ¿ä¼Ò·Î °£Áֵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö¿¡ ´ëÇÑ Àü ¼¼°èÀû Ãß¼¼¿Í Áõ°¡ÇÏ´Â Àü±â ¼Òºñ ¹× ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀ» ¼ö¿ëÇÒ ¼ö Àִ ź·ÂÀûÀÎ Àü·Â ÀÎÇÁ¶óÀÇ Çʿ伺¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÃÊÀüµµ ÀåÄ¡¸¦ °íÀå Àü·ù Á¦ÇÑ, Àü·Â ǰÁú Çâ»ó, Àü·Â¸Á ¼º´É ÃÖÀûÈ­¿¡ Ȱ¿ëÇÏ´Â °ÍÀº ÀÌ Ãß¼¼¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¹üÀ§
½ÃÀÛ ¿¬µµ 2024³â
¿¹Ãø ¿¬µµ 2025-2034³â
½ÃÀÛ±Ý¾× 7¾ï 2,960¸¸ ´Þ·¯
¿¹Ãø ±Ý¾× 16¾ï ´Þ·¯
CAGR 8.5%

´Ù¾çÇÑ HTS À¯Çü Áß¿¡¼­ ÀÌÆ®·ý ¹Ù·ý ±¸¸® »êÈ­¹°(YBCO)ÀÌ °è¼Ó ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹®Àº 2024³â¿¡ Àü ¼¼°è Á¡À¯À²ÀÇ 35.1%¸¦ Â÷ÁöÇϰí 11¾ï ´Þ·¯ÀÇ °¡Ä¡¸¦ ´Þ¼ºÇß½À´Ï´Ù. YBCO´Â ¾à 90 Ä̺󿡼­ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» ¹ßÈÖÇØ ³Ã°¢ ·ÎÁö½ºÆ½½º¸¦ ´Ü¼øÈ­ÇÏ¸ç ¿ì¼öÇÑ Àü·ù ¹Ðµµ¿Í °­ÇÑ ÀÚ±âÀå ÀúÇ×¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯Â¡À¸·Î °íÃâ·Â ¹× ÀÚ¼® Á᫐ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù. ±âÁ¸ ÃÊÀüµµÃ¼¿Í ºñ±³ÇØ YBCO´Â ¿­ °ü¸® ¹× ¿î¿µ È¿À²¼ºÀÌ ¿ì¼öÇØ »ó¾÷¿ë ¹× ½ÇÇè¿ë ¹èÆ÷¿¡¼­ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù.

1¼¼´ë HTS Àü¼± ºÎ¹®Àº 2034³â±îÁö 7¾ï 6,180¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¬Æò±Õ 11.6%ÀÇ ³î¶ó¿î ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. BSCCO È­ÇÕ¹°À» ±â¹ÝÀ¸·Î ÇÑ 1¼¼´ë Àü¼±Àº ÆÄ¿ì´õ ÀÎ Æ©ºê(Powder-In-Tube) ¹æ¹ý°ú °°Àº ¼º¼÷ÇÑ »ý»ê ±â¼ú ´öºÐ¿¡ »ó¿ëÈ­µÇ¾ú½À´Ï´Ù. ÀÌ °úÁ¤Àº ÃÊÀüµµ ºÐ¸»À» Àº ±â¹Ý °ü¿¡ ³Ö°í ¿ÍÀ̾î·Î Çü¼ºÇÏ´Â ¹æ½ÄÀ¸·Î, È¿À²ÀûÀÌ°í ´ë·® »ý»êÀÌ ½¬¿î ÀüµµÃ¼¸¦ »ý¼ºÇÕ´Ï´Ù. ÀÌ ¿ÍÀ̾î´Â ¾×ü Áú¼Ò¿Í ȣȯµÇ´Â ¿Âµµ¿¡¼­ È¿À²ÀûÀ¸·Î ÀÛµ¿Çϸç, ³Ã°¢ ºñ¿ëÀ» ÁÙ¿© ¿¡³ÊÁö ½Ã½ºÅÛ°ú °úÇÐ ¿¬±¸ ºÐ¾ßÀÇ ½Ã¹ü ±Ô¸ð ¹× ¼Ò·® »ý»ê ÀÀ¿ë ºÐ¾ß¿¡¼­ ¸Å·ÂÀûÀÎ ¿É¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¿¡³ÊÁö´Â HTS Àç·áÀÇ °¡Àå Å« ÀÀ¿ë ºÎ¹®À¸·Î, 2024³â¿¡´Â 11¾ï ´Þ·¯ÀÇ ±Ô¸ð·Î 2025³âºÎÅÍ 2034³â±îÁö ¿¬Æò±Õ 12%ÀÇ ¼ºÀå·üÀ» º¸À̸ç Àüü ½ÃÀåÀÇ 35.4%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àü ¼¼°è Àü·Â ÀÎÇÁ¶óÀÇ ÀüȯÀº Àü±â ¼Õ½Ç ¾øÀÌ Àü±â¸¦ Àü¼ÛÇÒ ¼ö ÀÖ´Â Àç·á¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. HTS¸¦ Àû¿ëÇÑ Àü·Â¼± ¹× ºÎǰÀº ÀüÅëÀûÀÎ ±¸¸®³ª ¾Ë·ç¹Ì´½ ÄÉÀÌºíº¸´Ù Àå°Å¸®¿¡¼­ ´õ ³ôÀº Àü·ù¸¦ Àü¼ÛÇÒ ¼ö ÀÖÀ¸¸ç, ƯÈ÷ Àα¸ ¹Ðµµ°¡ ³ô°í ½Å±Ô ¼³Ä¡ °ø°£ÀÌ Á¦ÇÑµÈ Áö¿ª¿¡¼­ È¿°úÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ µµÀÔÀº ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀÌ°í ½Ã½ºÅÛ ½Å·Ú¼ºÀ» Çâ»ó½ÃÄÑ Çö´ëÀûÀÎ Àü±â ¹èÀü ³×Æ®¿öÅ©¿¡ ÇʼöÀûÀÔ´Ï´Ù.

¹Ì±¹¿¡¼­´Â 2024³â ½ÃÀå ±Ô¸ð°¡ 9¾ï 8,640¸¸ ´Þ·¯¿¡ ´ÞÇßÀ¸¸ç, 2034³â±îÁö ¿¬Æò±Õ ¼ºÀå·ü(CAGR) 12.4%·Î È®ÀåµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¬¹æ ±â°ü, ¹Î°£ ±â¾÷, ¿¬±¸ ±â°ü °£ÀÇ ÀÚ±Ý Áö¿ø°ú Çù·ÂÀÌ ±¹°¡ÀÇ Àü·Â¸Á Çö´ëÈ­ ¹× ¹æÀ§ ¹× ûÁ¤ ¿¡³ÊÁö ºÐ¾ß ½Å±â¼ú Ž»ö ³ë·ÂÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ½Ã½ºÅÛÀÇ Ãë¾à¼ºÀ» ÇØ°áÇϸ鼭 ´õ ¶Ù¾î³­ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖ´Â ÃÊÀüµµ Àü·Â ÀåÄ¡¿¡ ÃÊÁ¡À» ¸ÂÃá ÇÁ·ÎÁ§Æ®¿¡ ÅõÀÚ°¡ ÁýÁߵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â ±¹°¡ ÀÎÇÁ¶ó¸¦ °­È­ÇÏ°í ¿¡³ÊÁö µ¶¸³À» ÃßÁøÇϱâ À§ÇÑ ±¤¹üÀ§ÇÑ Àü·«ÀÇ ÀÏȯÀÔ´Ï´Ù.

°í¿Â ÃÊÀüµµÃ¼ÀÇ ½ÃÀå Àü¸ÁÀº ±âÁ¸ ±â¾÷°ú Æ´»õ ½ÃÀå Çõ½Å ±â¾÷ÀÌ È¥ÀçµÈ »óÅ·Î, °æÀïÀÌ ´Ù¼Ò Ä¡¿­ÇÕ´Ï´Ù. ÀÌ ºÐ¾ß¿¡ Á¾»çÇÏ´Â ±â¾÷µéÀº °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ¼öÁ÷ ÅëÇÕÇü ¿î¿µ, ÷´Ü ¿¬±¸ ¿ª·®, Çù·Â ÆÄÆ®³Ê½ÊÀ» °®Ãß°í ÀÖ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ´ëÇü ±â¾÷Àº ±¤¹üÀ§ÇÑ Á¦Á¶ °æÇè°ú ÀÎÇÁ¶ó¸¦ Á¦°øÇϸç, ¼Ò±Ô¸ð ±â¾÷Àº Àü¹® ±â¼ú°ú Àç·á °³¹ßÀ» ÅëÇØ ±â¿©ÇÕ´Ï´Ù. ÀÇ·á, ¿¡³ÊÁö, ±³Åë µî ºÐ¾ß¿¡¼­ÀÇ º¯È­ÇÏ´Â ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ Áö¼ÓÀûÀÎ Çõ½Å°ú »ê¾÷, Çаè, Á¤ºÎ °£ÀÇ Àü·«Àû Çù·ÂÀº ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Áö¼ÓÀûÀÎ Çù·ÂÀÌ °í¿Â ÃÊÀüµµÃ¼ ±â¼úÀÇ ´ÙÀ½ ´Ü°è ¹ßÀüÀ» À̲ø °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
    • ¹ë·ùüÀο¡ ¿µÇâÀ» ÁÖ´Â ¿äÀÎ
    • ÀÌÀÍ·ü ºÐ¼®
    • Çõ½Å
    • Àå·¡ÀÇ Àü¸Á
    • Á¦Á¶¾÷ÀÚ
    • ¸®¼¿·¯
  • Æ®·³ÇÁ Á¤±Ç¿¡ ÀÇÇÑ °ü¼¼¿¡ ´ëÇÑ ¿µÇâ
    • ¹«¿ª¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¹«¿ª·®ÀÇ È¥¶õ
      • º¸º¹ Á¶Ä¡
    • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • °ø±ÞÃøÀÇ ¿µÇâ(¿øÀÚÀç)
        • ÁÖ¿ä ¿øÀÚÀçÀÇ °¡°Ý º¯µ¿
        • °ø±Þ üÀÎ ±¸Á¶
        • »ý»ê ºñ¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâ
    • ¼ö¿äÃøÀÇ ¿µÇâ(ÆÇ¸Å°¡°Ý)
      • ÃÖÁ¾ ½ÃÀå¿¡ÀÇ °¡°Ý Àü´Þ
      • ½ÃÀå Á¡À¯À² µ¿Çâ
      • ¼ÒºñÀÚÀÇ ¹ÝÀÀ ÆÐÅÏ
    • ¿µÇâÀ» ¹Þ´Â ÁÖ¿ä ±â¾÷
    • Àü·«ÀûÀÎ ¾÷°è ´ëÀÀ
      • °ø±Þ¸Á À籸¼º
      • °¡°Ý ¼³Á¤ ¹× Á¦Ç° Àü·«
      • Á¤Ã¥°ü¿©
    • Àü¸Á°ú ÇâÈÄ °ËÅä »çÇ×
  • ¹«¿ª Åë°è(HS ÄÚµå) Âü°í : À§ÀÇ ¹«¿ª Åë°è´Â ÁÖ¿ä ±¹°¡¿¡ ´ëÇØ¼­¸¸ Á¦°øµË´Ï´Ù
    • ÁÖ¿ä ¼öÃâ±¹(2021-2024³â)
    • ÁÖ¿ä ¼öÀÔ±¹(2021-2024³â)
  • °ø±ÞÀÚÀÇ »óȲ
  • ÀÌÀÍ·ü ºÐ¼®
  • ÁÖ¿ä ´º½º¿Í ´ëó
  • ±ÔÁ¦ »óȲ
  • ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
      • ±ØÀú¿Â ±â¼úÀÇ Áøº¸
      • ÀÇ·á ºÐ¾ß¿¡¼­ ¼ºÀåÇÏ´Â ¿ëµµ
      • ÇÙÀ¶ÇÕ ¿¡³ÊÁö Á¶»ç¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
    • ¾÷°èÀÇ ÀáÀçÀû À§Çè ¹× °úÁ¦
      • ³ôÀº Á¦Á¶ ºñ¿ë
      • ´ë±Ô¸ð »ý»ê¿¡ À־ÀÇ ±â¼úÀû °úÁ¦
      • ³Ã°¢ ½Ã½ºÅÛÀÇ º¹À⼺
  • ½ÃÀå ±âȸ
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼Ò°³
  • ½ÃÀå Á¡À¯À² ºÐ¼®
    • Á¦Á¶¾÷üº° ¼¼°è ½ÃÀå Á¡À¯À²
    • Á¦Á¶¾÷üº° Áö¿ª ½ÃÀå Á¡À¯À²
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À ºñ±³
    • ±â¼ú·ÂÀÇ ºñ±³
    • R&D ÅõÀÚ ºñ±³
    • Á¦Á¶´É·Â ºñ±³
  • Àü·«Àû ³ë·Â°ú °³¹ß
    • ÇÕº´°ú Àμö
    • ÆÄÆ®³Ê½Ê ¹× Çù¾÷
    • Á¦Ç° Ãâ½Ã¿Í Çõ½Å
    • È®Àå °èȹ
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·«Àû ´ë½Ãº¸µå

Á¦5Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ÀçÁúº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • YBCO(ÀÌÆ®·ý ¹Ù·ý ±¸¸® »êÈ­¹°)
  • BSCCO(ºñ½º¹«Æ® ½ºÆ®·ÐƬ Ä®½· ±¸¸® »êÈ­¹°)
  • REBCO(ÈñÅä·ù ¹Ù·ý ±¸¸® »êÈ­¹°)
  • MgB2(À̺ØÈ­ ¸¶±×³×½·)
  • ö ±â¹Ý ÃÊÀüµµÃ¼
  • ´ÏÄÌ»êÈ­¹°
  • ±âŸ

Á¦6Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Á¦Ç° Çüź°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • Á¦1¼¼´ë(1G) HTS ¿ÍÀ̾î
  • Á¦2¼¼´ë(2G) HTS Å×ÀÌÇÁ
  • HTS ¹úÅ© Àç·á
  • HTS ¹Ú¸·
  • ±âŸ

Á¦7Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ¿ëµµº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ¿¡³ÊÁö
    • Àü¿ø ÄÉÀ̺í
    • º¯¾Ð±â
    • ¸ðÅÍ¿Í ¹ßÀü±â
    • °íÀå Àü·ù Á¦ÇÑ ÀåÄ¡
    • ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ
  • ÀÇ·á
    • MRI ½Ã½ºÅÛ
    • NMR ÀåÄ¡
    • ±âŸ
  • ±³Åë
    • Àڱ⠺λó½Ä öµµ
    • Àü±â Ç×°ø±â
    • ¼±¹Ú ÃßÁø
  • ÀüÀÚ ¹× Åë½Å
    • ÀüÀÚ·¹ÀÎÁö ÇÊÅÍ
    • RF ¹× ¸¶ÀÌÅ©·ÎÆÄ ÀåÄ¡
    • ¾çÀÚ ÄÄÇ»ÆÃ ÄÄÆ÷³ÍÆ®
  • Á¶»ç ¹× °úÇÐ ±â±â
    • °íÀÚ±âÀå ÀÚ¼®
    • ÀÔÀÚ °¡¼Ó±â
    • ÇÙÀ¶ÇÕ·Î
  • »ê¾÷
    • À¯µµ °¡¿­ ÀåÄ¡
    • Àڱ⠺и®
    • ±âŸ
  • ±âŸ

Á¦8Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Áö¿ªº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ³²¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)

Á¦9Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • American Superconductor
  • Bruker
  • Fujikura
  • High Temperature Superconductors
  • IBM
  • Japan Superconductor Technology
  • Nexans
  • SuperOx
  • SuperPower
  • Theva
HBR 25.06.26

The Global High-Temperature Superconductors Market was valued at USD 729.6 million in 2024 and is estimated to grow at a CAGR of 8.5% to reach USD 1.6 billion by 2034. High-temperature superconductors, often referred to as HTS, are advanced materials capable of conducting electricity without resistance at temperatures significantly higher than traditional superconductors. Unlike conventional counterparts that operate near absolute zero, HTS materials function at or above 77 Kelvin, making them compatible with liquid nitrogen cooling systems, which are both cost-effective and easier to manage. This key attribute positions HTS as a favorable option in applications requiring high energy efficiency, including next-generation power systems, transportation, and advanced medical imaging technologies.

High-Temperature Superconductors (HTS) Market - IMG1

Growing demand for enhanced electrical performance across sectors is playing a pivotal role in driving the adoption of HTS materials. These superconductors are being integrated into modern energy infrastructures, particularly for upgrading transmission grids and minimizing energy losses. Governments and utilities worldwide are placing emphasis on revamping aging systems, and HTS-based solutions are being considered essential due to their efficiency and ability to handle higher power loads with lower operational losses. These initiatives are further encouraged by the global push for sustainable energy and the need for resilient power infrastructures that can accommodate rising electricity consumption and distributed energy resources. The use of superconducting devices in limiting fault currents, enhancing power quality, and optimizing grid performance is adding to the momentum.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$729.6 Million
Forecast Value$1.6 Billion
CAGR8.5%

Among various HTS types, Yttrium Barium Copper Oxide (YBCO) continues to dominate the market. This segment accounted for 35.1% of the global share in 2024 and reached a valuation of USD 1.1 billion. YBCO remains preferred due to its stable performance at nearly 90 Kelvin, which simplifies cooling logistics while providing superior current density and the ability to withstand strong magnetic fields. These features make it suitable for use in high-power and magnet-centric applications. Compared to older superconductors, YBCO delivers better thermal management and operational efficiency, which has led to its wide-scale use in commercial and experimental deployments.

The first-generation HTS wires segment is projected to hit USD 761.8 million by 2034, growing at an impressive CAGR of 11.6%. First-generation wires, based on BSCCO compounds, have achieved commercial availability thanks to mature production techniques like the Powder-In-Tube method. This process involves placing superconducting powder into silver-based tubes and forming them into wires, resulting in conductors that are both effective and easier to produce at scale. These wires function efficiently at temperatures compatible with liquid nitrogen, reducing the overall cost of cooling and making them an attractive option for pilot-scale and low-volume applications in energy systems and scientific research.

Energy remains the largest application segment for HTS materials, with a valuation of USD 1.1 billion in 2024 and expected to grow at a CAGR of 12% from 2025 to 2034, capturing 35.4% of the total market. The transformation of global power infrastructure relies heavily on materials that can transmit electricity without losses. HTS-enabled power lines and components are capable of transmitting higher currents over long distances compared to conventional copper or aluminum cables, particularly in areas with dense urban populations and limited physical space for new installations. Their deployment reduces energy dissipation and enhances system reliability, making them essential for modern electricity distribution networks.

In the United States, the market reached a valuation of USD 986.4 million in 2024 and is set to expand at a CAGR of 12.4% through 2034. Increased funding and collaboration between federal agencies, private entities, and research institutions are central to the country's efforts to modernize its power grid and explore new technologies for defense and clean energy. Investments are being channeled into projects focusing on superconducting power devices that can deliver greater performance while addressing system vulnerabilities. These investments are part of broader strategies aimed at reinforcing national infrastructure and advancing energy independence.

The market landscape for high-temperature superconductors is moderately competitive, with a mix of established corporations and niche innovators. Companies involved in this field often possess vertically integrated operations, advanced research capabilities, and collaborative partnerships to remain competitive. Larger enterprises bring in extensive manufacturing experience and infrastructure, while smaller players contribute through specialized technologies and materials development. Continued innovation, along with strategic alliances between industry, academia, and government, is vital for keeping pace with evolving demands in sectors such as healthcare, energy, and transportation. This ongoing collaboration is expected to shape the next phase of high-temperature superconductivity advancements.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculations
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021-2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Trump administration tariffs
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (raw materials)
        • 3.2.2.1.1 Price volatility in key materials
        • 3.2.2.1.2 Supply chain structure
        • 3.2.2.1.3 Production cost implications
    • 3.2.3 Demand-side impact (selling price)
      • 3.2.3.1 Price transmission to end markets
      • 3.2.3.2 Market share dynamics
      • 3.2.3.3 Consumer response patterns
    • 3.2.4 Key companies impacted
    • 3.2.5 Strategic industry responses
      • 3.2.5.1 Supply chain reconfiguration
      • 3.2.5.2 Pricing and product strategies
      • 3.2.5.3 Policy engagement
    • 3.2.6 Outlook and future considerations
  • 3.3 Trade statistics (HS code) Note: the above trade statistics will be provided for key countries only.
    • 3.3.1 Major exporting countries, 2021-2024 (kilo tons)
    • 3.3.2 Major importing countries, 2021-2024 (kilo tons)
  • 3.4 Supplier landscape
  • 3.5 Profit margin analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing demand for energy-efficient solutions
      • 3.8.1.2 Advancements in cryogenic technologies
      • 3.8.1.3 Growing applications in healthcare sector
      • 3.8.1.4 Rising investments in fusion energy research
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 High manufacturing costs
      • 3.8.2.2 Technical challenges in large-scale production
      • 3.8.2.3 Cooling system complexities
  • 3.9 Market opportunities
  • 3.10 Growth potential analysis
  • 3.11 Porter's analysis
  • 3.12 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Market share analysis
    • 4.2.1 Global market share by manufacturer
    • 4.2.2 Regional market share by manufacturer
  • 4.3 Competitive benchmarking
    • 4.3.1 Product portfolio comparison
    • 4.3.2 Technological capabilities comparison
    • 4.3.3 R&D investment comparison
    • 4.3.4 Manufacturing capacity comparison
  • 4.4 Strategic initiatives & developments
    • 4.4.1 Mergers & acquisitions
    • 4.4.2 Partnerships & collaborations
    • 4.4.3 Product launches & innovations
    • 4.4.4 Expansion plans
  • 4.5 Competitive positioning matrix
  • 4.6 Strategic dashboard

Chapter 5 Market Estimates & Forecast, By Material Type, 2021-2034 (USD Billion) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 YBCO (Yttrium Barium Copper Oxide)
  • 5.3 BSCCO (Bismuth Strontium Calcium Copper Oxide)
  • 5.4 REBCO (Rare Earth Barium Copper Oxide)
  • 5.5 MgB2 (Magnesium Diboride)
  • 5.6 Iron-based superconduct
  • 5.7 Nickelates
  • 5.8 Others

Chapter 6 Market Estimates & Forecast, By Product Form, 2021-2034 (USD Billion) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 First-generation (1G) HTS wires
  • 6.3 Second-generation (2G) HTS tapes
  • 6.4 HTS bulk materials
  • 6.5 HTS thin films
  • 6.6 Others

Chapter 7 Market Estimates & Forecast, By Application, 2021-2034 (USD Billion) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Energy
    • 7.2.1 Power cables
    • 7.2.2 Transformers
    • 7.2.3 Motors & generators
    • 7.2.4 Fault current limiters
    • 7.2.5 Energy storage systems
  • 7.3 Healthcare
    • 7.3.1 MRI systems
    • 7.3.2 NMR equipment
    • 7.3.3 Others
  • 7.4 Transportation
    • 7.4.1 Maglev trains
    • 7.4.2 Electric aircraft
    • 7.4.3 Ship propulsion
  • 7.5 Electronics & communication
    • 7.5.1 Microwave filters
    • 7.5.2 RF & microwave devices
    • 7.5.3 Quantum computing components
  • 7.6 Research & scientific instruments
    • 7.6.1 High-field magnets
    • 7.6.2 Particle accelerators
    • 7.6.3 Fusion reactors
  • 7.7 Industrial applications
    • 7.7.1 Induction heaters
    • 7.7.2 Magnetic separation
    • 7.7.3 Others
  • 7.8 Others

Chapter 8 Market Estimates & Forecast, By Region, 2021-2034 (USD Billion) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 UK
    • 8.3.2 Germany
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 South Korea
    • 8.4.5 Australia
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 MEA
    • 8.6.1 South Africa
    • 8.6.2 Saudi Arabia
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 American Superconductor
  • 9.2 Bruker
  • 9.3 Fujikura
  • 9.4 High Temperature Superconductors
  • 9.5 IBM
  • 9.6 Japan Superconductor Technology
  • 9.7 Nexans
  • 9.8 SuperOx
  • 9.9 SuperPower
  • 9.10 Theva
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦