![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1650945
¼¼°èÀÇ À¯Àüü ÆíÁý/À¯Àüü °øÇÐ ½ÃÀåGenome Editing / Genome Engineering |
À¯Àüü ÆíÁý/À¯Àüü °øÇÐ ¼¼°è ½ÃÀå, 2030³â±îÁö 382¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 129¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â À¯Àüü ÆíÁý/À¯Àüü °øÇÐ ¼¼°è ½ÃÀåÀº 2024-2030³â ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 19.8%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 382¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ CRISPR ±â¼úÀº CAGR 22.2%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ ¸»±îÁö 187¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ZFN ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 14.8%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀå 38¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 19.0%·Î ¼ºÀå Àü¸Á
¹Ì±¹ÀÇ À¯Àüü ÆíÁý/À¯Àüü °øÇÐ ½ÃÀåÀº 2024³â 38¾ï ´Þ·¯ ±Ô¸ð·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 58¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³â ºÐ¼® ±â°£ µ¿¾È CAGRÀº 19.0%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 17.6% ¹× 16.1%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ ¾à 13.2%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°è À¯Àüü ÆíÁý/À¯Àüü °øÇÐ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®
À¯Àüü ÆíÁýÀº ¿Ö ÀÇ·á, ³ó¾÷, »ý¸í°øÇп¡ Çõ¸íÀ» °¡Á®¿Ã±î?
À¯Àüü °øÇÐÀ¸·Îµµ ¾Ë·ÁÁø À¯Àüü ÆíÁýÀº °úÇÐ Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, ÀÇ·á, ³ó¾÷, »ý¸í°øÇÐ ºÐ¾ß¿¡¼ Àü·Ê ¾ø´Â °¡´É¼ºÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÇÏÁö¸¸ À¯Àüü ÆíÁýÀÌ ¿À´Ã³¯ÀÇ »óȲ¿¡¼ ¿Ö Çõ¸íÀûÀÎ °ÍÀϱî? CRISPR-Cas9, TALEN, ¡ũ ÇΰŠ´ºÅ¬·¹¾ÆÁ¦ µîÀÇ ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº ƯÁ¤ À¯ÀüÀÚ¸¦ ŸÀÇ ÃßÁ¾À» ºÒÇãÇÏ´Â Á¤È®¼º°ú È¿À²¼ºÀ¸·Î ƯÁ¤ À¯ÀüÀÚ¸¦ ±³Á¤ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. À¯Àü¼º ÁúȯÀÇ Ä¡·á¿¡¼ ³óÀÛ¹°ÀÇ È¸º¹·Â Çâ»ó¿¡ À̸£±â±îÁö ¸ðµç Á¢±Ù ¹æ½Ä¿¡ º¯È¸¦ °¡Á®¿Ã ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
ÀÇÇÐ ºÐ¾ß¿¡¼ À¯Àüü ÆíÁýÀº ³¶Æ÷¼º¼¶À¯Áõ, °â»ó ÀûÇ÷±¸ ºóÇ÷, ±ÙÀÌ¿µ¾çÁõ°ú °°Àº À¯Àü¼º ÁúȯÀÇ ¿øÀÎÀÌ µÇ´Â °áÇÔ À¯ÀüÀÚ¸¦ Á÷Á¢ ±³Á¤ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ÁúȯÀ» Ä¡·áÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ¾Ï Ä¡·á¿¡µµ Àû¿ëÀÌ °ËÅäµÇ°í ÀÖÀ¸¸ç, ¸é¿ª¼¼Æ÷¸¦ º¯Çü½ÃÄÑ ¾Ï¼¼Æ÷¸¦ º¸´Ù È¿°úÀûÀ¸·Î Ç¥ÀûÈÇÏ¿© ÆÄ±«ÇÒ ¼ö ÀÖ½À´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼ À¯Àüü ÆíÁýÀº ÇØÃæ, Áúº´, ȯ°æ ½ºÆ®·¹½º¿¡ °ÇÑ ÀÛ¹° °³¹ß¿¡ µµ¿òÀÌ µÇ°í ÀÖÀ¸¸ç, ±âÈÄ º¯È¿¡ Á÷¸éÇßÀ» ¶§ ½Ä·® ¾Èº¸¸¦ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. »ý¸í°øÇп¡¼´Â ÀÌ ±â¼úÀ» ÅëÇØ »õ·Î¿î ÇüÁúÀ» °¡Áø À¯ÀüÀÚ º¯Çü»ý¹°Ã¼(GMO)¸¦ ¸¸µé ¼ö ÀÖ°Ô µÇ¾î ÀǾàǰ, ¹ÙÀÌ¿À¿¬·á, »ê¾÷¿ë È¿¼Ò µîÀÇ »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. »ý¹°ÀÇ À¯ÀüÀÚ ±¸¼ºÀ» ±Ùº»ÀûÀ¸·Î ¹Ù²Ü ¼ö ÀÖ´Â À¯Àüü ÆíÁýÀº ´Ù¾çÇÑ ºÐ¾ßÀÇ ¹Ì·¡¸¦ Çü¼ºÇϸç Çö´ëÀÇ °¡Àå ¿µÇâ·Â ÀÖ´Â °úÇÐÀû Áøº¸ Áß ÇϳªÀÔ´Ï´Ù.
±â¼úÀÇ ¹ßÀüÀ¸·Î À¯Àüü ÆíÁýÀº ¾î¶»°Ô Á¤±³ÇØÁö°í, ¾î¶»°Ô ´õ ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ»±î?
±â¼úÀÇ ¹ßÀüÀ¸·Î À¯Àüü ÆíÁýÀÇ Á¤È®¼º, È¿À²¼º ¹× Á¢±Ù¼ºÀÌ Å©°Ô Çâ»óµÇ¾î ¿¬±¸ ¹× ÀÓ»ó ÀÀ¿ëÀ» À§ÇÑ °·ÂÇÑ µµ±¸°¡ µÇ¾ú½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ °¡Àå ȹ±âÀûÀÎ Çõ½Å Áß Çϳª´Â À¯Àüü °øÇÐÀÇ ÆÇµµ¸¦ ¹Ù²Û À¯ÀüÀÚ ÆíÁý ±â¼úÀÎ CRISPR-Cas9ÀÇ °³¹ß·Î, CRISPR-Cas9´Â °¡À̵å RNA¸¦ »ç¿ëÇÏ¿© Cas9 È¿¼Ò¸¦ À¯ÀüüÀÇ Æ¯Á¤ À§Ä¡·Î À¯µµÇÏ¿© Á¤È®ÇÑ Àý´ÜÀ» ÅëÇØ °íµµ·Î Ç¥ÀûÈµÈ DNA º¯ÇüÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °íµµÀÇ Ç¥ÀûÈµÈ DNA º¯ÇüÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ±âÁ¸ À¯Àüü ÆíÁý¹ýº¸´Ù ºü¸£°í È¿À²ÀûÀÏ »Ó¸¸ ¾Æ´Ï¶ó, À¯ÀüÀÚ ³ì¾Æ¿ôºÎÅÍ »õ·Î¿î ¼¿ »ðÀÔ±îÁö ±¤¹üÀ§ÇÑ À¯ÀüÀÚ º¯ÇüÀÌ °¡´ÉÇÑ À¯¿¬¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
ÃÖ±Ù CRISPR ±â¼úÀÇ ¹ßÀüÀº ±× Á¤È®¼º°ú ¹ü¿ë¼ºÀ» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¿°±â±³Á¤ ¹× ÇÁ¶óÀÓ ÆíÁý ±â¼úÀÇ °³¹ß·Î °úÇÐÀÚµéÀº ÀÌÁß »ç½½ Àý´Ü ¾øÀÌ À¯Àüü¿¡ ´ÜÀÏ ¿°±â º¯È³ª ÀÛÀº ÆíÁýÀ» Ãß°¡ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀǵµÇÏÁö ¾ÊÀº µ¹¿¬º¯ÀÌ ¹× Ç¥Àû ¿Ü È¿°úÀÇ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº Á¤È®¼ºÀÌ °¡Àå Áß¿äÇÑ Ä¡·á ÀÀ¿ë ºÐ¾ß¿¡¼ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, CRISPRÀÇ ¹ü¿ë¼ºÀº ¿¬±¸ÀÚµéÀÌ Æ¯Á¤ »ý¹°ÇÐÀû °úÁ¤À̳ª Áúº´¿¡ °ü¿©ÇÏ´Â À¯ÀüÀÚ¸¦ ½Äº°Çϱâ À§ÇØ ´ë±Ô¸ð À¯ÀüÀÚ ½ºÅ©¸®´×À» ¼öÇàÇÒ ¼ö ÀÖ´Â 'CRISPR ¶óÀ̺귯¸®'ÀÇ »ý¼ºÀ¸·Î ´õ¿í È®ÀåµÇ¾ú½À´Ï´Ù.
¶Ç ´Ù¸¥ Å« ¹ßÀüÀº À¯Àüü ÆíÁý µµ±¸¿¡ ´ëÇÑ Á¢±ÙÀÌ ½¬¿öÁ³´Ù´Â Á¡ÀÔ´Ï´Ù. CRISPR-Cas9 ¹× °ü·Ã ±â¼úÀÌ ³Î¸® º¸±ÞµÇ¸é¼ »ó¿ë ŰƮ¿Í ¿ÀÇ ¼Ò½º Ç÷§ÆûÀ» ÅëÇØ Àü ¼¼°è ¿¬±¸ÀÚµéÀÌ À¯Àüü ÆíÁý¿¡ ½±°Ô Á¢±Ù ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸ÀÇ Æí¸®ÇÔ°ú Àú·ÅÇÑ °¡°ÝÀº À¯ÀüÀÚ ¿¬±¸¸¦ ¹ÎÁÖÈÇÏ¿© °ú°Å¿¡´Â ÀڱݷÂÀÌ ÀÖ´Â ¿¬±¸¼Ò¿¡¸¸ ±¹ÇѵǾú´ø ÃÖ÷´Ü ¿¬±¸¸¦ ¼Ò±Ô¸ð ¿¬±¸¼Ò³ª ¿¬±¸±â°ü¿¡¼µµ ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ·¯½º º¤ÅÍ, ³ª³ëÀÔÀÚ µî Àü´Þ ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î À¯Àüü ÆíÁý ¼ººÐÀ» Ç¥Àû ¼¼Æ÷¿¡ Àü´ÞÇÏ´Â È¿À²¼ºÀÌ Çâ»óµÇ¾î Ä¡·á Àû¿ëÀÌ ´õ¿í Çö½ÇÀûÀ¸·Î °¡´ÉÇØÁ³½À´Ï´Ù.
¶ÇÇÑ, ÀΰøÁö´É(AI)°ú ±â°èÇнÀÀÇ ÅëÇÕÀº À¯Àüü ÆíÁý ¿¬±¸¿¡¼ ÀΰøÁö´É(AI)°ú ±â°èÇнÀÀÇ ÅëÇÕÀº Ç¥Àû ¿Ü ¿µÇâÀ» ¿¹ÃøÇϰí ÃÖ¼ÒÈÇÏ´Â ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖÀ¸¸ç, AI ±â¹Ý ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ À¯ÀüÀÚ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© º¸´Ù Á¤È®ÇÑ °¡À̵å RNA¸¦ ¼³°èÇϰí À¯ÀüÀÚ ÆíÁýÀÇ Æ¯À̼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ÀǵµÇÏÁö ¾ÊÀº º¯ÇüÀ» ÃÖ¼ÒÈÇÏ´Â °ÍÀÌ ¾ÈÀü¼ºÀ» À§ÇØ Áß¿äÇÑ ÀÓ»ó ÀÀ¿ë ºÐ¾ß¿¡¼ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀ¸·Î À¯Àüü ÆíÁýÀº ´õ¿í Á¤È®Çϰí È®Àå °¡´ÉÇϸç Á¢±Ù¼ºÀÌ ³ô¾ÆÁ® ÀÇ·á, ³ó¾÷, »ý¸í°øÇÐ ºÐ¾ß¿¡¼ »õ·Î¿î °¡´É¼ºÀ» ¿¾î°¡°í ÀÖ½À´Ï´Ù.
À¯Àüü ÆíÁýÀÌ ÀÇ·á¿Í ³ó¾÷ ¹ßÀü¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?
À¯Àüü ÆíÁýÀº Àΰ£ °Ç°°ú ½Ä·® ¾Èº¸ÀÇ Áß¿äÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÑ Ç¥ÀûÈµÈ °³ÀÔÀ» °¡´ÉÇÏ°Ô Çϱ⠶§¹®¿¡ ÀÇ·á¿Í ³ó¾÷ÀÇ ¹ßÀü¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÇÇÐ ºÐ¾ß¿¡¼ À¯Àüü ÆíÁýÀº ±Ùº»ÀûÀÎ À¯ÀüÀÚ º¯À̸¦ Á÷Á¢ ±³Á¤ÇÔÀ¸·Î½á À¯Àü¼º ÁúȯÀ» Ä¡·áÇÏ°í ½ÉÁö¾î Ä¡À¯ÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ³¶Æ÷¼º¼¶À¯Áõ, ÇåÆÃÅϺ´, Ç÷¿ìº´ µî ´ÜÀÏ À¯ÀüÀÚ µ¹¿¬º¯ÀÌ·Î ÀÎÇÑ Áúº´Àº À¯Àüü ÆíÁý Ä¡·áÀÇ À¯·ÂÇÑ È帷Î, CRISPR-Cas9¿Í °°Àº ±â¼úÀ» »ç¿ëÇÏ¿© °áÇÔ À¯ÀüÀÚ¸¦ º¹±¸Çϰųª ´ëüÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº Áõ»ó °ü¸®¿¡ ±×Ä¡Áö ¾Ê°í Áúº´ÀÇ ±Ùº» ¿øÀÎÀ» ´Ù·ç´Â »õ·Î¿î Ä¡·á¹ýÀ» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. »õ·Î¿î Ä¡·á¹ýÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, °â»ó ÀûÇ÷±¸ ºóÇ÷À̳ª º£Å¸ ÁöÁßÇØºóÇ÷°ú °°Àº Ç÷¾× ÁúȯÀÇ °æ¿ì, CRISPRÀ» ÀÌ¿ëÇÑ ÀÓ»ó½ÃÇèÀÌ ÀÌ¹Ì ÁøÇà ÁßÀ̸ç, À̵é ÁúȯÀÇ ¿øÀÎÀÌ µÇ´Â À¯ÀüÀû °áÇÔÀ» ±³Á¤ÇÏ´Â µ¥ À¯¸ÁÇÑ °á°ú¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
À¯ÀüÁúȯ Ä¡·á ¿Ü¿¡µµ À¯Àüü ÆíÁýÀº ¾Ï ¸é¿ªÄ¡·á¿¡µµ Àû¿ëµÇ°í Àִµ¥, CAR-T ¼¼Æ÷ Ä¡·á¿Í °°Àº Ä¡·á¹ýÀº ȯÀÚÀÇ ¸é¿ª¼¼Æ÷¸¦ º¯Çü½ÃÄÑ ¾Ï¼¼Æ÷¸¦ ´õ Àß ÀνÄÇÏ°í °ø°ÝÇϵµ·Ï ÇÏ´Â Ä¡·á¹ýÀ¸·Î, À¯Àüü ÆíÁýÀ» ÅëÇØ Ä¡·áÀÇ Æ¯À̼º°ú È¿´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. °ÈµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯Àüü ÆíÁýÀº Áٱ⼼Æ÷¸¦ º¯ÇüÇÏ¿© À̽Ŀë Á¶Á÷°ú Àå±â¸¦ ¸¸µé ¼ö ÀÖ°ÔÇÔÀ¸·Î½á Àç»ýÀÇ·á¿¡ Çõ¸íÀ» °¡Á®¿Ã ¼ö ÀÖ´Â °¡´É¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, Àå±âºÎÀüÀ̳ª ½É°¢ÇÑ ºÎ»óÀ» ÀÔÀº ȯÀڵ鿡°Ô »õ·Î¿î Èñ¸ÁÀ» °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù.
³ó¾÷ ºÐ¾ß¿¡¼ À¯Àüü ÆíÁýÀº ÀÛ¹°ÀÇ È¸º¹·Â, ¼öÈ®·®, ¿µ¾ç°¡¸¦ ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¼¼°è Àα¸´Â 2050³â±îÁö 100¾ï ¸í¿¡ À°¹ÚÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ½Ä·® ¾Èº¸´Â Á¡Á¡ ´õ ½Ã±ÞÇÑ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. À¯Àüü ÆíÁýÀ» ÅëÇØ °úÇÐÀÚµéÀº ÇØÃæ°ú Áúº´, °¡¹³°ú ´õÀ§ µî ȯ°æ ½ºÆ®·¹½º ¿äÀο¡ °ÇÑ ÀÛ¹°À» °³¹ßÇÒ ¼ö ÀÖÀ¸¸ç, ±âÈÄ º¯È¿¡ Á÷¸éÇÏ¿© ½Ä·® °ø±ÞÀ» È®º¸ÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. ¿¹¸¦ µé¾î, CRISPRÀº º´¿¡ °ÇÑ ¹Ð, °¡¹³¿¡ °ÇÑ ¿Á¼ö¼ö, ÀúÀ强À» ³ôÀÎ Å丶Åä °³¹ß¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ³óºÎµéÀÌ ÈÇÐ ³ó¾à°ú ÈÇÐ ºñ·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãâ »Ó¸¸ ¾Æ´Ï¶ó ÀÛ¹°ÀÇ »ý»ê¼ºÀ» Çâ»ó½ÃÄÑ º¸´Ù Áö¼Ó°¡´ÉÇÑ ³ó¾÷¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù.
À¯Àüü ÆíÁýÀº ³»¼º°ú ¼öÀ²À» Çâ»ó½ÃŰ´Â °Í ¿Ü¿¡µµ ÀÛ¹°ÀÇ ¿µ¾ç°¡¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ½ÒÀº CRISPRÀ» »ç¿ëÇÏ¿© ºñŸ¹Î AÀÇ Àü±¸Ã¼ÀÎ º£Å¸Ä«·ÎƾÀÇ ³óµµ¸¦ Áõ°¡½ÃÄÑ ½ÒÀ» ÁÖ½ÄÀ¸·Î ÇÏ´Â Áö¿ªÀÇ ºñŸ¹Î °áÇÌÀ» ÇØ°áÇϱâ À§ÇØ À¯ÀüÀÚ Á¶ÀÛÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, ±â¸§°ú ´Ü¹éÁúÀÇ Ç°ÁúÀ» °³¼±Çϰųª ±âŸ ¿µ¾ç°¡¸¦ ³ôÀÎ À¯Àüü ÆíÁý ÀÛ¹°Àº ¿µ¾ç½ÇÁ¶¿Í ½Î¿ì°í Àü ¼¼°è °øÁߺ¸°ÇÀ» °³¼±ÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. Àΰ£ °Ç°°ú ³ó¾÷ÀÇ ½Ã±ÞÇÑ ¹®Á¦¸¦ ÇØ°áÇÔÀ¸·Î½á À¯Àüü ÆíÁýÀº µÎ ºÐ¾ß ¸ðµÎ¿¡ Çõ½ÅÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
À¯Àüü ÆíÁý ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀϱî?
»ý¸í°øÇп¡ ´ëÇÑ ÅõÀÚ Áõ°¡, À¯Àü¼º ÁúȯÀÇ À¯º´·ü Áõ°¡, CRISPR°ú °°Àº À¯Àüü ÆíÁý ±â¼úÀÇ ¹ßÀü µî À¯Àüü ÆíÁý ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¸î °¡Áö ÁÖ¿ä ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ù°, ¹Î°£°ú °ø°ø ºÎ¹® ¸ðµÎ¿¡¼ ÅõÀÚ°¡ ±ÞÁõÇÏ¸é¼ À¯Àüü ÆíÁý ½ÃÀåÀÇ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. Á¦¾àȸ»ç, º¥Ã³ ijÇÇÅÐ, Á¤ºÎ ±â°üÀº À¯Àüü ÆíÁýÀÌ ÀÇ·á, ³ó¾÷, »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ¼ö ÀÖ´Â °¡´É¼ºÀ» ÀνÄÇϰí À¯Àüü ÆíÁý ¿¬±¸¿¡ ÀÚ±ÝÀ» ÅõÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ±Ý À¯ÀÔÀº À¯Àüü ÆíÁý Ä¡·á ¹× ³ó¾÷ ¼Ö·ç¼Ç °³¹ßÀ» °¡¼ÓÈÇϰí ÀÖÀ¸¸ç, Àü´Þ ½Ã½ºÅÛ, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º µî °ü·Ã ±â¼úÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
µÑ°, À¯Àü¼º Áúȯ°ú ¾ÏÀÇ È®»ê¿¡ µû¶ó °í±Þ Ä¡·á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áúº´°úÀÇ À¯ÀüÀû ¿¬°ü¼ºÀÌ ´õ ¸¹ÀÌ ¹àÇôÁü¿¡ µû¶ó, ÀÌ·¯ÇÑ º´Å»ý¸®¸¦ À¯ÀüÀû ±Ù¿ø¿¡¼ºÎÅÍ ÇØ°áÇÒ ¼ö Àִ ǥÀûÄ¡·á¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À¯Àüü ÆíÁýÀº À¯ÀüÀû º¯À̸¦ ±³Á¤ÇÏ´Â Á÷Á¢ÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇϱ⠶§¹®¿¡ À¯Àü¼º ÁúȯºÎÅÍ ¾Ï, ¹ÙÀÌ·¯½º °¨¿°¿¡ À̸£±â±îÁö ´Ù¾çÇÑ Áúº´À» Ä¡·áÇÏ´Â µ¥ ¸Å·ÂÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áúº´À» Ä¡·áÇϰųª °æ°ú¸¦ Å©°Ô º¯È½Ãų ¼ö ÀÖ´Â °¡´É¼ºÀ¸·Î ÀÎÇØ À¯Àüü ÆíÁý ¿ä¹ý¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
¼Â°, À¯Àüü ÆíÁý ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü, ƯÈ÷ CRISPR-Cas9ÀÇ °³¹ßÀº ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, CRISPRÀº ¡ũ ÇΰŠ´ºÅ¬·¹¾ÆÁ¦³ª TALEN°ú °°Àº ÀÌÀü ±â¼ú¿¡ ºñÇØ ´õ È¿À²ÀûÀ̰í Àú·ÅÇÏ¸ç ´ÙÀç´Ù´ÉÇÑ À¯ÀüÀÚ ÆíÁý ¹æ¹ýÀ» Á¦°øÇÔÀ¸·Î½á À¯Àüü °øÇп¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. CRISPR ±â¼úÀÌ Áö¼ÓÀûÀ¸·Î °³¼±µÇ°í, ¿°±â ÆíÁý±â ¹× ÇÁ¶óÀÓ ÆíÁý±â¿Í °°Àº º¸´Ù Á¤¹ÐÇÑ ÆíÁý µµ±¸°¡ °³¹ßµÊ¿¡ µû¶ó À¯Àüü ÆíÁýÀÇ ÀáÀçÀû ¿ëµµ°¡ È®´ëµÇ¾î ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î À¯Àüü ÆíÁýÀº Á¦¾à¿¡¼ ³ó¾÷¿¡ À̸£±â±îÁö ´õ ¸¹Àº ¿¬±¸ ±â°ü°ú »ê¾÷¿¡¼ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
¶ÇÇÑ, ¸ÂÃãÇü ÀÇ·áÀÇ ºÎ»óÀº À¯Àüü ÆíÁý ½ÃÀåÀÇ ¼ºÀå¿¡ Å« ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß°¡ ȯÀÚÀÇ À¯ÀüÀû üÁú¿¡ ±â¹ÝÇÑ ¸ÂÃãÇü Ä¡·á¸¦ ÁöÇâÇÔ¿¡ µû¶ó, À¯Àüü ÆíÁýÀº ¸ÂÃãÇü Ä¡·á¹ýÀ» °³¹ßÇÏ´Â µ¥ Áß¿äÇÑ µµ±¸·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. ƯÁ¤ À¯ÀüÀÚ º¯ÀÌ ¹× °æ·Î¸¦ Ç¥ÀûÀ¸·Î ÇÏ´Â Ä¡·á¹ýÀ» ¼³°èÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÓ»ó ÇöÀå, ƯÈ÷ ¾Ï Ä¡·á ¹× Èñ±Í À¯Àü¼º Áúȯ¿¡¼ À¯Àüü ÆíÁýÀÇ ¸Å·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.
±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø°ú À¯Àüü ÆíÁýÀÇ ÀáÀçÀû ÀÌÁ¡¿¡ ´ëÇÑ ´ëÁßÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, FDA ¹× EMA¿Í °°Àº ±ÔÁ¦ ±â°üÀº À¯Àüü ÆíÁý ±â¹Ý Ä¡·á¸¦ ½ÂÀÎÇϱ⠽ÃÀÛÇßÀ¸¸ç, ÀÌ´Â ÁÖ·ù ÀÇ·á ºÐ¾ß¿¡¼ ÀÌ·¯ÇÑ ±â¼úÀÌ ¼ö¿ëµÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù. ¶ÇÇÑ, ¾ð·Ð º¸µµ¿Í °úÇÐÀû Çõ½Å¿¡ ÈûÀÔ¾î À¯Àüü ÆíÁý¿¡ ´ëÇÑ ´ëÁßÀÇ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó, ÀÌ ±â¼úÀ» ±â¹ÝÀ¸·Î ÇÑ Ä¡·á¹ý°ú Çõ½Å¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿ä¾àÇϸé, À¯Àüü ÆíÁý ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº »ý¸í°øÇп¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ, À¯Àü¼º ÁúȯÀÇ À¯º´·ü Áõ°¡, CRISPR°ú °°Àº À¯Àüü ÆíÁý ±â¼úÀÇ ¹ßÀü, ¸ÂÃãÇü ÀÇ·á·ÎÀÇ Àüȯ, ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø Áõ°¡ÀÔ´Ï´Ù. À¯Àüü ÆíÁýÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ÀÇ·á, ³ó¾÷, »ý¸í°øÇп¡ ´ëÇÑ ÀÀ¿ëÀÌ È®´ëµÇ°í, ÇコÄɾî, ½Äǰ »ý»ê, °úÇÐ ¿¬±¸ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÒ °ÍÀÔ´Ï´Ù.
ºÎ¹®
±â¼ú(CRISPR, ZFN, TALEN, ±âŸ ±â¼ú), Àü´Þ ¹æ¹ý(»ýü¿Ü, »ýü³»), ¿ëµµ(À¯Àü°øÇÐ, ÀÓ»óÀÀ¿ë), ÃÖÁ¾ ¿ëµµ(Á¦¾à/¹ÙÀÌ¿À±â¾÷, Çаè/Á¤ºÎ¿¬±¸±â°ü, À§Å¹¿¬±¸±â°ü)
Global Genome Editing / Genome Engineering Market to Reach US$38.2 Billion by 2030
The global market for Genome Editing / Genome Engineering estimated at US$12.9 Billion in the year 2024, is expected to reach US$38.2 Billion by 2030, growing at a CAGR of 19.8% over the analysis period 2024-2030. CRISPR Technology, one of the segments analyzed in the report, is expected to record a 22.2% CAGR and reach US$18.7 Billion by the end of the analysis period. Growth in the ZFN Technology segment is estimated at 14.8% CAGR over the analysis period.
The U.S. Market is Estimated at US$3.8 Billion While China is Forecast to Grow at 19.0% CAGR
The Genome Editing / Genome Engineering market in the U.S. is estimated at US$3.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$5.8 Billion by the year 2030 trailing a CAGR of 19.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.6% and 16.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.2% CAGR.
Global Genome Editing / Genome Engineering Market - Key Trends and Drivers Summarized
Why Is Genome Editing Revolutionizing Medicine, Agriculture, and Biotechnology?
Genome editing, also known as genome engineering, is at the forefront of scientific innovation, offering unprecedented possibilities in medicine, agriculture, and biotechnology. But why is genome editing so revolutionary in today's landscape? This technology allows scientists to make precise, targeted changes to an organism's DNA, enabling the correction of genetic defects, the enhancement of desirable traits, and the creation of new biological functions. Techniques like CRISPR-Cas9, TALENs, and zinc-finger nucleases have empowered researchers to modify specific genes with unmatched accuracy and efficiency, transforming the way we approach everything from treating genetic disorders to improving crop resilience.
In medicine, genome editing holds the promise of curing inherited diseases such as cystic fibrosis, sickle cell anemia, and muscular dystrophy by directly correcting the faulty genes responsible for these conditions. The technology is also being explored for cancer therapy, where it can be used to modify immune cells to target and destroy cancer cells more effectively. In agriculture, genome editing is helping develop crops that are more resistant to pests, diseases, and environmental stress, improving food security in the face of climate change. In biotechnology, this technology enables the creation of genetically modified organisms (GMOs) with novel traits, revolutionizing industries like pharmaceuticals, biofuels, and industrial enzymes. With its ability to fundamentally alter the genetic makeup of living organisms, genome editing is shaping the future of multiple sectors, making it one of the most impactful scientific advancements of our time.
How Are Technological Advancements Making Genome Editing More Precise and Accessible?
Technological advancements are significantly improving the precision, efficiency, and accessibility of genome editing, making it an even more powerful tool for research and clinical applications. One of the most groundbreaking innovations in this field is the development of CRISPR-Cas9, a gene-editing technology that has transformed the landscape of genome engineering. CRISPR-Cas9 allows for highly targeted DNA modifications by using a guide RNA to direct the Cas9 enzyme to a specific location in the genome, where it makes a precise cut. This system is not only faster and more efficient than previous genome editing methods, but it is also more flexible, allowing for a wide range of genetic modifications, from gene knockout to the insertion of new sequences.
Recent advancements in CRISPR technology have further enhanced its precision and versatility. For example, the development of base editing and prime editing techniques allows scientists to make single nucleotide changes or small edits to the genome without causing double-strand breaks, reducing the risk of unintended mutations or off-target effects. These advancements are particularly useful in therapeutic applications where precision is paramount. In addition, CRISPR's versatility has been expanded with the creation of "CRISPR libraries," which allow researchers to conduct large-scale genetic screens to identify genes involved in specific biological processes or diseases.
Another significant advancement is the increased accessibility of genome editing tools. CRISPR-Cas9 and related technologies have become widely available, with commercial kits and open-source platforms making genome editing more accessible to researchers worldwide. The simplicity and affordability of these tools have democratized genetic research, allowing smaller labs and institutions to engage in cutting-edge work that was once limited to well-funded laboratories. Additionally, advancements in delivery systems, such as viral vectors and nanoparticles, are improving the efficiency of delivering genome-editing components into target cells, making therapeutic applications more feasible.
Furthermore, the integration of artificial intelligence (AI) and machine learning in genome editing research is enhancing the ability to predict and minimize off-target effects. AI-driven algorithms can analyze vast amounts of genetic data to design more accurate guide RNAs, increasing the specificity of gene edits. This is particularly important for clinical applications, where minimizing unintended modifications is crucial for safety. These technological advancements are making genome editing more precise, scalable, and accessible, opening up new possibilities in medicine, agriculture, and biotechnology.
Why Is Genome Editing Essential for Advancing Medicine and Agriculture?
Genome editing is essential for advancing both medicine and agriculture because it enables targeted interventions that address critical challenges in human health and food security. In medicine, genome editing offers the potential to treat or even cure genetic diseases by directly correcting the underlying genetic mutations. Diseases like cystic fibrosis, Huntington's disease, and hemophilia, which are caused by single-gene mutations, are prime candidates for genome editing therapies. By using technologies like CRISPR-Cas9 to repair or replace defective genes, researchers are developing novel treatments that go beyond managing symptoms to address the root cause of the disease. For example, clinical trials using CRISPR-based therapies are already underway for blood disorders like sickle cell anemia and beta-thalassemia, showing promising results in correcting the genetic defects responsible for these conditions.
In addition to treating genetic disorders, genome editing is also being explored for cancer immunotherapy. Techniques like CAR-T cell therapy, which involves modifying a patient’s immune cells to better recognize and attack cancer cells, are being enhanced through genome editing to improve the specificity and effectiveness of these treatments. Moreover, genome editing has the potential to revolutionize regenerative medicine by enabling the modification of stem cells to generate tissues and organs for transplantation, offering new hope for patients with organ failure or severe injuries.
In agriculture, genome editing is playing a crucial role in enhancing crop resilience, yield, and nutritional value. With the global population expected to reach nearly 10 billion by 2050, food security is becoming an increasingly urgent issue. Genome editing allows scientists to develop crops that are resistant to pests, diseases, and environmental stressors such as drought and heat, helping to secure food supplies in the face of climate change. For example, CRISPR has been used to create disease-resistant wheat, drought-tolerant corn, and tomatoes with improved shelf life. These advancements not only help farmers reduce their reliance on chemical pesticides and fertilizers but also increase crop productivity, contributing to more sustainable agricultural practices.
In addition to improving resistance and yield, genome editing can enhance the nutritional value of crops. For example, rice has been genetically modified using CRISPR to increase its levels of beta-carotene, a precursor to vitamin A, addressing vitamin deficiencies in regions where rice is a staple food. Similarly, genome-edited crops with improved oil content, protein quality, or other nutritional enhancements have the potential to combat malnutrition and improve public health worldwide. By addressing some of the most pressing challenges in human health and agriculture, genome editing is positioned to have a transformative impact on both sectors.
What Factors Are Driving the Growth of the Genome Editing Market?
Several key factors are driving the rapid growth of the genome editing market, including increasing investment in biotechnology, the rising prevalence of genetic diseases, and advancements in genome editing technologies like CRISPR. First, the surge in investment from both the private and public sectors is significantly contributing to the growth of the genome editing market. Pharmaceutical companies, venture capital firms, and government agencies are pouring funds into genome editing research, recognizing its potential to revolutionize medicine, agriculture, and industry. This influx of capital is accelerating the development of genome-editing therapies and agricultural solutions, as well as driving innovations in related technologies like delivery systems and bioinformatics.
Second, the increasing prevalence of genetic diseases and cancer is creating a growing demand for advanced therapeutic solutions. As more genetic links to diseases are identified, there is a rising need for targeted treatments that can address these conditions at their genetic root. Genome editing offers a direct approach to correcting genetic mutations, making it an attractive option for treating a wide range of conditions, from inherited disorders to cancers and viral infections. The ability to potentially cure or significantly alter the course of these diseases is propelling the interest in genome-editing therapies, driving market growth.
Third, the rapid advancements in genome editing technologies, particularly the development of CRISPR-Cas9, are fueling the expansion of the market. CRISPR has revolutionized genome engineering by offering a more efficient, affordable, and versatile method for editing genes compared to earlier techniques like zinc-finger nucleases and TALENs. As CRISPR technology continues to improve, with the development of more precise editing tools like base editors and prime editors, the potential applications of genome editing are expanding, further driving the growth of the market. These advancements are making genome editing more accessible to a wider range of research institutions and industries, from pharmaceuticals to agriculture.
Additionally, the rise of personalized medicine is playing a major role in the growth of the genome editing market. As the medical field moves toward more tailored treatments based on a patient’s genetic makeup, genome editing is increasingly seen as a key tool in developing customized therapies. The ability to design treatments that target specific genetic mutations or pathways is enhancing the appeal of genome editing in clinical settings, particularly in cancer therapy and rare genetic disorders.
Regulatory support and increasing public awareness of the potential benefits of genome editing are also contributing to market expansion. Regulatory agencies like the FDA and EMA are beginning to approve genome editing-based therapies, signaling growing acceptance of these technologies in mainstream healthcare. Moreover, as public awareness of genome editing grows, driven by media coverage and scientific breakthroughs, there is increasing demand for therapies and innovations based on this technology.
In summary, the growth of the genome editing market is driven by significant investment in biotechnology, the rising prevalence of genetic diseases, advancements in genome editing technologies like CRISPR, the shift toward personalized medicine, and growing regulatory support. As genome editing continues to evolve, its applications in medicine, agriculture, and biotechnology will expand, shaping the future of healthcare, food production, and scientific research.
SCOPE OF STUDY:
The report analyzes the Genome Editing / Genome Engineering market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Technology (CRISPR, ZFN, TALEN, Other Technologies); Delivery Method (Ex-Vivo, In-Vivo); Application (Genetic Engineering, Clinical Applications); End-Use (Pharma & Biotech Companies, Academic & Government Research Institutes, Contract Research Organizations)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 27 Featured) -