![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1723656
¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀå : ±â¼úº°, Ä¡·á À¯Çüº°, À¯ÀüÀÚ ÆíÁý Á¢±Ù¹ýº°, À¯ÀüÀÚ µµÀÔ ¹æ¹ýº°, À¯ÀüÀÚ µµÀÔ ¸ð´Þ¸®Æ¼º°, ¿ëµµ ºÐ¾ßº°, ÃÖÁ¾ »ç¿ëÀÚ À¯Çüº°, ÁÖ¿ä ÁøÃâ ±â¾÷º° ¾÷°è µ¿Çâ ¹× ¿¹Ãø(-2035³â)Genome Editing Market - Focus on Technology, Type of Therapy, Gene Editing Approach, Type of Gene Delivery Method, Gene Delivery Modality, Application Area, Type of End-User and Leading Industry Players: Industry Trends and Global Forecasts, till 2035 |
¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 34¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÀÌ ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È 12.1%ÀÇ CAGR·Î È®´ëµÉ Àü¸ÁÀ̸ç, ÇöÀç 42¾ï 5,000¸¸ ´Þ·¯¿¡¼ 2035³â±îÁö 133¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
À¯ÀüÀÚ ÆíÁý ½ÃÀå ±âȸ´Â ´ÙÀ½ ºÎ¹®¿¡ ºÐÆ÷µÇ¾î ÀÖ½À´Ï´Ù.
ä¿ëµÇ´Â °áÁ¦ ¹æ¹ý
À¯ÀüÀÚ ÆíÁý ±â¼ú À¯Çü
À¯ÀüÀÚ ÆíÁý Á¢±Ù¹ý
À¯ÀüÀÚ µµÀÔ¹ý
À¯ÀüÀÚ µµÀÔ ¹æ¹ý
Ä¡·á À¯Çü
¿ëµµ ºÐ¾ß
ÃÖÁ¾ »ç¿ëÀÚ
ÁÖ¿ä Áö¿ª
Àΰ£ À¯ÀüÀÚ´Â ¾à 30¾ï ¿°±â½ÖÀ¸·Î ÀÌ·ç¾îÁ® ÀÖÀ¸¸ç, ±× ¾È¿¡´Â 20,000-25,000°³ÀÇ ´Ü¹éÁúÀ» ÄÚµùÇÏ´Â À¯ÀüÀÚ°¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. À̵é À¯ÀüÀÚ´Â ´Ü¹éÁú ÇÕ¼ºÀ» Á¶ÀýÇϰí Á¦¾îÇÏ´Â ÄÚµå ¿ªÇÒÀ» Çϸç, ±×·Î ÀÎÇØ À¯ÀüÀÚ ¹ßÇö¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. »ý¸í°øÇÐÀÇ ¿µ¿ª¿¡¼ ÁøÇà ÁßÀÎ Áøº¸¿¡ ÀÇÇØ, ´Ù¾çÇÑ ÀÇÇÐ ¿¬±¸ÀÚ°¡, À¯ÀüÀÚ ÆíÁý ¶Ç´Â À¯ÀüÀÚ °øÇÐÀ̶ó°í ºÒ¸®´Â Ư¼öÇÑ ±â¼ú¿¡ ÀÇÇØ¼ Àΰ£ À¯ÀüÀÚÀÇ ¹ßÇöÀ» °³º¯ÇÒ ¼ö ÀÖ°Ô µÇ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ÆíÁýÀº °Ô³ð ÆíÁýÀ¸·Îµµ ¾Ë·ÁÁ® »ý¹°ÀÇ ´ÜÀÏ À¯ÀüÀÚ ¶Ç´Â À¯ÀüÀÚ ¼¼Æ®¸¦ »ðÀÔ, °á½Ç, ġȯÇÏ°í ±×¿¡ µû¶ó ´ºÅ¬·¹¿ÀŸÀ̵å Á¶¼ºÀ» º¯È½ÃÅ´À¸·Î½á °Ô³ðÀ» °³ÆíÇÏ´Â °ÍÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ±â¼úÀÔ´Ï´Ù. ¿øÇÏ´Â ºÎÀ§¿¡¼ÀÇ À¯ÀüÀÚ ÆíÁýÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í Àֱ⠶§¹®¿¡ ÀÌ ºÐ¾ß¿¡ Á¾»çÇÏ´Â ±â¾÷¿¡ µû¶ó ´Ù¾çÇÑ À¯ÀüÀÚ ÆíÁý ÅøÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú·Î´Â ¡ũÇΰŴºÅ¬·¹¾ÆÁ¦(ZFN), Àü»çȰ¼ºÈÀÎÀÚ ÀÌÆåÅÍ´ºÅ¬·¹¾ÆÁ¦(TALEN), Å©¸®½ºÆÛ ±â¼ú µîÀÌ ÀÖ½À´Ï´Ù. ƯÈ÷ ZFNÀº 1895³â¿¡ ¹ß°ßµÈ ÃÖÃÊÀÇ °Ô³ð °øÇÐ ±â¼úÀ̸ç, À̾î TALEN(2011³â), CRISPRÀÌ À¯ÀüÀÚ ÆíÁý ¿µ¿ªÀÇ È¹±âÀûÀÎ µ¹ÆÄ±¸·Î µîÀåÇß½À´Ï´Ù. ÀÌ·¯ÇÑ À¯ÀüÀÚ ÆíÁý µµ±¸´Â Àû»ó ÀûÇ÷±¸Áõ, ÆÄŲ½¼º´, ¸»Ãʵ¿¸ÆÁúȯ, ô¼ö¼º ±ÙÀ§ÃàÁõ, ÀÚ°¡¸é¿ªÁúȯ, ±âŸ À¯Àü¼º Áúȯ µî À¯ÀüÀÚ ÀÌ»óÀÇ °á°ú·Î ¹ßº´ÇÏ´Â ´Ù¾çÇÑ ÀÓ»ó Áõ»óÀÇ Ä¡·á¿¡ ³Î¸® »ç¿ëµÇ¾î ¿Ô½À´Ï´Ù.
¶ÇÇÑ, Ä¡·á À¯ÀüÀÚ¸¦ ¼¼Æ÷¿¡ µµÀÔÇϰųª µ¹¿¬º¯ÀÌµÈ À¯ÀüÀÚ¸¦ ´ëüÇÔÀ¸·Î½á ±Ùº»ÀûÀÎ À¯ÀüÀÚ ÀÌ»ó¿¡ ´ëóÇÏ´Â À¯¸ÁÇÑ Á¢±Ù¹ýÀ¸·Î¼ À¯ÀüÀÚ Ä¡·á°¡ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. 2024³â 4¿ù ÇöÀç 1,100°³ ÀÌ»óÀÇ ÀÓ»ó½ÃÇèÀÌ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖÀ¸¸ç, ´Ù¾çÇÑ °³¹ß ´Ü°èÀÇ À¯ÀüÀÚ Ä¡·á°¡ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. WHO¿¡ µû¸£¸é 1,000¸í Áß 10¸íÀÌ À¯Àü ÁúȯÀ» ¾Î°í ÀÖÀ¸¸ç Àü ¼¼°èÀûÀ¸·Î 7,000¸¸ ¸í ÀÌ»óÀÌ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼¼°è ¿µÀ¯¾Æ »ç¸Á·üÀÇ 40% ÀÌ»óÀÌ ´Ù¾çÇÑ À¯ÀüÀÚ Áúȯ°ú °ü·ÃµÇ¾î ÀÖ½À´Ï´Ù. ±× °¡´É¼º¿¡µµ ºÒ±¸Çϰí, À¯ÀüÀÚ ÀçÁ¶ÇÕ ÀǾàǰÀÇ °³¹ß¿¡´Â, â¾à, °³¹ß, Á¦Á¶¿¡ °í¾×ÀÇ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ ¾àÁ¦ÀÇ È¿À², Á¤È®µµ, ¾ÈÀüÇÑ ¹è´ÞÀ» È®º¸Çϱâ À§ÇØ Á¦¾àȸ»ç´Â ¼±ÁøÀûÀÎ À¯ÀüÀÚ ÆíÁý ±â¼úÀ» äÅÃÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú Á¤È®ÇÑ À¯ÀüÀÚ º¯ÇüÀ» ÅëÇØ ÀÓ»óÀü±Í¸¦ Çâ»ó½Ã۱â À§ÇØ ÃÖ÷´Ü ±â¼úÀÇ ÅëÇÕÀÌ Á߽õǰí ÀÖ½À´Ï´Ù.
À¯ÀüÀÚ ÆíÁý ¿µ¿ª¿¡¼ÀÇ ±â¼ú Çõ½ÅÀÇ ÁøÇà ¼Óµµ´Â ¼¼Æ÷ ¹× À¯ÀüÀÚ Ä¡·á¿¡ ÀÖ¾î¼ À¯¸ÁÇÑ ÀÓ»ó½ÃÇè °á°ú¿Í ÇÔ²² ¾÷°è¸¦ ÀüÁø½Ã۰í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ³ó¾÷°ú ½Ä·® ¾Èº¸¿¡ ÀÖ¾î¼ À¯ÀüÀÚ ÆíÁýÀÇ ¿ëµµ È®´ë°¡ ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼´Â À¯ÀüÀÚ ÆíÁý ½ÃÀåÀÇ ÇöÀç »óȲÀ» ÆÄ¾ÇÇÏ°í ¾÷°è ³» ÀáÀçÀû ¼ºÀå ±âȸ¸¦ È®ÀÎÇÕ´Ï´Ù. ÀÌ º¸°í¼ÀÇ ÁÖ¿ä ¿äÁ¡Àº ´ÙÀ½°ú °°½À´Ï´Ù. :
±â¼úÀÇ 85% °¡±îÀÌ CRISPR-Cas ±â¼úÀ» »ç¿ëÇϰí, ±× Áß 30% °¡±îÀÌ CRISPR µµ±¸¸¦ ¼¼Æ÷¿¡ Á÷Á¢ Àü´ÞÇÒ ¼ö ÀÖ°Ô ÇÏ¿©, ÁַΠâ¾à°ú Àç»ý ÀÇ·á¿¡ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù.
ÃÖ±Ù¿¡´Â ÆÄÆ®³Ê½ÊÀÇ ²ÙÁØÇÑ ¼ºÀåÀÌ °üÂûµÇ°í ÀÖÀ¸¸ç ±â¼ú ¶óÀ̼±½Ì °è¾àÀÌ °¡Àå µÎµå·¯Áø ÆÄÆ®³Ê½Ê ¸ðµ¨·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
À¯ÀüÀÚ ÆíÁý°ú °ü·ÃµÈ 2,400°Ç ÀÌ»óÀÇ Æ¯Çã°¡ ÀÌ ºÐ¾ß¿¡¼ ¸¸µé¾îÁø ÁöÀû Àç»êÀ» º¸È£Çϱâ À§ÇØ ´Ù¾çÇÑ ±â¼ú °³¹ßÀÚ°¡ Ãâ¿øÇÏ°í ±â¼ú °³¹ßÀÚ¿¡°Ô ºÎ¿©µÇ¾ú½À´Ï´Ù.
äÅÃµÈ °áÁ¦ ¹æ¹ýº°·Î, ¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº °è¾à ÀϽñݰú ¸¶ÀϽºÅæ ÁöºÒ·Î ±¸ºÐµË´Ï´Ù. ÇöÀç ½ÃÀå ¼¼ºÐÈ´Â ½ÃÀå Àüü¿¡¼ °¡Àå ³ôÀº Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ¸¶ÀϽºÅæ ÁöºÒ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß¿¡ Å« ¼ºÀåÀ» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁµÇ°í ÀÖÀ½¿¡ À¯ÀÇÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù.
À¯ÀüÀÚ ÆíÁý ±â¼ú À¯Çüº°·Î ¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº CRISPR-Cas ½Ã½ºÅÛ, TALEN, ¸Þ°¡´ºÅ¬·¹¾ÆÁ¦, ZFN ¹× ±âŸ·Î ±¸ºÐµË´Ï´Ù. ÇöÀç CRISP-Case ½Ã½ºÅÛ ºÎ¹®ÀÌ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ µ¿ÇâÀº ¾ÕÀ¸·Îµµ ¹Ù²ð °Í °°Áö ¾Ê´Ù´Â °ÍÀ» °Á¶ÇØ µÎ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù. ÀÌ µ¿ÇâÀº Â÷¼¼´ë CRISPR ±â¼úÀÌ º¸´Ù ¸ÂÃãÈµÈ Á¤È®ÇÑ °á°ú¹°À» Á¦°øÇÔÀ¸·Î½á ±âÁ¸ À¯ÀüÀÚ ÆíÁý ±â¼ú°ú °ü·ÃµÈ ÇѰ踦 ±Øº¹ÇÒ À¯¸ÁÇÑ ±â¼ú·Î ºÎ»óÇØ¿Ô´Ù´Â »ç½Ç¿¡ ±âÀÎÇϰí ÀÖ½À´Ï´Ù.
À¯ÀüÀÚ ÆíÁý Á¢±Ù¹ý¿¡ µû¶ó ¼¼°è À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº À¯ÀüÀÚ ³ìÀÎ Á¢±Ù¹ý°ú À¯ÀüÀÚ ³ì¾Æ¿ô Á¢±Ù¹ýÀ¸·Î ±¸ºÐµË´Ï´Ù. ÇöÀç ½ÃÀåÀº À¯ÀüÀÚ ³ì¾Æ¿ô Á¢±Ù¹ý¿¡ ÀÇÇØ âÃâµÇ´Â ¼öÀÍ¿¡ ÀÇÇØ Áö¹èµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ³ìÀÎ Á¢±Ù¹ýÀº º¹ÀâÇÑ ÃÖÀûÈ ÇÁ·Î¼¼½º¸¦ ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ ³ìÀÎ Á¢±Ù¹ý°ú ºñ±³ÇÏ¿© ÀÌ Á¢±Ù¹ýÀÇ ´õ Å« ½ÇÇö °¡´É¼º°ú Á¢±Ù¼º¿¡ ±âÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù.
À¯ÀüÀÚ µµÀÔ ¹æ¹ýº°·Î, ¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº »ýü¿Ü ¹× »ýü³»·Î ±¸ºÐµË´Ï´Ù. ÇöÀç, »ýü¿Ü ºÎ¹®Àº À¯ÀüÀÚ ÆíÁý ½ÃÀå¿¡¼ ÃÖ´ëÀÇ Á¡À¯À²À» ȹµæÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â »ýü¿Ü À¯ÀüÀÚ µµÀÔ¿¡¼´Â ¼¼Æ÷°¡ ȯÀÚ¿¡°Ô¼ äÃëµÅ ¿¬±¸½Ç¿¡¼ °³ÆíµÈ ÈÄ Ã¼³»¿¡ ÀçµµÀԵȴٴ »ç½Ç¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÌ ¶§¹®¿¡ ½ÇÇè½Ç ³»¿¡¼ À¯ÀüÀÚ º¯ÇüÀ» Á¤È®ÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ´Â ÇÑÆí °ü·Ã Ç¥Àû ¿Ü ¿µÇâÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ¿¹Ãø ±â°£ µ¿¾È »ýü³» ºÎ¹®Àº ºñ±³Àû ³ôÀº CAGR·Î ¼ºÀåÇÒ °Í °°½À´Ï´Ù.
À¯ÀüÀÚ µµÀÔ ¸ð´Þ¸®Æ¼º°·Î ¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº ¹ÙÀÌ·¯½º º¤ÅÍ¿Í ºñ¹ÙÀÌ·¯½º º¤ÅÍ¿¡ ºÐ»êµÇ¾î ÀÖ½À´Ï´Ù. ÇöÀç ¹ÙÀÌ·¯½º º¤ÅÍ ºÎ¹®ÀÌ À¯ÀüÀÚ ÆíÁý ½ÃÀå¿¡¼ °¡Àå ³ôÀº Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª À¯ÀüÀÚ ¾ç½ÄÀ¸·Î¼ÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ »ç¿ë¿¡ µû¸¥ ´Ù¾çÇÑ °úÁ¦(¼¼Æ÷µ¶¼º, ¸é¿ª¿ø¼º, ½ºÄÉÀϾ÷ ¹®Á¦ µî) ¶§¹®¿¡ ÀÌ °æÇâÀº ÇâÈÄ ¼ö³â°£ º¯ÈÇÏ¿© ºñ¹ÙÀÌ·¯½º º¤ÅͰ¡ ½ÃÀå Àüü¿¡¼ °ÅÀÇ µ¿µîÇÑ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Ä¡·á À¯Çüº°·Î´Â ¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº ¼¼Æ÷ Ä¡·á, À¯ÀüÀÚ Ä¡·á, ±âŸ·Î ±¸ºÐµË´Ï´Ù. ÇöÀç·Î¼´Â ¼¼Æ÷ ¿ä¹ý ºÐ¾ß°¡ ÃÖ´ëÀÇ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Æø³ÐÀº ÁúȯÀÇ Ä¡·á¿¡ ³Î¸® ÀÀ¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡, ÀÌ µ¿ÇâÀº ¾ÕÀ¸·Îµµ ¹Ù²ð °Í °°Áö ¾Ê½À´Ï´Ù.
¿ëµµ ºÐ¾ßº°·Î´Â ¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº â¾à°ú ½ÃÀå °³Ã´, Áø´ÜÀ¸·Î ±¸ºÐµË´Ï´Ù. ÇöÀç, ½Å¾à °³¹ß ºÐ¾ß°¡ ½ÃÀå Á¡À¯À²ÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.
ÃÖÁ¾ »ç¿ëÀÚº°·Î º¸¸é ¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº Á¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, Çмú±â°ü ¹× ¿¬±¸±â°ü¿¡ ºÐ»êµÇ¾î ÀÖ½À´Ï´Ù. Ư±âÇÒ ¸¸ÇÑ °ÍÀº Á¦¾à ¹× ¹ÙÀÌ¿À Å×Å©³î·ÎÁö ºÎ¹®ÀÌ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϰí ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. ÀÌ´Â Á¦¾à ¹× ¹ÙÀÌ¿À ±â¼ú ±â¾÷µéÀÌ ÀÌ ¿µ¿ª¿¡¼ ÃÖ´ëÇÑÀÇ ±â¼ú ¶óÀ̼±½º ¹× ÅëÇÕ °è¾àÀ» ü°áÇϰí Àֱ⠶§¹®À̸ç, µû¶ó¼ ¾÷°è ±â¾÷µéÀÌ Ã¢ÃâÇÏ´Â ¼öÀÍÀÇ ´ëºÎºÐ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
ÁÖ¿ä Áö¿ªº°·Î º¼ ¶§ ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾çÀ¸·Î ±¸ºÐµË´Ï´Ù. ÇöÀç ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ À¯·´ÀÌ ¿¹Ãø ±â°£ Áß¿¡ ºñ±³Àû ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸ÁµÇ°í ÀÖ´Â °ÍÀº ÁÖ¸ñÇÒ ¸¸ÇÕ´Ï´Ù.
º» º¸°í¼¿¡¼´Â ¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç,, ½ÃÀå °³¿ä¿Í ÇÔ²² ±â¼úº°, Ä¡·á À¯Çüº°, À¯ÀüÀÚ ÆíÁý Á¢±Ù¹ýº°, À¯ÀüÀÚ µµÀÔ ¹æ¹ýº°, À¯ÀüÀÚ µµÀÔ ¸ð´Þ¸®Æ¼º°, ÀÀ¿ë ºÐ¾ßº°, ÃÖÁ¾ »ç¿ëÀÚ À¯Çüº°, ÁÖ¿ä ½ÃÀå ÁøÃâ ±â¾÷º° µ¿Çâ ¹× ½ÃÀå ÁøÃâ ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.
As per Roots Analysis, the global genome editing market size is currently valued at USD 3.41 billion in 2024, is projected to reach USD 4.25 billion in the current year and USD 13.36 billion by 2035, growing at a CAGR of 12.1% during the forecast period.
The opportunity for genome editing market has been distributed across the following segments:
Payment Method Employed
Type of Gene Editing Technique
Gene Editing Approach
Gene Delivery Methods
Gene Delivery Modality
Type of Therapy
Application Area
Type of End-User
Key Geographical Regions
The human genome comprises nearly three billion nucleotide base pairs, which contain ~20,000-25,000 protein-coding genes. These genes act as a code that regulates and controls protein synthesis, thereby influencing gene expression. The ongoing advancements in the biotechnology domain have enabled various medical researchers to modify human genome expression through specialized techniques called genome editing or genome engineering. Genome editing, also known as gene editing, is a technique that allows genome modification by inserting, deleting or replacing a single gene or a set of genes in an organism, thereby altering the nucleotide composition. The growing need for genome editing at the desired site has led to the development of various genome editing tools by companies engaged in this domain. Key technologies include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and CRISPR technology. Notably, ZFN was the first genome engineering technique discovered in 1895, followed by TALENs (in 2011) and CRISPR, which emerged as a transformative breakthrough in the genome editing domain. These gene editing tools have been widely used for the treatment of various clinical conditions developed as a result of genetic abnormalities, such as sickle cell disease, Parkinson's disease, peripheral artery disease, spinal muscular atrophy, autoimmune diseases, and other genetic disorders.
Moreover, gene therapies have gained prominence as a promising approach to addressing the underlying genetic abnormalities by introducing therapeutic genes into the cells or by replacing mutated genes. As of April 2024, over 1,100 active clinical trials are investigating gene therapies at various stages of development. According to the WHO, 10 out of every 1,000 individuals suffer from genetic disorders, affecting more than 70 million people worldwide. Further, more than 40% of infant mortality globally is associated with various genetic disorders. Despite its potential, gene edited drug development requires substantial investment in drug discovery, development, and manufacturing. Therefore, in order to ensure the efficiency, precision and safe delivery of these drugs, pharmaceutical companies are increasingly adopting advanced genome editing technologies. As a result, there is a growing emphasis on integrating cutting-edge technologies to enhance clinical outcomes through precise genetic modifications.
The ongoing pace of innovation in the genome editing domain, coupled with the promising clinical trial results in cell and gene therapies are driving the industry forward. Additionally, the expanding applications of gene editing in agriculture and food security are further propelling the market growth.
The report delves into the current state of the genome editing market and identifies potential growth opportunities within the industry. The key takeaways of the report are:
Close to 85% of technologies use CRISPR-Cas technique; of these, nearly 30% enable the delivery of the CRISPR tool directly into the cells, primarily utilized for drug discovery and regenerative medicine.
A steady growth in partnership activity has been observed in recent years; technology licensing agreements have emerged as the most prominent type of partnership model.
Over 2,400 patents related to genome editing have been filed by / granted to various technology developers in order to protect the intellectual property generated within this field.
Based on the type of Payment Mode Employed, Upfront Payments Captures the Majority of the Current Market Share
Based on the type of payment method employed, the global genome editing market is segmented into upfront payments and milestone payments. Presently, the upfront payment segment occupies the highest share of the overall market. However, it is important to note that the milestone payment segment is anticipated to witness significant growth during the forecast period.
CRISPR-Cas System is Likely to Hold the Largest Share in the Genome Editing Market During the Forecast Period
Based on the type of gene editing techniques, the global genome editing market is segmented into CRISPR-Cas Systems, TALENs, Meganucleases, ZFNs, and others. Currently, CRISP-Case systems segment leads the genome editing market. Further, it is important to highlight that this trend is unlikely to change in the future as well. This trend can be attributed to the fact that next-generation CRISPR technologies have emerged as a promising technique to overcome the limitations associated with conventional gene editing techniques, by offering more customized and precise results.
Genome Editing Market for Gene Knock-out is Likely to Grow at a Relatively Faster Pace During the Forecast Period
Based on the type of gene editing approach, the global genome editing market is segmented across gene knock-in and gene knock-out approaches. Presently, the market is dominated by the revenues generated through gene knock-out approach. This can be attributed to the greater feasibility and accessibility of this approach, in comparison to knock-in approach, since knock-in approaches require a complex optimization process.
Genome Editing Market for In-vivo is Likely to Grow at a Higher CAGR During the Forecast Period
Based on the gene delivery method, the global genome editing market is segmented into ex-vivo and in-vivo. Currently, the ex-vivo segment captures the maximum share of the genome editing market. This can be attributed to the fact that in ex vivo gene delivery, cells are taken from the patient, modified in the lab and then reintroduced into the body. This allows precise control over the genetic modification in a lab setting, while minimizing the associated off-target effects. However, the in-vivo segment is likely to grow at a relatively higher CAGR during the forecast period.
Viral Vectors are Likely to Dominate the Genome Editing Market During the Forecast Period
Based on the gene delivery modality, the global genome editing market is distributed across viral vectors and non-viral vectors. Presently, the viral vector segment occupies the highest share of the genome editing market. However, due to various challenges associated with the use of viral vectors as gene modality (such as cytotoxicity, immunogenicity and scale-up issues), this trend is anticipated to change in the coming years, with non-viral vectors occupying an approximately equal market share in the overall market.
Cell Therapies Hold the Largest Share in the Genome Editing Market
Based on the type of therapy, the global genome editing market is segmented into cell therapies, gene therapies, and others. Presently, the cell therapies segment accounts for the largest market share. Additionally, owing to its wider applicability in treating a wide array of diseases this trend is unlikely to change in the future as well.
Drug Discovery and Development Hold the Largest Share in the Genome Editing Market
Based on the application area, the global genome editing market is segmented into drug discovery and development, and diagnostics. Currently, drug discovery and development segment capture the majority of the market share.
Revenues Generated from Pharmaceutical and Biotechnology Companies are Likely to Dominate the Genome Editing Market During the Forecast Period
Based on the end-user, the global genome editing market is distributed across pharmaceutical and biotechnology companies, and academic and research institutions. Notably, the pharmaceutical and biotechnology segment captures the majority of the genome editing market. This is due to the fact that pharmaceutical and biotechnology companies have signed maximum technology licensing / integration agreements in this domain, thus contributing to the majority of the revenue generated by industry players.
North America Accounts for the Largest Share in the Market
Based on key geographical regions, the market is segmented into North America, Europe, and Asia Pacific. In the current scenario, North America is likely to capture the largest market share. Further, it is worth highlighting that Europe is expected to grow at a relatively high CAGR during the forecast period.
The report on the genome editing market features insights into various sections, including: